线性回归方程习题
第9章 一元线性回归练习题

第9章一元线性回归练习题一.选择题1.具有相关关系的两个变量的特点是()A.一个变量的取值不能由另一个变量唯一确定B.一个变量的取值由另一个变量唯一确定C.一个变量的取值增大时另一个变量的取值也一定增大D.一个变量的取值增大时另一个变量的取值肯定变小2.下面的各问题中,哪个不是相关分析要解决的问题A.判断变量之间是否存在关系B.判断一个变量数值的变化对另一个变量的影响C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系3.根据下面的散点图,可以判断两个变量之间存在()A.正线性相关关系B. 负线性相关关系C. 非线性关系D. 函数关系4.下面的陈述哪一个是错误的()A. 相关系数是度量两个变量之间线性关系强度的统计量B.相关系数是一个随机变量C.相关系数的绝对值不会大于1D.相关系数不会取负值5.根据你的判断,下面的相关系数取值哪一个是错误的()A. -0.86B. 0.78C. 1.25D. 06.如果相关系数r=0,则表明两个变量之间()A.相关程度很低B. 不存在任何关系C.不存在线性相关关系D.存在非线性关系7.下列不属于相关关系的现象是()A.银行的年利息率与贷款总额B.居民收入与储蓄存款C.电视机的产量与鸡蛋产量D.某种商品的销售额与销售价格8.设产品产量与产品单位成本之间的线性相关系数为-0.87,这说明二者之间存在着()A. 高度相关B.中度相关C.低度相关D.极弱相关9.在回归分析中,被预测或被解释的变量称为()A.自变量B.因变量C.随机变量D.非随机变量10.对两变量的散点图拟合最好的回归线,必须满足一个基本的条件是()A.2ˆ()yy∑-最小B.2)(ˆyy∑-最大C.2ˆ()yy∑-最大D.2)(ˆyy∑-最小11. 下列哪个不属于一元回归中的基本假定()A.误差项i ε服从正态分布B. 对于所有的X ,方差都相同C. 误差项i ε相互独立D. 0)ˆ=-i i yy E ( 12.如果两个变量之间存在着负相关,指出下列回归方程中哪个肯定有误( )A.x y75.025ˆ-= B. x y 86.0120ˆ+-= C. x y 5.2200ˆ-= D. x y 74.034ˆ--= 13.对不同年份的产品成本拟合的直线方程为,75.1280ˆx y-=y 表示产品成本,x 表示不同年份,则可知( )A.时间每增加一个单位,产品成本平均增加1.75个单位B. 时间每增加一个单位,产品成本平均下降1.75个单位C.产品成本每变动一个单位,平均需要1.75年时间D. 产品成本每减少一个单位,平均需要1.75年时间 14.在回归分析中,F 检验主要是用来检验( )A .相关关系的显著性 B.回归系数的显著性 C. 线性关系的显著性D.估计标准误差的显著性15.说明回归方程拟合优度的统计量是( )A. 相关系数B.回归系数C. 判定系数D. 估计标准误差16.已知回归平方和SSR=4854,残差平方和SSE=146,则判定系数R 2=( ) A.97.08% B.2.92% C.3.01% D. 33.25% 17. 判定系数R2值越大,则回归方程( )A 拟合程度越低B 拟合程度越高C 拟合程度有可能高,也有可能低D 用回归方程进行预测越不准确 18. 居民收入与储蓄额之间的相关系数可能是( ) A -0.9247 B 0.9247 C -1.5362 D 1.536219.在对一元回归方程进行显著性检验时,得到判定系数R 2=0.80,关于该系数的说法正确的是( )A. 该系数越大,则方程的预测效果越好B. 该系数越大,则由回归方程所解释的因变量的变差越多C. 该系数越大,则自变量的回归对因变量的相关关系越显著D. 该回归方程中自变量与因变量之间的相关系数可能小于0.8 20.下列方程中肯定错误的是( )A. x y48.015ˆ-=,r=0.65 B. x y 35.115ˆ--=, r= - 0.81 C. x y85.025ˆ+-=, r=0.42 D. x y 56.3120ˆ-=, r= - 0.96 21. 若两个变量存在负相关关系,则建立的一元线性回归方程的判定系数R 2的取值范围是( )A.【0,1】B. 【-1,0】C. 【-1,1】D.小于0的任意数二. 填空题1.当从某一总体中抽取了一样本容量为30的样本,并计算出某两个变量的相关系数为0.8时,我们是否可认为这两个变量存在着强相关性(不能 ) ,理由是(因为该相关系数为样本计算出的相关系数,它的大小受样本数据波动的影响,它是否显著尚需检验 )。
线性回归方程(人教A版)(含答案)

线性回归方程(人教A版)一、单选题(共8道,每道12分)1.人的年龄与人体脂肪的百分数的回归方程为:,如果某人36岁,那么这个人的脂肪含量( )A.一定是B.在附近的可能性比较大C.无任何参考数据D.以上解释均无道理答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析2.根据如下样本数据:得到的回归方程为,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析3.已知变量与负相关,且由观测数据算得样本平均数,,则由该观测数据算得的线性回归方程可能是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析4.对具有线性相关关系的变量,测得一组数据如下表:根据上表,利用最小二乘法得到它们的回归直线方程为,则的值为( )A.1B.1.5C.2D.2.5答案:B解题思路:试题难度:三颗星知识点:可线性化的回归分析5.某单位为了解办公楼用电量与气温之间的关系,随机统计了四个用电量与当地平均气温,并制作了对照表:由表中数据得到线性归回方程,当气温为时,预测用电量为( )A.68度B.52度C.12度D.28度答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析6.根据如下样本数据:得到回归方程,则( )A.,B.,C.,D.,答案:A解题思路:试题难度:三颗星知识点:可线性化的回归分析7.某样本数据如下表所示:假设根据表中数据所得线性回归直线方程为,某同学根据表中的两组数据和求得的直线方程为,根据散点图的分布情况,判断以下结论正确的是( )A.,B.,C.,D.,答案:D解题思路:试题难度:三颗星知识点:可线性化的回归分析8.实验测得四组的值分别为,,,,则与间的线性回归方程是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:可线性化的回归分析。
线性回归方程练习

线性回归方程(练习) 姓名: 班别:
1.设有一个回归方程y ^
=2-1.5x ,则变量x 增加1个单位时( )
A .y 平均增加1.5个单位
B .y 平均增加2个单位
C .y 平均减少1.5个单位
D .y 平均减少2个单位
2.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( )
A .63.6万元
B .65.5万元
C .67.7万元
D .72.0万元
3.已知一组数据(x i ,y i )(i =1,2,…,5),其中x i ∈{1,7,5,13,19},且这组数据有线性相关关系,并求得回归直线方程为y ^=1.5x +45,则y -
=________.
4. 某医院用光电比色计检验尿汞时,得尿汞含量x (mg/L)与消化系数y 的数据如下表所示:
若y 与x . 5.
(1)求y 与x 的线性回归方程
(2)预测x=20的时候,y 为多少?。
高二线性回归方程试题及答案

高二线性回归方程试题及答案回归直线方程某公司为了研究广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图。
由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的。
根据频率分布直方图计算图中各小长方形的宽度,然后试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)。
该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x(单位:万元) 1 2 3 4 5销售收益y(单位:万元) 2 3 2 3 4由表中的数据显示,x与y之间存在着线性相关关系。
根据回归直线的斜率和截距的最小二乘估计公式,计算得到y关于x的回归直线方程为y=0.4x+1.6.某校课程设置调研某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性。
调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调研情况制成如下图所示的列联表:男生女生合计选择坐标系与参数方程 60 85 145选择不等式选讲 45 30 75合计 105 115 220完成列联表,并使用卡方检验判断在犯错误的概率不超过0.025的前提下,能否认为选题与性别有关。
从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷,按照分层抽样的方法。
若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为ξ,求ξ的分布列及数学期望Eξ。
根据给出的数据,完成列联表如上所示。
使用卡方检验判断选题与性别是否有关,得到卡方值K=18.75,自由度df=1,查卡方分布表可得在显著性水平为0.025时的临界值为3.84.由于K>3.84,因此可以认为选题与性别有关。
回归方程大题练习题

回归方程大题练习题回归方程大题练习题回归分析是一种统计方法,用于研究变量之间的关系。
通过建立回归方程,我们可以预测一个因变量如何随着一个或多个自变量的变化而变化。
在实际应用中,回归分析常用于预测销售额、人口增长率、股票价格等。
下面我们来看几个回归方程的大题练习题,通过解答这些问题,我们可以更好地理解回归方程的应用。
1. 一家餐馆想预测每天的顾客数量与广告投入之间的关系。
他们收集了过去一年的数据,发现每天的广告投入(以元为单位)与顾客数量(以人数为单位)之间存在一定的关系。
现在他们想知道,如果他们每天投入1000元的广告费用,预计会有多少顾客光顾餐馆?解答:我们可以建立一个简单的线性回归方程来预测顾客数量。
假设顾客数量(Y)是广告投入(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
根据给定的问题,我们已经知道广告投入为1000元,那么代入回归方程即可得到预测的顾客数量。
2. 一家电子产品公司想预测某款产品的销量与价格之间的关系。
他们收集了过去一年的数据,发现产品的价格(以元为单位)与销量(以件为单位)之间存在一定的关系。
现在他们想知道,如果他们将产品的价格降低10%,预计会有多少增加的销量?解答:同样地,我们可以建立一个线性回归方程来预测销量。
假设销量(Y)是价格(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
根据给定的问题,我们已经知道价格降低10%,那么代入回归方程即可得到预测的销量增加。
3. 一家保险公司想预测客户的保险费用与年龄之间的关系。
他们收集了一组数据,包括客户的年龄和保险费用。
现在他们想知道,如果一个客户的年龄增加一岁,预计保险费用会增加多少?解答:同样地,我们可以建立一个线性回归方程来预测保险费用。
假设保险费用(Y)是年龄(X)的线性函数,即Y = a + bX。
通过回归分析,我们可以得到回归方程的系数a和b。
多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由n = 30的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定 系数为,则调整后的多重决定系数为(D ) A. B. C. 下列样本模型中,哪一个模型通常是无效 的(B )A. G (消费)=500+4(收入)B. Q d (商品需求)=10+4(收入)+ P (价格)C.Qs (商品供给)=20+ P (价格)D. 1 (产出量)=L 0'(劳动)£”(资本)3 .用一组有30个观测值的样本估计模型工=b 0 + b i x i t + b 2x 21 + u t 后,在的显著性水平上对b i 的显著性作t 检验,则b i 显著地不等于零的条件是其统计量t 大于等于(Ct (30) t (28) t (27) F (1,28)A. 0.05B. 0.025C. 0.025D. 0.025ln y = ln b + b In x + u , b ,,4 .模型 乙 0 i t t 中,i 的实际含义是(B )A. x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明 模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度 6 .线性回归模型y = b + bx + b x + ... + b x + u 中,检验H :b = 0(i = 0,1,2,...k ) 时,所用的统计量服从(1 C 2 22 k kt t 0 t (n-k+1) (n-k-2) (n-k-1) (n-k+2)7 . 调整的判定系数与多重判定系数之间有如下关系( D )— n — 1— n — 1 A. R 2 = ------------ R 2B. R 2 = 1 ------------- R 2n 一 k 一 1 n 一 k 一 1 n 一 1n 一 1 ~C. R 2 = 1 ----------- (1+ R 2)D, R 2 = 1 ----------- (1-R 2)n 一 k 一 1n 一 k 一 18 .关于经济计量模型进行预测出现误差的原因,正确的说法是(C )。
线性回归方程.附答案docx
线性回归方程一、考点、热点回顾一、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:∑∑∑===-⋅---=ni ini ini iiy y x x y y x x r 12121)()())((,其中:(1)⎩⎨⎧<>负相关正相关00r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r3、散点图:初步判断两个变量的相关关系。
二、线性回归方程:1、回归方程:a x b yˆˆˆ+= 其中2121121)())((ˆxn x yx n yx x x y yx x bn i i ni ii n i i ni ii--=---=∑∑∑∑====,x b y aˆˆ-=(代入样本点的中心) 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。
(2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高。
(3)残差平方和∑=-ni i iyy12)ˆ(越小,模型拟合精度越高。
3、相关指数:∑∑==---=n i ini i iy yyyR 12122)()ˆ(1(1)其中:∑=-ni i iyy12)ˆ(为残差平方和;∑=-ni i y y 12)(为总偏差平方和。
(2))1,0(2∈R ,越大模型拟合精度越高。
二、典型例题+拓展训练典型例题1:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线121+-=x y 上,则样本相关系数为( ) 21.21.1.1.--D C B A典型例题2:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则不正确的是( )A.y 与x 具有正的线性相关关系;B.回归直线过样本点的中心),(y xC.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg扩展2.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?典型例题3.为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.52211521()155110.8451000()i i i ii y y R yy ==-=-=-=-∑∑,221R =-521521()18010.821000()ii i ii yy y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.扩展1.下列说法正确的是( )(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差;A.(1)(2)B.(3)(4)C.(1)(4)D.(2)(3)扩展2.关于某设备的使用年限x (年)和所支出的维修费用y (万元)有下表所示的资料:若由资料知,y 对x 呈线性相关关系,求:(1)线性回归方程a x b yˆˆˆ+=中的回归系数b a ˆ,ˆ; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断; (3)使用年限为10年时,维修费用大约是多少?三、典型例题4.非线性回归模型:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
线性回归方程练习题
第10课时线性回归方程(1)
分层训练
1.长方形的面积一定时,长和宽具有( ) (A)不确定性关系 (B)相关关系 (C)函数关系 (D)无任何关系 2.三点(3,10),(7,20),(11,24)的线性回归方程是 ( )
(A) x y
175ˆ-= (B) x y 517ˆ+= (C) x y 517ˆ-= (D) x y 517ˆ+-= 3.已知线性回归方程为:81.050.0ˆ-=x y
,则x =25时,y 的估计值为________ 4.一家保险公司调查其总公司营业部的加班效果,收集了10周中每周加班时间y (小时)与签发新保单数目x
则y 关于x 估计的线性回归方程为____________________(保留四位有效数字) 5
求y 与x 的线性回归方程。
(小数点后保留两位有效数字)
思考∙运用
6.在某种产品表面进行腐蚀刻线试验,得到腐蚀深度y 与腐蚀时间x 之间相应的一组观察值如下表:
y (万元),有如下的统计资料:
试求:(1)线性回归方程a bx y
+=ˆ的回归系数a , b ; (2)估计使用年限为10年时,维修费用是多少?
本节学习疑点:
6.4.1 线性回归方程(1)
1.C 2.D 3.11.69
4.x y
003585.01181.0ˆ+= 5.x y
96.168.183ˆ+= 6.x y
304.036.5ˆ+= 7.(1) 23.1=b , 08.0=a
(2) 线性回归方程是 08.023.1ˆ+=x y
当x=10时,38.1208.01023.1ˆ=+⨯=y
即估计使用10年时的维修费用是12.38万元。
高学期线性回归方程同步练习题(文科)(教师版)
高二第二学期第一章线性回归方程同步练习题(文科)(1)一、选择题1 . 下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值 B.正方形边长和面积 C .正n边形的边数和它的内角和 D.人的年龄和身高2.某市纺织工人的月工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x ,则下列说法中正确的是( C )A .劳动生产率为1000元时,月工资为130元B .劳动生产率提高1000元时,月工资提高约为130元C .劳动生产率提高1000元时,月工资提高约为80元D .月工资为210元时,劳动生产率为2000元 3.设有一个回归方程为y=2-1.5x ,则变量x 每增加一个单位时,y 平均 ( C ) A .增加1.5单位 B .增加2单位 C .减少1.5单位 D .减少2单位4.实验测得四组(x ,y )的值为(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线方程为( A )A.y ^=x +1 B.y ^=x +2 C.y ^=2x +1 D.y ^=x -15.由一组样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )得到的回归直线方程y ^=a +bx ,下面有四种关于回归直线方程的论述:(1)直线y ^=a +bx 至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个点;(2)直线y ^=a +bx 的斜率是∑ni =1x i y i -n x y ∑ni =1x 2i -n x 2;(3)直线y ^=a +bx 必过(x ,y )点; (4)直线y ^=a +bx 和各点(x 1,y 1),(x 2,y 2),…,(x n ,y n )的偏差∑ni =1 (y i -a -bx i )2是该坐标平面上所有的直线与这些点的偏差中最小的直线.其中正确的论述有( D )A .0个 B .1个C .2个 D .3个解析 线性回归直线不一定过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的任何一点;b =∑ni =1x i y i -n x y∑ni =1x 2i -n x 2就是线性回归直线的斜率,也就是回归系数;线性回归直线过点(x ,y );线性回归直线是平面上所有直线中偏差∑ni =1(y i -a -bx i )2取得最小的那一条.故有三种论述是正确的,选D. 6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑8i =1x i =52,∑8i =1y i =228,∑8i =1x 2i =478,∑8i =1x i y i =1849,则其线性回归方程为( A ) A.y ^=11.47+2.62x B.y ^=-11.47+2.62x C.y ^=2.62+11.47x D.y ^=11.47-2.62x解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^=11.47+2.62x . 7. 下列变量之间的关系是函数关系的是( A )A .已知二次函数c bx ax y ++=2,其中a ,b 是已知常数,取b 为自变量,因变量是这个函数的判别式ac b Δ42-=B .光照时间和果树的亩产量C .降雪量和交通事故发生率D .每亩用肥料量和粮食亩产量 8. 列有关线性回归的说法,不正确是( D )A.变量取值一定时,因变量的取值带有一定的随机性的两个变量之间的关系叫做相关关系B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫做散点图C.线性回归直线方程最能代表观测值x ,y 之间的关系D.任何一组观测值都能得到具有代表意义的回归直线方程 9.已知x 与y 之间的一组数据:则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4)10. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位二、填空题11.下列关系中,是相关关系的为 (填序号).①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②12.下列有关线性回归的说法,正确的是 (填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度 ③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程 答案 ①②③13.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法; ②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=b ˆx +a ˆ及回归系数b ˆ,可以估计和预测变量的取值和变化趋势. 其中正确命题的序号是 .答案 ①②③14.下列关系:①人的年龄与其拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一树木,其截面直径与高度之间的关系;⑤学生的身高与其学号之间的关系,其中有相关关系的是___①③④_____(填序号).15.已知回归方程为yˆ=0.50x-0.81,则x=25时,y ˆ的估计值为 .答案 11.69 16.下表是某厂1~4由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^=-0.7x +a ,则a 等于______.解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 17.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表:由表中数据算出线性回归方程y =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计,该商场下个月毛衣的销售量约为________件.答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58,即线性回归方程y ^=-2x +58,将x =6代入可得.18.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。
线性回归习题答案
线性回归习题答案线性回归是统计学中一种常见的数据分析方法,用于建立自变量与因变量之间的线性关系模型。
在实际应用中,线性回归模型常用于预测、趋势分析和关联度分析等领域。
下面将通过一些典型的线性回归习题来探讨其应用。
习题一:某公司根据过去几年的销售数据,建立了一个线性回归模型来预测未来的销售额。
已知公司的广告费用与销售额之间存在着一定的线性关系。
根据模型,当广告费用为1000元时,预测的销售额为15000元。
求该模型的回归方程。
解答:假设回归方程为y = a + bx,其中y表示销售额,x表示广告费用。
根据已知条件,可以得到一个方程:15000 = a + 1000b。
进一步,如果再给出另外一个广告费用与销售额的数据点,就可以求解出回归方程的具体参数a和b。
习题二:某城市的房价与房屋面积之间存在一定的线性关系。
已知一套房子的面积为120平方米,根据线性回归模型预测其价格为80万元。
求该模型的回归方程。
解答:假设回归方程为y = a + bx,其中y表示房价,x表示房屋面积。
根据已知条件,可以得到一个方程:80 = a + 120b。
同样地,如果再给出另外一个房屋面积与价格的数据点,就可以求解出回归方程的具体参数a和b。
习题三:某公司根据市场调研数据,建立了一个线性回归模型来分析产品销售量与价格之间的关系。
已知当产品价格为10元时,预测的销售量为1000个。
根据该模型,求当产品价格为15元时的预测销售量。
解答:假设回归方程为y = a + bx,其中y表示销售量,x表示产品价格。
根据已知条件,可以得到一个方程:1000 = a + 10b。
根据该方程,可以求解出参数a和b的具体值。
然后,将x取15,代入回归方程中,即可得到当产品价格为15元时的预测销售量。
通过以上习题的解答,我们可以看到线性回归模型在实际问题中的应用。
通过建立合适的回归方程,我们可以通过已知的自变量值来预测因变量的取值。
这对于企业决策、市场分析以及经济预测等方面都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学质量检测试题(算法初步与统计)
方差公式:S 2=1n
[(x 1-x _)2+(x 2-x _)2+…+(x n -x _
)2] 回归直线方程:a x b y ˆˆˆ+= .其中x b y a
x n x y
x n y
x b n i i
n
i i
i ˆˆˆ,ˆ2
1
21-=--=∑∑== 1.某产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下数据:
(1)画出散点图. (2)求y 关于x 的回归直线方程. (3)预测广告费为9百万元时的销售额是多少?(12分)
2.已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( ) A.=1.23x +4 B. =1.23x+5 C. =1.23x+0.08 D. =0.08x+1.23
3、在进行回归分析时,预报变量的变化由( )决定
A )解释变量 ;
B )残差变量;
C )解释变量与残差变量;
D )都不是
4、若在散点图中所有的样本点都在一条直线上,那么解释变量和预报变量之间的相关系数是( ) A )—1 B )0 C )1 D )2
5、依据表
下列选项中,哪一个样本所得的k 值没有充分的证据显示“X 与Y 有关系”( ) A )k=6.665 B )k=3.765 C )k=2.710 D )k=2.700
6.已知x 与y 之间的一组数据如下,则y
与x
7. 下面是水稻产量与施化肥量的一组观测数据:
(1)将上述数据制成散点图;
(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?
8. (14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:
(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.
9. 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y
ˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
y ∧y ∧
y ∧y ∧
10.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.
(1)试画出散点图; (2)判断两个变量是否具有相关关系.
11.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:
由资料看y 与x 呈线性相关,试求回归方程.
一、填空题
1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 .
2.回归方程y
ˆ=1.5x -15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x =10时,y =0 3.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为y ˆ=8.25x +60.13,下列叙述正确的是 . ①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm
③该地区9岁儿童的平均身高是134.38 cm ④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 4.三点(3,10),(7,20),(11,24)的回归方程是 .
5.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程y ˆ=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 .
6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得
∑=8
1
i i
x
=52,
∑=8
1
i i
y
=228,
∑
=8
1
2
i i x =478,
∑=8
1
i i
i y
x =1 849,则其线性回归方程
为
.
7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 .
8.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料:
若y 对x 呈线性相关关系,则回归直线方程y ˆ=b ˆx +a ˆ表示的直线一定过定点 . 二、解答题
9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:
(1)数学成绩和物理成绩具有相关关系吗? (2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.
10.(1)画出数据对应的散点图;
(2)求线性回归方程,并在散点图中加上回归直线.
11.某公司利润y 与销售总额x (单位:千万元)之间有如下对应数据:
(
1)画出散点图;(2)求回归直线方程;(3)估计销售总额为24千万元时的利润.
12.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:
(1)画出散点图;(2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大?。