(完整word版)线性回归方程高考题
线性回归方程高考题讲解

1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量 应的生产能耗 (吨标准煤)的几组对照数据:
3
4
5
6
2.5
3
4
4.5
( 1)请画出上表数据的散点图;
(吨)与相
(2)请根据上表提供的数据,用最小二乘法求出 关于 的线性回归方程;
(3)已知该厂技改前 100 吨甲产品的生产能耗为 90 吨标准煤.试根据( 2)求出的 线性回归方程,预测生产 100 吨甲产品的生产能耗比技改前降低多少吨标准煤 ?
(2)求出 y 关于 x 的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工 10 个零件需要多少时间?
(注:
(参考数值:
)
2、假设关于某设备的使用年限 x 和所支出的维修费用 y( 万元 ) 统计数据如下 :
使用年限 x 2
3
4
5
6
维修费用 y 2.2 3.8 5.5 6.5 7.0
若有数据知 y 对 x 呈线性相关关系 . 求:
(1) 填出下图表并求出线性回归方程 =bx+a 的回归系数 , ;
序号 x
1
2
2
3
3
4
4
5
5
6
∑
y
xy
x2
2.2
3.8
5.5
6.5
7.0
(2) 估计使用 10 年时 , 维修费用是多少 .
3、某车间为了规定工时定额, 需要确定加工零件所花费的时间, 为此作了四实试验, 得到的数据如下:
零件的个数 x(个) 2
3
4
5
加工的时间 y(小时) 2.5
高中数学线性回归方程讲解练习题

教学步骤及教学内容线性回归方程(参考公式:b=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a=y-b x)1.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.y^=x+1 B.y^=x+2 C.y^=2x+1 D.y^=x-12.在比较两个模型的拟合效果时,甲、乙两个模型的相关指数R2的值分别约为0.96和0.85,则拟合效果好的模型是()A.甲B.乙C.甲、乙相同D.不确定3.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x之间的相关关系,现取8对观测值,计算,得∑8i=1x i=52,∑8i=1y i=228,∑8i=1x2i=478,∑8i=1x i y i=1849,则其线性回归方程为()A.y^=11.47+2.62x B.y^=-11.47+2.62xC.y^=2.62+11.47x D.y^=11.47-2.62x4.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x 123 4用水量y 4.543 2.5由散点图可知,用水量y与月份x之间有较好的线性相关关系,其线性回归直线方程是y^=-0.7x+a,则a等于______.5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)234 5加工的时间y(小时) 2.534 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程y^=bx+a,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少小时?作业布置家长意见家长签名:2013 年_月_日(第_次)审阅人:1。
线性回归方程高考题讲解

线性回归方程高考题讲解线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归方程高考题

线性回归方程高考题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 63 4(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 22 33 44 55 6∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 3 4(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 3 4(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 30深度y(m) 6 10 10 13 16(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
(完整)线性回归方程高考题

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图;(1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
线性回归方程高考的题目讲解

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:3 4 5 62.5 3 4 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:使用年限x 2 3 4 5 6维修费用y 2.2 3.8 5.5 6.5 7.0若有数据知y对x呈线性相关关系.求:(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;序号x y xy x21 2 2.22 3 3.83 4 5.54 5 6.55 6 7.0∑(2) 估计使用10年时,维修费用是多少.3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?(注:4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:3 4 5 6 7 8 966 69 73 81 89 90 91已知:.(Ⅰ)画出散点图; (1I)求纯利与每天销售件数之间的回归直线方程.5、某种产品的广告费用支出与销售额之间有如下的对应数据:2 4 5 6 830 40 60 50 70(1)画出散点图:(2)求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:x 3 4 5 6y 2.5 3 4 4.5(I)请画出上表数据的散点图;(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考公式及数据: ,)7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:广告费支出x 2 4 5 6 8销售额y 30 40 60 50 70(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:时间t(s) 5 10 15 20 306 10 10 13 16深度y(m)(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
高二线性回归方程试题及答案

高二线性回归方程试题及答案回归直线方程某公司为了研究广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图。
由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的。
根据频率分布直方图计算图中各小长方形的宽度,然后试估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值)。
该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:广告投入x(单位:万元) 1 2 3 4 5销售收益y(单位:万元) 2 3 2 3 4由表中的数据显示,x与y之间存在着线性相关关系。
根据回归直线的斜率和截距的最小二乘估计公式,计算得到y关于x的回归直线方程为y=0.4x+1.6.某校课程设置调研某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性。
调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调研情况制成如下图所示的列联表:男生女生合计选择坐标系与参数方程 60 85 145选择不等式选讲 45 30 75合计 105 115 220完成列联表,并使用卡方检验判断在犯错误的概率不超过0.025的前提下,能否认为选题与性别有关。
从选择“坐标系与参数方程”与选择“不等式选讲”的学生中共抽取8人进行问卷,按照分层抽样的方法。
若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为ξ,求ξ的分布列及数学期望Eξ。
根据给出的数据,完成列联表如上所示。
使用卡方检验判断选题与性别是否有关,得到卡方值K=18.75,自由度df=1,查卡方分布表可得在显著性水平为0.025时的临界值为3.84.由于K>3.84,因此可以认为选题与性别有关。
(完整word版)线性回归方程高考题

线性回归方程高考题1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量工(吨)与相应的生产能耗T (吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出匸关于T的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3 二「;I「…■- J - 1 )2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:若有数据知y对x呈线性相关关系.求:(1)填出下图表并求出线性回归方程1 =bx+a的回归系数匸,二;3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:(1) 在给定的坐标系中画出表中数据的散点图;(2) 求出y关于x的线性回归方程U-2,并在坐标系中画出回归直线;(3) 试预测加工10个零件需要多少时间?4、某服装店经营的某种服装,在某周内获纯利;气元)与该周每天销售这种服装件数二之间的一组数据关系如下表:7 7 1£4 =冰浙=45309,2^ = 3487 已知:-1(I )画出散点图;5、某种产品的广告费用支出[与销售额丁之间有如下的对应数据:(1) 画出散点图:(2) 求回归直线方程;(3) 据此估计广告费用为10时,销售收入丁的值.6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据:(I )请画出上表数据的散点图;(II )请根据上表提供的数据,求出y关于x的线性回归方程1 - 1■'; (III )已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II )求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?也_ 一闪一“ ____________ 二________y (x - x)3y x.2- KX2--(参考公式及数据:")7、以下是测得的福建省某县某种产品的广告费支出x与销售额y (单位:百万元)之间,有如下的对应数据:(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y (单位:百万元)之间的一般规律吗?(2)求y关于x的回归直线方程;(3)预测当广告费支出为2 (百万元)时,则这种产品的销售额为多少?(百万元)&在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:(1)画出散点图;(2)试求腐蚀深度y对时间t的回归直线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性回归方程高考题
1、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据:
3 4 5 6
2.5 3 4 4.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:)
2、假设关于某设备的使用年限x和所支出的维修费用y(万元)统计数据如下:
使用年限x 2 3 4 5 6
维修费用y 2.2 3.8 5.5 6.5 7.0
若有数据知y对x呈线性相关关系.求:
(1) 填出下图表并求出线性回归方程=bx+a的回归系数,;
序号x y xy x2
1 2 2.2
2 3 3.8
3 4 5.5
4 5 6.5
5 6 7.0
∑
(2) 估计使用10年时,维修费用是多少.
3、某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四实试验,得到的数据如下:
零件的个数x(个) 2 3 4 5
加工的时间y(小时) 2.5 3 4 4.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:
4、某服装店经营的某种服装,在某周内获纯利(元)与该周每天销售这种服装件数之间的一组数据关系如下表:
3 4 5 6 7 8 9
66 69 73 81 89 90 91
已知:.
(Ⅰ)画出散点图;
(1I)求纯利与每天销售件数之间的回归直线方程.
5、某种产品的广告费用支出与销售额之间有如下的对应数据:
2 4 5 6 8
30 40 60 50 70
(1)画出散点图:
(2)求回归直线方程;
(3)据此估计广告费用为10时,销售收入的值.
6、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:
x 3 4 5 6
y 2.5 3 4 4.5
(I)请画出上表数据的散点图;
(II)请根据上表提供的数据,求出y关于x的线性回归方程;(III)已知该厂技术改造前100吨甲产品能耗为90吨标准煤.试根据(II)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考公式及数据: ,)
7、以下是测得的福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间,有如下的对应数据:
广告费支出x 2 4 5 6 8
销售额y 30 40 60 50 70
(1)画出数据对应的散点图,你能从散点图中发现福建省某县某种产品的广告费支出x与销售额y(单位:百万元)之间的一般规律吗?
(2)求y关于x的回归直线方程;
(3)预测当广告费支出为2(百万元)时,则这种产品的销售额为多少?(百万元)8、在某种产品表面进行腐蚀线实验,得到腐蚀深度y与腐蚀时间t之间对应的一组数据:
时间t(s) 5 10 15 20 30
6 10 10 13 16
深度y(m)
(1)画出散点图;
(2)试求腐蚀深度y对时间t的回归直线方程。
参考答案
一、计算题
1、解:(1)
(2)
序号
l 3 2.5 7.5 9
2 4
3 12 16
3 5
4 20 25
4 6 4.
5 27 36
18 14 66.5 86
所以:
所以线性同归方程为:
(3)=100时,,所以预测生产100吨甲产品的生产能耗比技术改造前降低19.65吨标准煤.
2、解:(1) 填表
x y xy x2
序
号
1 2 2.2 4.4 4
2 3 3.8 11.4 9
3 4 5.5 22.0 16
4 5 6.5 32.5 25
5 6 7.0 42.0 36
∑20 25 112.3 90
所以
将其代入公式得
(2) 线性回归方程为=1.23x+0.08
(3) x=10时,=1.23x+0.08=1.23×10+0.08=12.38 (万元) 答:使用10年维修费用是12.38(万元)。
3、解:(1)散点图如图
(2)由表中数据得:
回归直线如图中所示。
(3)将x=10代入回归直线方程,得(小时)
∴预测加工10个零件需要8.05小时。
4、解:(Ⅰ)散点图如图:
(Ⅱ)由散点图知,与有线性相关关系,设回归直线方程:,
,
,
∵,
∴.
,
故回归直线方程为.
5、解:(1)作出散点图如下图所示:
(2)求回归直线方程.
=(2+4+5+6+8)=5,
×(30+40+60+50+70)=50,
=22+42+52+62+82=145,
=302+402+602+502+702=13500
=1380.
=6.5.
因此回归直线方程为
(3)=10时,预报y的值为y=10×6.5+17.5=82.5.6、解:(I)如下图
(II)=3 2.5+43+54+6 4.5=66.5
==4.5 ,==3. 5
故线性回归方程为
(III)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7100+0.35=70.35.
故耗能减少了90-70.35=19.65(吨).
7、解:(1)(略)
(2)y=6.5x+17.5
(3) 30.5(百万元)
8、(1)略(2)y=14/37x+183/37。