采用2个MOS场效应管构成的功率放大器
双mos管并联电路 -回复

双mos管并联电路-回复双MOS管并联电路是一种常见的电路拓扑结构,它由两个金属氧化物半导体场效应管(MOSFET)组成,并且通过并联方式连接在一起。
这种电路结构在电子器件和电路设计中被广泛使用,因为它具有低导通电阻、高效率和良好的可靠性。
在本篇文章中,我们将一步一步地回答关于双MOS管并联电路的主题。
我们将首先介绍MOSFET的基本原理和结构,然后讨论双MOS管并联电路的工作原理、特点和应用。
一、MOSFET基本原理和结构1. MOSFET概述MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)是一种半导体器件,它通过在金属(M)、氧化物(O)和半导体(S)之间形成一个接触界面,实现对电流的控制。
2. MOSFET结构MOSFET的主要结构由沟道、栅极、源极和漏极组成。
沟道是一个具有特定的电流输运特性的区域,栅极用于控制沟道中的电流流动。
源极和漏极是与沟道相连的区域,它们之间的电势差将导致沟道中的电流流动。
二、双MOS管并联电路的工作原理1. 结构双MOS管并联电路由两个MOSFET管并联连接而成。
每个MOSFET管具有自己的栅极、源极和漏极。
两个MOSFET管的栅极和源极通过电压源或信号源连接,而漏极则通过衔接到负载电路。
2. 工作原理当输入信号作用于双MOS管并联电路的栅极时,它将使得栅极和源极之间形成电势差。
这个电势差将导致栅极和漏极之间的电势差改变,进而改变沟道中的电流。
3. 特点双MOS管并联电路的一个主要特点是具有较低的导通电阻。
由于有两个MOSFET管并联连接,它们共同承担了负载电路的电流,从而降低了整体电路的电阻。
这使得双MOS管并联电路能够提供更好的电流传输能力和较低的功耗。
三、双MOS管并联电路的应用1. 功率放大器双MOS管并联电路可以用作功率放大器,为输入信号提供较大的电流放大倍数。
它可以在许多电子设备中使用,包括音频放大器、扬声器和无线电频率放大器等。
大学生电子方案设计书竞赛G题低频功率放大器题解分享

2009年全国大学生电子设计竞赛G题低频功率放大器题解分享本主题由 soso 于 2009-10-30 16:47 解除置顶裸片初长成芯币4693 枚∙个人空间∙发短消息∙加为好友∙当前离线xu__changhua的全部文章楼主大中小发表于 2009-9-8 01:06 只看该作者2009年全国大学生电子设计竞赛G题低频功率放大器题解分享2009年全国大学生电子设计竞赛G题是一个设计功率放大器的题,主要考核学生模拟电子技术的基础技能,要求是一定要用场效应晶体管做末级放大,且电路增益要求很大,如5mV的输入要达到5W(8欧负载)的输出,算下来要1265倍,这么大倍数的放大器还要求噪声非常小,小到5mV,失真度1%,这题相对来说是比较难的。
此外,还要检测放大器的输出功率、电源供给功率以及效率,这部分稍微容易些,但是也不是那么轻易就能解决的。
先说说实现方案吧。
功率放大器实现方法有几类,低频的有甲、乙、甲乙、丁等几种。
甲类效率很低,约20%左右,但是其失真度可以做的非常小,如0.1%,效率没做评分要点,只是适当考虑,所以可以采用;乙类的只能有半周输出,失真度太大所以不能采用。
甲乙类是解决甲类的效率和乙类的失真度的综合途径,推荐采用;丙类肯定不用了,那是高频功率放大器专用的类型,这里是低频的(10Hz~50KHz),所以不能采用;丁类的(就是所谓的D类)采用H桥的开关方式工作,输入的信号要进行PWM(PWM是脉冲宽度调制),H桥输出后是一个开关量,要经过LC滤波转变为模拟量,再传送给扬声器。
这种方法效率极高,但是电路复杂,调试困难,且效率不做评分的主要依据,建议舍弃这种方案。
经过综合权衡考虑,宜采用甲乙类比较合适。
再说下电路组成结构该课题有三个主要部分构成,1:功率传输部分;2:电压放大部分(1265倍以上);3:信号测量部分功率传输部分没得选,课题已经规定了,一定得用场效应管,最好是P沟道和N沟道互补,这么大功率的场效应管要用V-MOS的,需要查场效应管资料来选型,尤其注意其源极电阻要小,这样才能发挥出优秀的转换效率,此外就是电压和电流的选型。
MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。
电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。
其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。
场效应管80W音频功率放大电路一款性能极佳的JFET-MOSFET耳机功放电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。
如果畅通,将改变这个直流电压偏置值S后续阶段。
电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。
晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。
预设R1用于调整放大器的输出电压。
电阻R3和R2设置放大器的增益。
第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。
这样做是为了提高线性度和增益。
Q7和Q8在AB 类模式运行的功率放大级的基础上。
预设R8可用于调整放大器的静态电流。
电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。
F1和F2是安全的保险丝。
电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。
下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。
V-MOS简介

V-MOS简介一般场效应管虽然输入阻抗较高,但输出端带负载的能力很低;一般大功率晶体管虽然能输出较大的功率,但由于输入阻抗较低,输入端需有较大的推动电流才能工作,因此还要设较复杂的推动级。
本文向读者推荐的这种VMOS管是一种功率场效应管,兼有上述两种管子的优点,在设计线路时,可使线路大为简化。
另外这种管子还有许多其它独特的优点。
这是近年(指80年代)来才发展起来的一种新型器件。
VMOS功率场效应管又叫V型槽金属氧化物半导体场效应管,用英文缩写字母可写成“VMOS FET”。
有关这种管子的结构原理及特性,本刊在1985年第4期上已有专文述及(下次再转贴),这里不说了。
仅说说这种管子在应用方面的特点,并给出几种应用电路例子,供使用参考。
与普通大功率晶体管相比较,VMOS功率场效应管有如下一些优点:(1)VMOS管具有很高的输入阻抗(10的8次方欧姆左右),其输入端能直接与CMOS、TTL集成电路和其它高阻抗器件连接。
(2)VMOS管在工作时的输入电流甚微(0.1μA以下),一般认为只要输入端有电压就可以驱动,因此对驱动器件的功率要求很低,属电压控制器件。
如从电流角度看,VMOS 管的电流放大系数高达10的9 次方。
所以单个VMOS管经常可用来代替由两三只普通晶体管组成的达林顿管(复合管)(3)VMOS管是多数载流子器件,没有普通晶体管所固有的少子存储效应。
适于高频高速工作。
例如:VMOS智能在4毫微秒(ns)内开关1A的电流。
这比普通晶体管快了10~200倍。
(4)VMOS管具有负的电流温度系数,即栅源电压不变的情况下,导通电流会随温度的上升而下降(普通晶体管正相反),因而VMOS管不存在由于二次击穿所引起管子损坏的现象,使它特别适于做大功率器件。
下面介绍几个应用电路:1.电源:串联型稳压电源所用调整管的功率不能满足要求时,通常是用几只晶体管并联起来使用,如图1所示。
一般需选用相同参数的管子来并联,否则很容易因电流分配不匀,而集中流入某一管,致使该管损坏。
逆变器功率管3DD15可以用场效应管直接代管吗?

逆变器功率管3DD15可以用场效应管直接代管吗?
3DD15是国产的大功率低频硅三极管,其功率为50W,Icm为5A,耐压值从几十伏到上百伏不等(譬如,3DD15D的耐压值为200V),这种管子在一些老式的稳压电源及逆变器电路中较常用,现在上述产品中很少使用这种管子。
由于3DD15的外形封装、引脚排列及驱动电路与MOS场效应管都不太一样,故一般不能直接用MOS场效应管代替3DD15。
▲ 两个3DD15构成的简易逆变升压电路。
由于3DD15为双极型三极管,属于电流驱动器件,而MOS场效应管为单极型电压驱动器件,它们的驱动电路不太一样,即使不考虑外形封装及引脚排列,直接用MOS场效应管代替上图中的两个3DD15三极管,电路将无法工作。
不过,像下图所示的这种采用IC作为振荡电路,外接功率管的逆变电路,若调整一下管子的引脚,亦可以用MOS场效应管代替3DD15。
▲ 用555电路构成的逆变升压电路。
上图中,555电路接成一个自激多谐振荡器,其③脚输出的振荡信号经3DD15放大后,驱动升压变压器的初级线圈,这样在变压器的次级输出的便是交流高压。
图中这个3DD15完全可以换成IRF3205这类N沟道大功率MOS场效应管,电路也不需要作什么调整,唯一需要注意的是IRF3205的引脚不要接错。
▲ 3DD15和IRF3205的外形。
上图中的IRF3205是现在逆变器电路中常用的大功率N沟道MOS 场效应管,其耐压值为55V,漏极电流可达110A。
这种场效应管不论是饱和压降还是高频开关性能皆显著优于3DD15这种低频硅三极管。
三极管和场效应管混合驱动方式的音频开关功率放大器设计

文 章 编 号 :1 0 — 3 3 2 1 ) 3 0 6 — 3 0 44 5 ( 0 0 0 —2 3 0
三 极 管 和 场 效 应 管 混 合 驱 动 方 式 的 音 频 开 关 功 率 放 大 器 设 计
崔 春 淑
(延 边 大 学 工 学 院 电子 信 息 工程 系 , 林 延 吉 1 3 0 吉 3 0 2)
部 分 采 用 N 沟 道 MOS E 和 P F T NP 三 极 管 构 成
虽 然开关 功 率放 大 器 的 电 路 复 杂 , 由 于它 具 有 但 很 高 的工作 效率 , 使用 较小 的散 热 片 , 因此可 大幅 地 减小 产品 的体 积n ] 在常见 的开关功 率 放 大器 .
拟信号转换 成 P WM 信 号 , 求 凋制 频 率 大 于 要
5 HzTI 9 0 k . 4芯 片 可 : 在 7 4 的 宽 电 压 4 £作 ~ O V
1 三 极 管 和 场 效 应 管 混 合 驱 动 方 式 的 音
频 开 关 功 率放 大 器
1 1 整体 电路框 图 . 图 1 是基 于 T1 9 4的 开 关功 率 放 大 器 的 整 4 体 电路框 图. 电路 设 计的关键是 占空 比调节 电路 、
警 器 的开关 功率 放大 器. 线性 功率 放大 器相 比 , 与
的功 率为 2 OW ; DA7 8 在 最 大 的 工 作 电 压 ( T 41 ± 1 下 , 输 出 的 功 率 为 1 ;S 8 V) 可 8 W TA5 0在 最 大 l
的工 作 电压 ( 0 下 , 输 出的功 率 为 1 0 6 V) 可 0 W. 这
K e r s:T I49 y wo d 4;c m post rv n o ie d ii g;s ic ng po e p iir w t hi w ram lfe
MOS管放大电路

同相放大器的特点是输入阻抗低、输出阻抗高,因此具有良好的驱动能力。它通 常由一个运算放大器和两个电阻构成,其输出电压与输入电压成比例,且放大倍 数由两个电阻的比值决定。
差分放大器
总结词
差分放大器是一种用于放大差分信号的电路,其输出信号与两个输入信号之差成正比。
详细描述
差分放大器的特点是抑制共模信号、放大差分信号,因此具有较高的抗干扰性能。它通 常由两个对称的放大电路组成,分别对两个输入信号进行放大,然后通过减法器得到差
易于集成
由于MOSFET是平面结构,易 于集成到集成电路中,有利于 减小放大电路的体积和重量。
MOS管放大电路的应用场景
音频放大
用于放大音频信号,如扬声器、 耳机等。
电源管理
用于调整和放大电源电压,如直流 /直流转换器等。
信号放大
用于放大各种传感器输出的微弱信 号,如压力、温度、光等传感器。
ቤተ መጻሕፍቲ ባይዱ
02
输出阻抗匹配的目的是使放大电路的输出信号能够有效地传输到负载,同时避免信号的损失或失真。通过选择适 当的输出阻抗元件,可以使得放大电路的输出阻抗与负载阻抗相匹配。
带宽与增益的权衡
带宽
带宽是指放大电路能够处理的信号频 率范围。在设计和优化MOS管放大电 路时,需要考虑所需的带宽,并选择 适当的元件和电路拓扑以实现所需的 频率响应。
的调节。
电容器
01
电容器是一种储能元件, 由两个平行板中间填充 绝缘介质构成。
02
它具有隔直流通交流的 特性,常用于滤波、耦 合、旁路等电路中。
03
根据介质类型和结构, 电容器可分为固定电容 器和可变电容器两大类。
04
在MOS管放大电路中, 主要使用固定电容器, 用于实现信号耦合和滤 波等功能。
MOSFET功放电路

目录场效应管功率放大电路 (1)场效应管80W音频功率放大电路 (1)一款性能极佳的JFET-MOSFET耳机功放电路图 (2)100W的MOSFET功率放大器 (2)场效应管(MOSFET)组成的25W音频功率放大器电路图 (4)一种单电源供电的MOSFET功放电路 (6)100W的V-MOSFET功率放大器电路 (6)100W场效应管功率放大电路 (8)全对称MOSFET OCL功率放大器电路图 (9)场效应管功率放大电路如图所示电路是采用功率MOSFET管构成的功率放大器电路。
电路中差动第二级采用2SJ77***率MOSFET,电流镜像电路采用2SK214。
其工作电流为6mA,但电源电压较高(为±50V),晶体管会发热,因此要接人小型散热器。
场效应管80W音频功率放大电路图100W的MOSFET功率放大器电路图关于电路电容C8是阻止直流电压,如果从输入源的输入直流去耦电容。
如果畅通,将改变这个直流电压偏置值S后续阶段。
电阻R20限制输入电流到Q1 C7 -绕过任何输入的高频噪声。
晶体管Q1和Q2的形式输入差分对和Q9和Q10来源1毫安左右建成的恒流源电路。
预设R1用于调整放大器的输出电压。
电阻R3和R2设置放大器的增益。
第二差的阶段是由晶体管,第三季度和Q6,而晶体管Q4和Q5形式电流镜,这使得第二个差分对漏一个相同的电流。
这样做是为了提高线性度和增益。
Q7和Q8在AB 类模式运行的功率放大级的基础上。
预设R8可用于调整放大器的静态电流。
电容C3和电阻R19组成的网络,提高了高频率稳定度和防止振荡的机会。
F1和F2是安全的保险丝。
电路设置设置在中点R1开机前,然后慢慢调整为了得到一个最低电压(比50mV)输出。
下一步是成立的静态电流,并保持在最低电阻预设的R8和万用表连接跨标记点电路图X和Y的调整R8使万用表读取16.5mV对应50mA的静态电流。
注意事项质量好的印刷电路板组装的电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本电路采用2个MOS 场效应管构成功率放大器,为甲乙类(AB
类)功率放大器,上面采用N 沟道增强型MOS 场效应管IRF130,下面采用P 沟道增强型MOS 场效应管IRF9130,IRF130和IRF9130是IR 公司生产的配对N 沟道和P 沟道器件,性能几乎是对称的。
为了克服交越失真,必须使输入信号避开场效应管的截止区,可
以给场效应管加入很小的静态偏置电流,使输入信号叠加在很小的静态偏置电流上,这样可以避开场效应管的截止区,使输出信号不失真。
增强型MOS 场效应管有个开启电压V T ,V GS 必须要大于V T ,该
场效应管才能进入放大区。
IRF130和IRF9130的V GS 最小值为2V ,设计时使2个场效应管栅极之间的电压在2V*2=4V ,或者为了减小直流电源的消耗,取比4V 稍小一点,也是可以的。
只要保持电压的分压比,电阻上的电流是不必考虑的,因为场效
应管的栅级输入阻抗是非常高的,栅级几乎不消耗电流,因此,分压
GND_0VOFF = 0v
电阻的阻值取常用的即可。
从单个场效应管看,这是源级跟随器,所以电压放大倍数为1。
功率放大器对输入电压范围是没有限制的,取决于场效应管的参数,IRF130和IRF9130的绝对最大V GS=±20V,就是说,输入电压范围±15V是没有问题的。
功率放大器根据输入电压,放大接近1倍,得到输出电压,由输出电压,根据负载,得到输出电流。
如果电源电压是±24V,减去2个场效应管的正常工作时的V DS,输出电压范围应该大于±22V,具体做一下实验,也是简单的事。
甲乙类放大器电路的主要特点如下所述:
(a).这种放大器同乙类放大器电路一样,也是用两只场效应管分别放大输入信号的正、负半周,但给两只场效应管加入了很小的静态偏置电流,以使场效应管刚刚进入放大区。
(b).由于给场效应管所加的静态直流偏置电流很小,所以在没有输入信号时放大器对直流电源的消耗比较小(比起甲类放大器要小得多),这样具有乙类放大器的省电优点,同时因加入的偏置电流克服了场效应管的截止区,对信号不存在失真,又具有甲类放大器没有非线性失真的优点。
所以,甲乙类放大器具有甲类和乙类放大器的优点,同时克服了这两种放大器的缺点。
正是由于甲乙类放大器无交越失真,又具有输出功率大和省电的优点,所以被得到广泛的应用。
当这种放大电路中的场效应管静态直流偏置电流太小或没有时,就成了乙类放大器,将产生交越失真。