高中数学 第二章《对数函数的概念》说课稿 北师大版必修1

合集下载

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿

高中数学新教材必修一说课稿高中数学新教材必修一说课稿(通用5篇)作为一无名无私奉献的教育工作者,通常需要用到说课稿来辅助教学,编写说课稿是提高业务素质的有效途径。

那么优秀的说课稿是什么样的呢?以下是本店铺为大家收集的高中数学新教材必修一说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

高中数学新教材必修一说课稿 1尊敬的各位评委、老师们:大家好!今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。

下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:一、背景分析1、学习任务分析本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;教学难点为:函数概念的形成及理解。

二、教学目标设计根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)通过丰富的实例,让学生①了解函数是非空数集到非空数集的一个对应;②了解构成函数的三要素;③理解函数概念的本质;④理解f(X)与f(a)(a为常数)的区别与联系;⑤会求一些简单函数的定义域。

2、过程与方法(方面)在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

《对数函数》说课稿

《对数函数》说课稿

《对数函数》说课稿一、教材分析本节内容是在学习指数函数、对数的基础上引入的。

对数函数的学习,不但是对函数这一重要思想的进一步认识与理解,使学生的知识体系更加完善、系统,同时,它又是学生进一步学习,解决生产和生活中实际问题的重要工具。

为此,我制定了以下教学目标。

1、在探索指数与对数内在联系的基础上,掌握对数函数的概念、图象、性质并能简单应用。

2、在学习过程中,体会由特殊到一般、类比联想、数形结合、分类讨论等数学思想方法,发展学生的形象思维、逻辑思维能力,提高他们的信息检查和整合能力。

3、在民主、和谐的教学气氛中,促进师生的情感交流。

教学重点:对数函数的概念、图象和性质.教学难点:指数函数和对数函数的内在关系。

二、指导思想和教学方法1、树立以学生发展为本的思想。

通过构建以学习者为中心、有利于学生主体精神、创新能力健康发展的宽松的教学环境,提供学生自主探索和动手操作的机会,鼓励他们创新思考,亲身参与知识的形成过程。

2、利用多媒体辅助教学,采用“从特殊到一般”、“从具体到抽象”的方法,启发引导学生思考、分析、探索、归纳,并在教学中渗透“类比联想”、“数形结合”及“分类讨论”的数学思想方法。

三、学法指导本节课采用学生经过观察分析、类比联想、协作学习、自已发现结论的学习方法,以培养学生逻辑思维能力、动手实践能力和探索精神。

四、教学过程分以下几个环节进行1、提出问题首先给出一个问题:在细胞分裂过程中,细胞个数y 是分裂次数x 的指数函数2xy =。

若研究其相反问题:知道分裂后细胞个数y ,要求其分裂次数x 的值,即有:22log x y y x =→=。

同理,对放射性物质,知道了剩余量y ,也可以求出经过的时间x :0.840.84log x y y x =→=。

上述两个函数,y 是自变量,x 是y 的函数,但习惯上,用x 表示自变量,y 表示它的函数,因此对上式进行改写:22log log x y y x =→=,0.840.84log log x y y x =→=。

北师大版高一数学必修第一册对数函数的概念课件

北师大版高一数学必修第一册对数函数的概念课件
(1)该地的物价经过几年后会翻一番?
根据指数函数的性质,当0<a<1时,y=ax单调递减;
(3)

为y关于x的函数. 对于(2),利用计算工具,快速填好表格,探索发现,随着x的增长,y的增长在减缓.
对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换为y关于x的函数.
(2)

定义:一般地,函数y=logax(a>0,且a≠1)叫做对数函数(logarithmic function),其中x是自变量,定义域是(0,+∞).
的部分. (2)
例. 2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的
求解的依据是对数函数y=logax(a>0,且a≠1)的定义域(0,+∞).那么(1)中的x2和(2)中的(4-x)的取值范围就是(0,+∞),于是得到不等式,将定义域问题转化为解不等式问
物价为x. 题,进而求出定义域.
物价x 1 2 3 4 5 6 7 8 9 10 年数y 0
新知探究
例2 假设某地初始物价为1,每年以5%的增长率递增,经过y年后的 物价为x. (1)该地的物价经过几年后会翻一番? 对于(1),先写出x关于y的函数,再根据对数与指数间的关系,转换 为y关于x的函数.
解:(1)由题意可知,经过y年后物价x为 x=(1+5%)y,即x=1.05y(y∈[0,+∞)).
由对数与指数间的关系,可得y=log1.05x,x∈[1,+∞).
新知探究
追问2 若已知死亡生物体内碳14的含量,如何得知它死亡了多长时间呢?如右图,观察
的图象,过y轴正半轴上任意一点(0,y0)(0<y0≤1)作x轴的平行线,结合
指数函数的单调性,这条平行线与
的图象有几个交点?这说明对任意一个y∈(0,1],都有几个x与其对应?能否将x看成是y的函数?

北师大版高一数学必修一对数函数的概念说课稿

北师大版高一数学必修一对数函数的概念说课稿

北师大版高一数学必修一《对数函数的概念》说课稿(逐字稿)尊敬的各位考官大家好,我是今天的06号考生,今天我说课的题目是对数函数的概念。

接下来我将从教材分析、学情分析、教学过程(手势)等几个方面展开我的说课。

一、说教材《对数函数的概念》选自北师大版高中数学必修一第四章第三节第一课时,本节课的主要内容是:对数函数的概念。

二、说学情深入了解学生是新课标要求下教师的必修课,学生已经学习了指数和对数的互化,以及对数的基本运算,并且这一阶段高一学生具有较强的逻辑思维能力,教师在教学过程中要着重抓住这一特点。

三、说教学目标依据学生的知识水平和年龄特点,以及本节课在教材中所处的地位及作用,我制定了以下教学目标:1.学生掌握对数函数的概念以及反函数的求法。

2.学生经过思考和讨论的过程,提高发现和解决问题的能力。

3.提升数学抽象、数学运算素养。

四、说教学重难点要上好一节数学课,在教学内容上一定要做到突出重点、突破难点。

根据本节课的内容,确定教学重点为掌握对数函数的概念。

教学难点为反函数的求法。

五、说教法和学法结合本节课的内容和学生的认知规律,我主要采用讲授法、启发法、小组合作、自主探究等教学方法。

在学法上,我主要采用观察法、合作交流法、归纳总结法等教学方法。

六、说教学过程古语说“凡事预则立,不预则废”,为了更好的以学定教,我会让学生在课前完成一份前置作业(预习单),分为两部分:1.是旧知连接,出一些本课知识紧密相关的已经学过的练习题,这样可以很好的摸清学生基础。

2.是新知速递,是让学生自己先进行预习,完成一些与本课知识相关的基础的练习,从而培养学生的预习能力。

为了实现这节课的教学目标,突出重点,突破难点,整节课的教学分几个部分进行环节一:创设情境,引入新课良好的导入是激发学生求知欲与好奇心的有效方法,因此,我将出示关于细胞分裂的过程视频,请同学们写出分裂次数x与细胞总数y的函数关系。

即y=2x,请同学们思考一下,分裂出一万个细胞,需要经过多少次呢?就此引入本节课的主要内容。

对数的概念说课稿

对数的概念说课稿

对数的概念说课稿尊敬的各位评委老师:大家好!今天我说课的内容是“对数的概念”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析“对数的概念”是高中数学必修 1 中的重要内容,它是指数运算的逆运算,为后续学习对数函数打下坚实的基础。

本节课在教材中起着承上启下的作用,通过对数的学习,可以进一步深化学生对函数概念的理解,提高学生的数学思维能力。

二、学情分析在学习本节课之前,学生已经掌握了指数的运算和性质,具备了一定的函数知识和运算能力。

但对数的概念对于学生来说是一个全新的、抽象的概念,理解起来可能会有一定的困难。

因此,在教学过程中,要注重引导学生从具体到抽象、从特殊到一般的思维过程,帮助学生逐步理解对数的概念。

三、教学目标1、知识与技能目标(1)理解对数的概念,掌握对数的基本性质。

(2)能够熟练地进行对数式与指数式的相互转化。

(3)会用对数的运算性质进行简单的计算。

2、过程与方法目标(1)通过指数式与对数式的相互转化,培养学生的逆向思维能力。

(2)通过对数运算性质的推导,培养学生的逻辑推理能力。

3、情感态度与价值观目标(1)让学生在探索对数概念的过程中,体会数学的严谨性和逻辑性,培养学生的科学精神。

(2)通过对数在实际生活中的应用,让学生感受数学与生活的密切联系,激发学生学习数学的兴趣。

四、教学重难点1、教学重点(1)对数的概念。

(2)对数式与指数式的相互转化。

2、教学难点(1)对数概念的理解。

(2)对数运算性质的推导和应用。

五、教法与学法1、教法为了突出重点,突破难点,我将采用讲授法、启发式教学法和多媒体辅助教学法相结合的教学方法。

通过创设问题情境,引导学生思考、探究,激发学生的学习兴趣,提高课堂教学效率。

2、学法在教学过程中,注重引导学生自主学习、合作学习和探究学习。

让学生通过观察、分析、类比、归纳等方法,主动构建知识体系,提高学生的学习能力和创新能力。

高中数学 《对数的概念》教学设计 北师大版必修1.doc

高中数学 《对数的概念》教学设计 北师大版必修1.doc

《对数的概念》教学设计一、教材分析本节课是新课标高中数学必修①中第二章对数函数内容的第一课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备.同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二、学情分析大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.三、设计思路学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.3、通过学生分组探究进行活动,掌握对数的重要性质。

通过做练习,使学生感受到理论与实践的统一.4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.五、重点与难点重点:(1)对数的概念;(2)对数式与指数式的相互转化.难点:(1)对数概念的理解;(2)对数性质的理解.课二、对数式与指数式的互化:(5分钟)幂底数← a →对数底数指数← b →对数幂← N →真数思考:①为什么对数的定义中要求底数a>0且a≠1?②是否是所有的实数都有对数呢?负数和零没有对数让学生了解对数与指数的关系,明确对数式与指数式形式的区别,a、b和N位置的不同,及它们的含义。

2019—2020年最新北师大版高中数学必修一《对数的概念》教学设计教案(精品教学设计)

2019—2020年最新北师大版高中数学必修一《对数的概念》教学设计教案(精品教学设计)

《对数的概念》教学设计一、教材分析本节课是新课标高中数学必修①中第二章对数函数内容的第一课时,也就是对数函数的入门.对数函数对于学生来说是一个全新的函数模型,学习起来比较困难.而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研中起十分重要的作用.通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备.同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.二、学情分析大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感.通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.三、设计思路学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动.本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率.让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权.四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.3、通过学生分组探究进行活动,掌握对数的重要性质。

通过做练习,使学生感受到理论与实践的统一.4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识.五、重点与难点重点:(1)对数的概念;(2)对数式与指数式的相互转化.难点:(1)对数概念的理解;(2)对数性质的理解.六、过程设计幂底数← a →对数底数课3、对数的基本性质七、教学反思本教学设计先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握.《指数函数的图象及其性质》教学设计一、教材分析本节课是《普通高中课程标准实验教科书·数学(1)》第二章第一节第二课《指数函数及其性质》的第一节时“探究图象及其性质”. 指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究.二、学情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用.教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生.本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望.三、设计思路1.函数及其图象在高中数学中占有很重要的位置.如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心.本节课力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去.2.在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式.在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法.3.通过课堂教学活动向学生渗透数学思想方法. 四、教学目标1.理解指数函数的概念,能画出具体指数函数的图象;在理解指数函数概念、性质的基础上,能应用所学知识解决简单的数学问题;2.在教学过程中通过类比,回顾归纳从图象和解析式这两种不同角度研究函数性质的数学方法,加深对指数函数的认识,让学生在数学活动中感受数学思想方法之美、体会数学思想方法之重要;3.通过本节课的学习,使学生获得研究函数的规律和方法;培养学生主动学习、合作交流的意识.五、重点与难点教学重点:指数函数的概念、图象和性质.教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质. 六、教学过程:(一)创设情景、提出问题提问:如果让1号同学准备2粒米,2号同学准备4粒米,3号同学准备6粒米,4号同学准备8粒米,5号同学准备10粒米,……按这样的规律,51号同学该准备多少米?学生回答后教师公布事先估算的数据:51号同学该准备102粒米,大约5克重。

《对数函数-概念、图象、性质》说课稿

《对数函数-概念、图象、性质》说课稿

《对数函数-概念、图象、性质》说课稿
《对数函数--概念、图象、性质》说课稿
 一、说教材
 (一)、地位和作用
 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。

而对数函数作为这一阶段的重要的基本初等函数之一,在已学习对数、反函数以及指数函数的基础上以类比的方法进行学习,这有利于学生加深学生对函数、反函数认识及函数性质的理解;同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

 (二)、教学目标
 知识与技能:
 1、理解指数函数与对数函数的内在关系;
 2、掌握对数函数的概念、图象和性质;
 过程与方法:
 学生交流,学生操作,学生自主探究,教师参与指导。

 情感态度与价值观:
 1、培养学生用类比方法探索研究数学问题的素养;
 2、提高学生信息检查和整合能力;
 3、学习辩证唯物主义观点。

 (三)、重点和难点:
 重点:对数函数的概念、图象与性质。

 难点:指数函数与对数函数的内在的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014高中数学第二章《对数函数的概念》说课稿北师大版必修1 说教材
1、教材的地位、作用
《对数函数的概念》是北师大版高中数学必修一第三章第5节的内容。

在此之前我们学习了指数函数与对数等内容,它为过渡到本节起着铺垫作用。

“对数函数”这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课为学生进一步学习、参加生产和实际生活提供了必要的基础知识.
2、教育教学目标
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:①理解对数函数的概念;
②理解对数函数与指数函数的关系。

(2)能力目标:①注重思考方法的渗透,培养学生以已知探求未知的能力
②通过实例培养学生抽象概括能力、类比联想能力。

(3)情感目标:通过对《对数函数的概念》的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度。

3、教学重点、难点及关键
重点:对数函数的概念。

在教学中只有突出这个重点,才能使教材
脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:指数函数与对数函数的关系。

关键:指数函数与对数函数的类比教学。

由指数函数过渡到对数函数,通过类比分析,达到深刻地了解对数函数的概念,是掌握重点和突破难点的关键。

在教学中一定要使学生的思考紧紧围绕指数函数与对数函数的关系,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

一、说教法
在引入课题时,我采用多媒体、实物演示法;在新课探究中采用问题启导、活动探究、类比发现法;在形成技能时以训练法、探究研讨发为主。

这组教学方法的特点是:教师通过创设问题情境,引导学生逐步发现知识的形成过程,使教学活动真正建立在学生自主活动和探索的基础上,着力培养学生的创新能力。

在整个
教学过程中,以学生看,学生想,学生议,学生练为主体。

我在学生仔细观察、类比、想象的基础上,通过问题串的形式加以引导点拨。

这样就能够唤起学生对原有知识的回忆,自觉找到新旧知识的联系,使新学知识更牢固,理解更深刻。

二、 说学法
意在指导学生创新的学
1、乐学:在这个学习过程中要保持强烈的好奇心和求知欲,不断强
化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完美的认识结构。

3、会学:通过自己亲身参与,领会类比和深入研究两种知识创新的
方法,从而既学到知识,又学会创新,既能解决问题,又能发现问题。

四、说教学过程
(一) 创设情境,提出问题
问题情境:细胞分裂(多媒体演示)
思考:1、细胞分裂的个数y 与分裂次数x 具有怎样的函数关系式?
2、如果已知细胞分裂的个数y ,如何求它的分裂次数x ,请写出它的函数关系式。

3、在问题2的关系式中,每输入一个细胞的个数y 的值,是否都能得到唯一一个分裂次数x 的值呢?这里是把y 看做自变量,x 为y 的函数。

这样设计思考的目的一是复习了指数函数的概念,另外也回顾了指数与对数间的相互转化,为引入对数函数的概念作了铺垫。

(二)建立模型,形成概念
1、对数函数的概念
我们知道指数函数x
a y =)1,0(≠>a a 反应了数集R 与数集{y ︱0>y }之间的一一
对应关系.如果把y 当作自变量,那么x 就是y 的函数,这个函数就是y a x log =.我们就把
这个函数叫做对数函数。

习惯上自变量用x 表示,所以这个函数就写成x a y log =.下面有这样几个问题请大家注意:
⑴ 同指数函数相比较,对数函数x a y log =中a 的范围是什么,定义中a 的范围,为什么?
⑵y a x log =与x a y =中的x ,y 的相同之处是什么?不同之处是什么?
⑶x a y =与x a y log =中的x ,y 的相同之处是什么?不同之处是什么?
从而我们可以得出:指数函数与对数函数之间的关系
指数函数x a y =与对数函数y a x log =刻画的是同一变量对x ,y 之间的关系,所不同
的是:
①在指数函数x
a y =中,x 是自变量,y 是x 的函数,其定义域为R ,值域为),0(+∞
②在对数函数y a x log =中,y 是自变量,x 是y 的函数,其定义域为),0(+∞,值域为R 。

像这样的两个函数叫做互为反函数,也就是说对数函数y a x log =是指数函数x a y =的
反函数,习惯上按摩用x 表示自变量,那么指数函数x a y =的反函数就是x a y log =,
x a y log =的反函数就是指数函数x a y =)1,0(≠>a a 这样设计的目的是为了让学生更好的理解指数函数与对数函数的内在联系。

2、常用对数函数与自然对数函数
①我们称以10为底的对数函数x y lg =为常用对数函数;
②我们称以无理数e 为底的对数函数x y ln =为自然对数函数.
(三)解释应用
例1、计算对数函数x y 2log =对应于x 去1,2,3,时函数值。

例2、写出下列函数的反函数
①x y 5= ,②x
y 2log =
例3、求函数)32(13log +-=x x y 定义域 考虑到学生初次接触对数函数,为巩固学生所学知识,设置了三道例题,例1例2着重考察对数函数的基础知识及对数函数与指数函数的内在联系;例3主要考察对对数函数概念的理解,尤其是对底数的要求。

三道题由浅入深,既体现了数学的巩固性原则,又兼顾了因材施教的原则。

(四)深入研究
分别在两个坐标系内画出函数x y 2=与x y 2log =及x y )21
(=与x y 2
1log =的图像,分别观察它们有什么关系?
(五)反馈练习(见课件)
练习是对学生所学知识的反馈过程,教师可以了解学生对知识的掌握情况。

(六)课堂小结(见课件)
由学生完成(对数函数的概念;对数函数与指数函数的关系;函数的定义域)(七)课外作业
A组2、3题;②预习对数函数的图像
①完成P
113
五、说板书
板书设计。

相关文档
最新文档