数字电路代数化简逻辑门
数电1-6_公式化简法

阎石主编(第五版)
信息科学与工程学院基础部
标准与或式和标准或与式之间的关系
【 】
内容 回顾
k
若Y
mi,
则Y
k i
m k
M
k i
如果已知逻辑函数Y=∑mi时,定能将Y 化成编号i以外的那些最大项的乘积。
1
2.6 逻辑函数的化简方法
逻辑函数的最简形式
常见逻辑函数的几种形式
5
【例3】 Y AB AC BC AB ( A B)C
AB ( AB )C
AB C
6
5. 配项法 利用公式 A A A 和 A A 1 先配项 或添加多余项,然后再逐步化简。 【例1】 Y A BC ABC ABC
15
一.卡诺图
1. 定义:将逻辑函数的真值表图形化,把真值表中 的变量分成两组分别排列在行和列的方格中,就构成 二维图表,即为卡诺图,它是由卡诺(Karnaugh) 和范奇(Veich)提出的。 2. 卡诺图的构成:将最小项按相邻性排列成矩阵,就 构成卡诺图。实质是将逻辑函数的最小项之和以图形 的方式表示出来。最小项的相邻性就是它们中变量 只有一个是不同的。
(AB AB) (BC BC)
AB AB(C C) BC( A A) BC
配项
被吸收
AB ABC A BC ABC A BC BC
被吸收
AB AC(B B) BC
AB AC BC
整体提公因子A 只有一个变量不同的 两个最大项的乘积等 于各相同变量之和
(A+C)
10
解:
1.Y AB B AB
数字电路逻辑代数化简

数字电路逻辑代数化简
数字电路是现代电子设备中的重要组成部分,它们由逻辑门和
触发器等基本元件组成,用于处理和传输数字信号。
在数字电路中,逻辑代数化简是一项重要的技术,它可以帮助简化逻辑电路的设计,减少元件的数量,提高电路的性能和可靠性。
逻辑代数化简是利用布尔代数的原理,通过逻辑运算的规则,
将复杂的逻辑表达式简化为最简形式的过程。
这个过程可以通过代
数方法、卡诺图法等多种技术来实现。
逻辑代数化简的目标是找到
一个等价的最简化的逻辑表达式,以实现电路的最小化设计。
在数字电路的设计中,逻辑代数化简具有以下重要作用:
1. 减少元件数量,通过逻辑代数化简,可以将逻辑表达式简化
为最简形式,从而减少电路中的逻辑门数量,降低成本和功耗。
2. 提高电路性能,简化后的逻辑电路通常具有更快的响应速度
和更小的延迟,从而提高电路的性能。
3. 减少设计复杂性,简化后的逻辑表达式更易于理解和维护,
减少了设计的复杂性,提高了电路的可靠性。
逻辑代数化简是数字电路设计中不可或缺的一环,它的应用可以使电路设计更加高效和可靠。
随着数字电路的不断发展和应用,逻辑代数化简技术也将继续发挥重要作用,为电子设备的性能提升和成本降低提供强大支持。
数字电路 第二章 逻辑代数与逻辑函数化简

= A+ B+ A+ C
或与式转换为与或非式
F = (A + B)(A + C)
= A+ B+ A+ C
= AB + AC
§2.4.3 逻辑函数的代数法化简
化简的意义:将逻辑函数化成尽可能简单的形式,以减少逻辑门 化简的意义:将逻辑函数化成尽可能简单的形式,
电路的个数,简化电路并提高电路的稳定性。 电路的个数,简化电路并提高电路的稳定性。
A + AB = A + B
E = A+ B+ C+ BCD+ BC = A + B + C+ C(BD+ BE) = AB + C+ BE+ BD
§2.5.1 逻辑函数的最小项表达式 公式化简法评价:
优点:变量个数不受限制。 缺点:目前尚无一套完整的方法,结果是否最简有时不 易判断。
卡诺图是按一定规则画出来的方框图,是逻辑 函数的图解化简法,同时它也是表示逻辑函数 的一种方法。 利用卡诺图可以直观而方便地化简逻辑函数。 它克服了公式化简法对最终化简结果难以确定 等缺点。
__
__________ __________ _
A + B + C+⋯ = ABC⋯
逻辑代数的基本定律: 逻辑代数的基本定律: P21,熟记 ,
§2.3.2 逻辑代数的基本规则
代入规则
AB = A + B
____
A ↔F = AC
反演规则
____
⇒ ACB = AC + B
F = AC+ BCD+ 0
精选数字电路逻辑函数的化简方法讲解讲义

000 001 010 011 100 101 110 111
0
1
2
3
4
5
6
7
m0
m1
m2
m3 m4
m5
m6
m7
第四页,共28页。
4. 最小项是组成逻辑函数的基本单元
任何逻辑函数都是由其变量的若干个最小项构成,都 可以表示成为最小项之和的形式。
[例] 写出下列函数的标准与或式:
Y F ( A ,B ,C ) AB AC [解] Y AB(C C ) AC(B B)
核心
Y AB AC BC 最简与或式
最简
与非-与非式
AB AC
AB AC
最简或与非式 ( A B)( A C )
最简与或非式
AB AC BC
最简或与式 ( A B) ( A C )
A B AC
最简或非-或式
最简或非-或非式
AB AC
第七页,共28页。
1. 2. 2 逻辑函数的公式化简法
Y F ( A ,B ,C ,D ) ( 4 变量共有 16 个最小项) ABC D ABCD ABC D … … ABC D ABCD
( n 变量共有 2n 个最小项)
第二页,共28页。
2. 最小项的性质:
ABC
000 001 010 011 100 101 110 111
ABC ABC ABC ABC ABC ABC ABC ABC
(1) 两个相邻最小项合并可以消去一个因子
BC
A 00 01 11 10
00
32
CD AB 00 01 11 10
00
1
01 4
6
14
数字电路化简

数字电路化简
数字电路化简是一种复杂的技术,用于设计数字逻辑电路和数字系统。
它有助于减少电路的复杂性,提高工作效率,降低系统成本。
数字电路化简的主要步骤包括:识别可以合并和简化的信号路径,替换大型逻辑门为小型数字电路模块,处理多个输入和输出端口,将多层信号生成简单的逻辑图形,并使用SIMD,MIMD补偿延迟,更改信号路径,并使用复杂的电路设计来提高系统的效率。
此外,数字电路化简还可以使用多种低功耗电路设计和高效分析工具,提高系统的功率利用率和性能等。
通过使用数字电路化简技术和电路设计工具,可以减少设计时间和研发成本,并可以更快更准确地完成电路设计,使系统可靠性更高,维护更容易,竞争优势更强。
第十章 逻辑函数及其化简(逻辑门电路)

变量取值
01 11 10
1. 变量值排序有何规则? 答: 2. 方格中添什么值? 思考?
二、卡诺图 从真值表 与 A 0 0 1 1 或 A 0 0 1 1
逻辑真值表
到卡诺图 F B A 0 1 F B A
B 0 1 0 1
F 0 0 0 1
0 0 0
1 0 1
逻辑真值表
0
1
B 0 1 0 1
F 0 1 1 1
A BC A B) A C) ( (
证明:右式 = A +AC +AB +BC = A(1+C+B)+BC = A+BC = 左式
A B A B A
证明: 左式 = A(B+B) = A = 右式
A A B A B
右式=(A+B)(A+A) = A+AB+AA+AB =A+AB = 左式
二、逻辑代数的基本公式和定理
§10-1
交换律
公理 、公式和 定理 是逻辑运算和逻辑式化简的基本依据 代数定理 基本公式 公理
11 1
00 0 0 1 0
11 1 0 1 1 0
常 用 公 式
00 0 0 1 1
A 1 A A0 0 AA A AA 0 A 1 1 A0 A AA A A A 1 AA
摩根 定理
AB B A A B AB
提炼
AB AB A A AB A
A B A C B C A B A C AB AC AB AC
A AB A B
二、逻辑代数的基本公式和定理 公理公式
数字电子技术基础逻辑代数和逻辑函数化简ppt课件

• 把对应函数值为“1”的变量组合挑出 (即第1、4)组合,写成一个乘积项; •凡取值为“1”的写成原变量 A,取值为 “0”的写成反变量 A ; •最后,将上述乘积项相或,即为所求函数:
L A B AB
ab
A
B
~
cd
220
ABL
0 01 01 0 10 0 11 1
(5) AB AB A B AB
AB A B
A B AB
左 AB AB ( A B) ( A B)
A A A B AB B B A B AB 即 A B = A⊙B 同理可证 A⊙B A B
六、关于异或运算的一些公式
异或 A B AB AB 同或 A⊙B AB A B
0 0 0 1 11 1 0 1 1
0 1 0 1 10 1 1 0 0
1 0 0 1 01 1 1 0 0
1 1 1 0 00 0 1 0 0
相等
相等
还原律 A A
五、若干常用公式
(1) AB AB A(B B) A (2) A AB A(1 B) A 推广 A A( ) A
开关A 开关B
电源
灯Y
与逻辑关系
功能表
AB Y 断断 灭 断合 灭 合断 灭 合合 亮
与逻辑的表示方法:
真值表 (Truth table) 功能表
AB Y 00 0 01 0 10 0 11 1
AB Y 断断 灭 断合 灭
合断 灭 合合 亮
开关断用0表示, 开关闭合用1表示 灯亮用1表示, 灭用0表示
AB AB AB AB
Y F ( A ,B ,C ) ( 3 变量共有 8 个最小项)
ABC ABC ABC ABC ABC ABC ABC ABC
数字电子技术 布尔代数、逻辑函数化简课件

例 5 将函数与或表达式
解 (1) 与非-与非式。
_
F AB A转C换为其它(qítā)形式。
将与或式两次取反,利用摩根定律可得
_
_
F AB AC AB AC
共四十五页
(2) 与或非式。
首先求出反函数
_
_
_ __
F AB AC A B AC
_
A
(因为B B 1)
在吸收律2的证明中, 也只证第二式:
(证毕)
A+AB=A(1+B) =A (因为1+B=1)
吸收律3也只证第二式:
(证毕)
_
A A B ( A A)( A B)
AB
_
(因为A A 1) (证毕)
共四十五页
表3-3 求反律的真值表
多余项定律(dìnglǜ)证明如下:
◆ 变量(biànliàng)的最小 项定义
对于给定个数的一组变量,所有变量参加相“与”的项叫做最小项。 在一个最小项中, 每个变量只能以原变量或反变量出现一次。
一个变量A有二个最小项:
A, A
二个变量A、B有四个最小项:
__ _
_
A B, A B, A B, AB
三个变量A、B、C有八个最小项: ABC , ABC, ABC , ABC,
逻辑(luó jí)函数与逻辑(luó Ají)图
B
_
F AB A B
&
≥1 F
&
图3-2 逻辑(luó jí)
函数
从逻辑问题概括出来的逻辑函数式, 不一定是最简式。 化简电路, 就是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
补充:
半导体器件的开关特性
1、二极管的特性
+ uD 二极管符号: 正极
-
负极
iD(mA)
IF UBR
D + ui - 开关电路 RL + uo -
0
0.5 0.7
uD(V)
伏安特性
2、三极管的特性
+VCC iC
c
iB(μA)
iC (mA)
VCC Rc
Rc Rb b
直 负 线 流 载 Q2 Q
80μ A 60μ A 40μ A 20μ A
二.与门
+5V 3.9K 3V A Y
A 0V 0V 3V 3V
B 0V 3V 0V 3V
Байду номын сангаас
Y 0.7V 0.7V 0.7V 3.7V
0V
B
与门电路图:
A B & Y A B Y A B Y
国标
惯用
国外
§2.2 或逻辑及或门
一.或逻辑: 真值表: Y=A+B (逻辑加) A 0 0 1 1 B 0 1 0 1 Y 0 1 1 1
二.或门
A 0V
0V B Y 3.9k
3V
A
B 0V 3V 0V 3V
Y - 0.7V 2.3V 2.3V 2.3V
0V 3V 3V
-5V
或门电路图:
A B
>1 Y
A B
+ Y
A B Y
国标
惯用
国外
§2.3非逻辑及非门
一.非逻辑: Y=A (逻辑反) 真值表: A Y 0 1 1 0
Vcc=5V
同或门 A B=AB+A B
相同为1 不同为0
1
异或与同或是互反的
证明:A+B=A*B (真值表法) A B 左 右 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 所以原式成立
§2.5逻辑代数的基本定律和公式
1.交换律 AB=BA A+B=B+A 2.结合律 A(BC)=(AB)C A+(B+C)=(A+B)+C 3.分配律 A(B+C)=AB+AC A+BC=(A+B)(A+C) 4. 0 1律 A*1=A A*0=0 A+0=A A+1=1 5.互补律 A*A=0 A+A=1 6.重叠律 A*A=A A+A=A 7.否定律(非非律) A=A 8.反演律(狄莫根律) AB=A+B A+B=AB _______ __ __ __ __________ ______ __ __ __ 推论: ABC = A+ B+ C , A + B + C = A B C
uo
ui
iB e
0 工 原 电 作 理 路 0.5 uBE(V ) 输 特 曲 入 性 线 0 UCES
Q1 i =0
B
VCC uCE(V ) 输 特 曲 出 性 线
§2.1 与逻辑及与门 一.与逻辑 : Y = A × B (逻辑乘) 真值表: A 0 0 1 1 B 0 1 0 1 Y 0 0 0 1
二.非门 (反相器)
A 0v Y 5v A 10K
1k Y
3v 0.3v
ß=30
非门电路图:
A 1 A Y Y A Y
国标
惯用
国外
§2.4异或门
真值表: A B Y 0 0 1 1 0 1 0 1
•
A ⊕B=AB+AB
0 1 1 0 相同为0 不同为1 真值表: A B Y 0 0 1 0 1 0 1 1 0 0 1
第二章基本逻辑门电路及逻辑 代数基础
逻辑门电路:用以实现基本和常用逻辑运算的电子电 路。简称门电路。 基本和常用门电路有与门、或门、非门(反相器)、 与非门、或非门、与或非门和异或门等。 逻辑0和1: 电子电路中用高、低电平来表示。
获得高、低电平的基本方法:利用半导体开关元件 的导通、截止(即开、关)两种工作状态。
电路图见P520(自考P39) 作业: 无 第四版:P33 7 (电路图见P433) 自考P35 2,3