多元线性回归模型练习题及答案

合集下载

多元线性回归模型练习题及答案.doc

多元线性回归模型练习题及答案.doc

ESS&i-k)ARSS[(k -1) ESS /(SI)I). TSS/(n-k)多元线性回归模型练习一、单项选择题1. 在由〃 =30的一组样本估计的、包含3个解释变量的线性回归模型中,计算 得可决系数为0.8500,则调整后的可决系数为(D )A. 0. 8603B. 0. 8389C. 0. 8655D. 0. 83272. 用一组有30个观测值的样本估计模型乂 =如玷气+E +0后,在0. 05的 显著性水平上对九的显著性作「检验,则气显著地不等于零的条件是其统计量, 大于等于(C )A. ,O .O 5(3°) B . ‘。

025(28) c.,。

25(27) p ^*0.025 (^28) 3•线性回归模型乂 =4+"1也+勾% +……+ b k x h +ui 中,检验 =0(,= 0,1,2,..人)时,所用的统计量服从(C ) A. t (n _k+l )B. t (n -k -2)C. t (n -k _l )D. t (n -k+2)4.调整的可决系数与多元样本判定系数R ,之间有如下关系( D ) 局=公—/?2职=]_qj R2 A.n-k -1 B ・ n-k-\ R 2=[—- (1 + R2)斤 2 =]— (I-/?2) C. n-k-\D. n-k-\ 5. 对模型Y L B 。

+ B 伏"B 2X 2i + u 「进行总体显著性F 检验,检验的零假设是(A ) A. P 1= 3 2=0 B. 3 i=0 C. B 2-O D. B 0二0 或 B i=06. 设k 为[q 归模型中的参数个数,n 为样本容量。

则对多元线性同归方程进行 显著性检验时,所用的F 统计量可表示为(B )R2/ k B (1-R2)/(D b/d)c. (1-R2)/(S1) 7. 多元线性问归分析中(回归模型中的参数个数为k ),调整后的可决系数与 可决系数R2之间的关系(A )点=1_(1_&2)土AD. 〃-18. 巳知五元线性回归模型估计的残差平方和为1>;=800,样本容量为46,则 随机误差项S 的方差估计量罗为(DA. 33. 33B. 40 9. 多元线性P1归分析中的ESS 反映了 A.因变量观测值总变差的大小小C,因变量观测值与估计值之间的总变差C.点 >0 C.( 38. 09 C )B.因变量回归仙•计值总变差的大D. 20 D.Y 关于X 的边际变化A.B. R 2^R 223.在古典假设成立的条件下用0LS 方法估计线性回归模型参数,则参数估计 量具有(C )的统计性质。

多元线性回归模型习题与答案

多元线性回归模型习题与答案

第三章多元线性回归模型习题与答案1、极大似然估计法的基本思想2、多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?3、以企业研发支出(R&D)占销售额的比重为被解释变量(Y),以企业销售额(X1)与利润占销售额的比重(X2)为解释变量,一个有32容量的样本企业的估计结果如下:099 .0)046.0()22.0()37.1(05.0)log(32.0472.022 1=++ =RX XY其中括号中为系数估计值的标准差。

(1)解释log(X1)的系数。

如果X1增加10%,估计Y会变化多少个百分点?这在经济上是一个很大的影响吗?(2)针对R&D强度随销售额的增加而提高这一备择假设,检验它不虽X1而变化的假设。

分别在5%和10%的显著性水平上进行这个检验。

(3)利润占销售额的比重X2对R&D强度Y是否在统计上有显著的影响?4、1960-1982年美国对子鸡的需求。

为了研究美国每人的子鸡消费量,我们提供如下的数据:表1 1960-1982年子鸡的消费情况年份Y X2 X3 X4 X5 X61960 27.8 397.5 42.2 50.7 78.3 65.8 1961 29.9 413.3 38.1 52.0 79.2 66.9 1962 29.8 439.2 40.3 54.0 79.2 67.8 1963 30.8 459.7 39.5 55.3 79.2 69.6 1964 31.2 92.9 37.3 54.7 77.4 68.7 1965 33.3 528.6 38.1 63.7 80.2 73.6 1966 35.6 560.3 39.3 69.8 80.4 76.3 1967 36.4 624.6 37.8 65.9 83.9 77.2 1968 36.7 666.4 38.4 64.5 85.5 78.1 1969 38.4 717.8 40.1 70.0 93.7 84.7 1970 40.4 768.2 38.6 73.2 106.1 93.3 1971 40.3 843.3 39.8 67.8 104.8 89.7 1972 41.8 911.6 39.7 79.1 114.0 100.7 1973 40.4 931.1 52.1 85.4 124.1 113.5 1974 40.7 1021.5 48.9 94.2 127.6 115.3 1975 40.1 1165.9 58.3 123.5 142.9 136.7 1976 42.7 1349.6 57.9 129.9 143.6 139.2 1977 44.1 1449.4 56.5 117.6 139.2 132.0 1978 46.7 1575.5 63.7 130.9 165.5 132.1 1979 50.6 1759.1 61.6 129.8 203.3 154.4 1980 350.1 1994.2 58.9 128.0 219.6 174.91981 51.7 2258.1 66.4 141.0 221.6 180.8 198252.92478.770.4168.2232.6189.4资料来源:Y 数据来自城市数据库;X 数据来自美国农业部。

(完整版)多元线性回归模型习题及答案

(完整版)多元线性回归模型习题及答案

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)7. 调整的判定系数 与多重判定系数之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

第三章多元线性回归模型习题答案

第三章多元线性回归模型习题答案

&第三章 多元线性回归模型一、单项选择题1、C2、A3、B4、A5、C6、C7、A8、D9、B 10、D一、单项选择题1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明( C ) A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著】C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性检验(F 检验)时构造的F 统计量为 ( A )A 、(1)ESS k F RSS n k =--B 、(1))ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、已知二元线性回归模型估计的残差平方和为2800i e =∑,估计用样本容量为23n =,则随机误差项t μ的方差的OLS 估计值为( B )!A 、B 、 40C 、D 、4、在多元回归中,调整后的决定系数2R 与决定系数2R 的关系为 ( A )A 、22R R <B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定5、下面说法正确的有 ( C )A 、时间序列数据和横截面数据没有差异B 、对回归模型的总体显著性检验没有必要C 、总体回归方程与样本回归方程是有区别的:D 、决定系数2R 不可以用于衡量拟合优度6、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞7、线性回归模型的参数估计量ˆβ是随机向量Y 的函数,即1ˆ()X X X Y β-''=。

ˆβ是 ( A )A 、随机向量B 、非随机向量C 、确定性向量D 、常量8、下面哪一表述是正确的 ( D )A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ ;B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系9、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 ( B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --10、下列说法中正确的是 ( D )。

多元线性回归模型练习题及标准答案

多元线性回归模型练习题及标准答案

E.
b1 b2 0 3.回归变差(或回归平方和)是指(
BCD )
A. 被解释变量的实际值与平均值的离差平方和
B. 被解释变量的回归值与平均值的离差平方和
C. 被解释变量的总变差与剩余变差之差
D. 解释变量变动所引起的被解释变量的变差
E. 随机因素影响所引起的被解释变量的变差
4. 剩余变差是指( ACDE
3.设有模型 yt b0 b1x1t b2 x2t ut ,试在下列条件下:
① b1 b2 1 ② b1 b2 。分别求出 b1 , b2 的最小二乘估计量。
解答:当 b1 b2 1 时,模型变为 yt x2t b0 b1(x1t x2t ) ut ,可作为一元回归模型来
B. t0.025 (28)
C. t0.025 (27)
D. F0.025 (1,28)
3.线性回归模型 yt b0 b1x1t b2 x2t ...... bk xkt ut 中,检验
H0 : bt 0(i 0,1, 2,...k) 时,所用的统计量
A.t(n-k+1)
B.t(n-k-2)
2.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里
以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。你通过整个
学年收集数据,得到两个可能的解释性方程:
方程 A:Yˆ 125.0 15.0X1 1.0X2 1.5X3
R 2 0.75
5
方程 B:Yˆ 123 .0 14.0X1 5.5X 2 3.7 X 4
n b1 n
(x1t x2t ) yt (x1t x2t )2 (
(x1t x2t ) yt (x1t x2t ))2
4.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、

多元线性回归(习题答案)

多元线性回归(习题答案)

第3章练习题参考解答3.1为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y ,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:ii i X X Y 215452.11179.00263.151ˆ++-= t=(-3.066806) (6.652983) (3.378064)(1) 从经济意义上考察估计模型的合理性。

(2) 在5%显著性水平上,分别检验参数21,ββ的显著性。

(3) 在5%显著性水平上,检验模型的整体显著性。

3.1参考解答:由模型估计结果可看出:旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。

平 均说来,旅行社职工人数增加1人,旅游外汇收入将增加0.1179百万美元;国际旅游人数增加1万人次,旅游外汇收入增加1.5452百万美元。

取0.05α=,查表得0.025t (313) 2.048-=因为3个参数t 统计量的绝对值均大于048.2)331(025.0=-t ,说明经t 检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。

取0.05α=,查表得0.05(1,)(2,28) 3.34F k n k F α--==由于34.3)28,2(1894.19905.0=>=F F ,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立。

3.2根据下列数据试估计偏回归系数、标准误差,以及可决系数与修正的可决系数:3.2参考解答:由已知,偏回归系数21221222221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑274778.346280.0004250.9004796.00084855.096280.0004796.000⨯-⨯=⨯- 0.726594= 22111232221212ˆ()i iii ii i iii iy x x y x x xx x x x β-=-∑∑∑∑∑∑∑24250.90084855.09674778.3464796.00084855.096280.0004796.000⨯-⨯=⨯- 2.73628=12132ˆˆˆY X X βββ=-+ 367.6930.726594402.760 2.736288.0=-⨯-⨯ 53.1598=可决系数 213222ˆˆi i i iiy x y x R yββ+=∑∑∑0.72659474778.346 2.736284250.966042.269⨯+⨯=0.998832=修正的可决系数2211(1)n R R n k-=--- 1511(10.998832)153-=--- 0.998637=标准误差 由于 2∑i e =21RSSR TSS=- 即22(1)ieR TSS =-∑(10.998832)66042.269=-⨯ 77.1374= F 统计量2211n k R F k R -=--=1530.9988323110.998832---=5130.986标准误差22ˆie n kσ=-∑77.1374153=-6.4281=所以标准误差ˆ 2.5354σ=3.3参考解答:(1)建立家庭书刊消费的计量经济模型: i i i i u T X Y +++=321βββ其中:Y 为家庭书刊年消费支出、X 为家庭月平均收入、T 为户主受教育年数 (2)估计模型参数,结果为Dependent Variable: Y Method: Least Squares Date: 10/20/13 Time: 18:32 Sample: 1 18Included observations: 18Variable Coefficient Std. Error t-Statistic Prob. C -50.01638 49.46026 -1.011244 0.3279 X 0.086450 0.029363 2.944186 0.0101 T52.370315.202167 10.067020.0000 R-squared0.951235 Mean dependent var 755.1222 Adjusted R-squared 0.944732 S.D. dependent var 258.7206 S.E. of regression60.82273 Akaike info criterion11.20482Sum squared resid 55491.07 Schwarz criterion 11.35321 Log likelihood -97.84334 Hannan-Quinn criter. 11.22528 F-statistic 146.2974 Durbin-Watson stat 2.605783 Prob(F-statistic)0.000000即 ˆ50.01640.086552.3703i i iY X T =-++ (49.46026)(0.02936) (5.20217)t= (-1.011244) (2.944186) (10.06702) R 2=0.951235 944732.02=R F=146.2974(3)检验户主受教育年数对家庭书刊消费是否有显著影响:由估计检验结果, 户主受教育年数参数对应的t 统计量为10.06702, 明显大于t 的临界值131.2)318(025.0=-t ,(户主受教育年数参数所对应的P 值为0.0000,明显小于05.0=α)可判断户主受教育年数对家庭书刊消费支出确实有显著影响;同理可以判断,家庭月平均收入对家庭书刊消费支出的影响也是显著的。

多元线性回归模型习题及答案(word文档良心出品)

多元线性回归模型习题及答案(word文档良心出品)

多元线性回归模型一、单项选择题1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D )A. 0.8603B. 0.8389C. 0.8655D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A.iC (消费)=500+0.8iI (收入)B. di Q (商品需求)=10+0.8i I (收入)+0.9i P (价格)C. si Q (商品供给)=20+0.75i P (价格)D. iY (产出量)=0.650.6i L (劳动)0.4i K (资本)3.用一组有30个观测值的样本估计模型01122t t t ty b b x b x u =+++后,在0.05的显著性水平上对1b 的显著性作t 检验,则1b 显著地不等于零的条件是其统计量t 大于等于( C )A.)30(05.0t B.)28(025.0t C.)27(025.0t D.)28,1(025.0F4.模型tt t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B )A.x 关于y 的弹性B. y 关于x 的弹性C. x 关于y 的边际倾向D. y 关于x 的边际倾向5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C )A.异方差性B.序列相关C.多重共线性D.高拟合优度6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C ) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2) 7. 调整的判定系数 与多重判定系数 之间有如下关系( D )A.2211n R R n k -=-- B. 22111n R R n k -=---C. 2211(1)1n R R n k -=-+-- D. 2211(1)1n R R n k -=----8.关于经济计量模型进行预测出现误差的原因,正确的说法是( C )。

(完整版)第三章(多元线性回归模型)3-3答案

(完整版)第三章(多元线性回归模型)3-3答案

3.3 多元线性回归模型的检验一、判断题1、在线性回归模型中,为解释变量或者被解释变量重新选取单位(比如,元变换成千元),会影响t 统计量和 2R 的数值。

( F )2、在多元线性回归中,t 检验和F 检验缺一不可。

( T )3、回归方程总体线性显著性检验的原假设是模型中所有的回归参数同时为零。

( F )4、多元线性回归中,可决系数2R 是评价模型拟合优度好坏的最佳标准。

( F )二 、单项选择1、在模型0112233t t t t t Y X X X ββββμ=++++的回归分析结果中,有462.58F =,0.000000F p =的值,则表明 ( C )A 、解释变量2t X 对t Y 的影响不显著B 、解释变量1t X 对t Y 的影响显著C 、模型所描述的变量之间的线性关系总体上显著D 、解释变量2t X 和1t X 对t Y 的影响显著2、设k 为回归模型中的实解释变量的个数,n 为样本容量。

则对回归模型进行总体显著性 检验(F 检验)时构造的F 统计量为 ( A )A 、1)ESS k F RSS n k =--B 、(1)()ESS k F RSS n k -=- C 、ESS F RSS = D 、1RSS F TSS=- 3、在多元回归中,调整后的可决系数2R 与可决系数2R 的关系为 ( A ) A 、22R R < B 、22R R >C 、22R R =D 、2R 与2R 的关系不能确定4、根据调整的可决系数2R 与F 统计量的关系可知,当21R =时,有 ( C )A 、F=0B 、F=-1C 、F →+∞D 、F=-∞5、下面哪一表述是正确的 ( D ) A 、线性回归模型01i i i Y X ββμ=++的零均值假设是指110ni i n μ==∑ B 、对模型01122i i i i Y X X βββμ=+++进行方程显著性检验(即F 检验),检验的零假 设是0012:0H βββ===C 、相关系数较大意味着两个变量存在较强的因果关系D 、当随机误差项的方差估计量等于零时,说明被解释变量与解释变量之间为函数关系5、对于01122ˆˆˆˆi i i k ki iY X X X e ββββ=+++++…,如果原模型满足线性模型的基本假设则 在零假设0j β=下,统计量ˆˆ()j j s ββ(其中ˆ()js β是j β的标准误差)服从 (B )A 、()t n k -B 、(1)t n k --C 、(1,)F k n k --D 、(,1)F k n k --6、在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重可决系数为0.8500,则调整后的多重可决系数为( D )A 、8603B 、 0.8389C 、0.8655D 、0.83277、可决系数R 2=0.8,说明回归直线能解释被解释变量总变差的:( A )A 、 80%B 、 64%C 、 20%D 、 89%8、线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...)t H b i k ==时,所用的统计量服从( C )A.t(n-k+1)B.t(n-k-2)C.t(n-k-1)D.t(n-k+2)三、多项选择题1、对模型满足所有假定条件的模型01122i i i i Y X X βββμ=+++进行总体显著性检验,如果检验结果总体线性关系显著,则很可能出现 ( BCD )A 、120ββ==B 、120,0ββ≠=C 、120,0ββ≠≠D 、120,0ββ=≠E 、120,0ββ==2、设k 为回归模型中的参数个数(包含截距项)则总体线性回归模型进行显著性检验时所 用的F 统计量可以表示为 ( BC )A 、()()()∑∑---1k e k n Y Y 2i 2i i //ˆ B 、()()()∑∑---k n e 1k Y Y 2i2ii //ˆ C 、()()()k n R 11k R 22---// D 、()()()1k R k n R 122---// 30n =E 、()()()1k R 1k n R 22---// 3、在多元回归分析中,调整的可决系数2R 与可决系数2R 之间 ( AD )A 、22R R <B 、22R R ≥C 、2R 只可能大于零D 、2R 可能为负值E 、2R 不可能为负值四、简答题1.在多元线性回归分析中,为什么用修正的可决系数衡量估计模型对样本观测值的拟合优度?答:因为人们发现随着模型中解释变量的增多,多重可决系数2R 的值往往会变大,从而增加了模型的解释功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归模型练习
一、单项选择题
1.在由的一组样本估计的、包含3个解释变量的线性回归模型中,计算得可决系数为,则调整后的可决系数为( D )
A. B. C. 用一组有30个观测值的样本估计模型后,在的显著性水平上对的显著性作检验,则显著地不等于零的条件是其统计量大于等于( C )
A. B. C. D.
3.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验
0:0(0,1,2,...)t H b i k ==时,所用的统计量 服从( C )
(n-k+1) (n-k-2) (n-k-1) (n-k+2)
4. 调整的可决系数 与多元样本判定系数 之间有如下关系( D ) A.2211n R R n k -=-- B. 22
111n R R n k -=--- C. 2211(1)1n R R n k -=-
+-- D. 2211(1)1n R R n k -=---- 5.对模型Y i =β0+β1X 1i +β2X 2i +μi 进行总体显著性F 检验,检验的零假设是
( A )
A. β1=β2=0
B. β1=0
C. β2=0
D. β0=0或β1=0
6.设k 为回归模型中的参数个数,n 为样本容量。

则对多元线性回归方程进行
显著性检验时,所用的F 统计量可表示为( B )
A. B .
C .
D . 7.多元线性回归分析中(回归模型中的参数个数为k ),调整后的可决系数与可决系数之间的关系( A )
) 1 ( ) 1 ( 2 2 k R k R n
A. B. ≥
C. D.
8.已知五元线性回归模型估计的残差平方和为,样本容量为46,则随机误差项的方差估计量为( D )
A. B. 40 C. D. 20
9.多元线性回归分析中的 ESS 反映了( C )
A.因变量观测值总变差的大小
B.因变量回归估计值总变差的大小
C.因变量观测值与估计值之间的总变差 关于X 的边际变化
23.在古典假设成立的条件下用OLS 方法估计线性回归模型参数,则参数估计量具有( C )的统计性质。

A .有偏特性 B. 非线性特性 C .最小方差特性 D. 非一致性特性
10.关于可决系数,以下说法中错误的是( D )
A.可决系数的定义为被回归方程已经解释的变差与总变差之比
B.
C.可决系数反映了样本回归线对样本观测值拟合优劣程度的一种描述
D.可决系数的大小不受到回归模型中所包含的解释变量个数的影响
11、下列说法中正确的是:( D )
A 如果模型的 很高,我们可以认为此模型的质量较好
B 如果模型的 较低,我们可以认为此模型的质量较差
C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量
D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量
二、多项选择题
1.调整后的判定系数与判定系数之间的关系叙述正确的有( CDE )
A.与均非负
B.有可能大于
C.判断多元回归模型拟合优度时,使用
D.模型中包含的解释变量个数越多,与就相差越大
E.只要模型中包括截距项在内的参数的个数大于1,则
k -1 n n R R 1 ) 1 ( 1 2 2
2.对模型进行总体显著性检验,如果检验结果总体线性关系显著,则有( BCD )
A. B. C. D. E.
3.回归变差(或回归平方和)是指( BCD )
A. 被解释变量的实际值与平均值的离差平方和
B. 被解释变量的回归值与平均值的离差平方和
C. 被解释变量的总变差与剩余变差之差
D. 解释变量变动所引起的被解释变量的变差
E. 随机因素影响所引起的被解释变量的变差
4. 剩余变差是指( ACDE )
A.随机因素影响所引起的被解释变量的变差
B.解释变量变动所引起的被解释变量的变差
C.被解释变量的变差中,回归方程不能做出解释的部分
D.被解释变量的总变差与回归平方和之差
E.被解释变量的实际值与回归值的离差平方和
三、计算题
1.根据某地1961—1999年共39年的总产出Y、劳动投入L和资本投入K的年度数据,运用普通最小二乘法估计得出了下列回归方程:
,DW=
式下括号中的数字为相应估计量的标准误差。

(1)解释回归系数的经济含义;
(2)系数的符号符合你的预期吗?为什么?
解答:(1)这是一个对数化以后表现为线性关系的模型,lnL的系数为意味着资本投入K保持不变时劳动—产出弹性为;lnK的系数为意味着劳动投入L保
持不变时资本—产出弹性为.
(2)系数符号符合预期,作为弹性,都是正值。

2.假设要求你建立一个计量经济模型来说明在学校跑道上慢跑一英里或一英里以上的人数,以便决定是否修建第二条跑道以满足所有的锻炼者。

你通过整个学年收集数据,得到两个可能的解释性方程:
方程A :3215.10.10.150.125ˆX X X Y +--= 75.02=R
方程B :4217.35.50.140.123ˆX X X Y -+-= 73.02=R
其中:Y ——某天慢跑者的人数
1X ——该天降雨的英寸数
2X ——该天日照的小时数
3X ——该天的最高温度(按华氏温度)
4X ——第二天需交学期论文的班级数
请回答下列问题:(1)这两个方程你认为哪个更合理些,为什么?
(2)为什么用相同的数据去估计相同变量的系数得到不同的符号?
解答:(1)第2个方程更合理一些,,因为某天慢跑者的人数同该天日照的小时数应该是正相关的。

(2)出现不同符号的原因很可能是由于2X 与3X 高度相关而导致出现多重共线性的缘故。

从生活经验来看也是如此,日照时间长,必然当天的最高气温也就高。

而日照时间长度和第二天需交学期论文的班级数是没有相关性的。

3.设有模型,试在下列条件下:
①121b b += ②12b b =。

分别求出1b ,2b 的最小二乘估计量。

解答:当121b b +=时,模型变为20112()t t t t t y x b b x x u -=+-+,可作为一元回归模型来对待1221221221212()()()()
()(())t t t t t t t t t t t t n x x y x x x y x b n x x x x -----=---∑∑∑∑∑
当12b b =时,模型变为0112()t t t t y b b x x u =+++,同样可作为一元回归模型来对待
12121221212()()()(())t t t t t t t t t t n x x y x x y b n x x x x +-+=
+-+∑∑∑∑∑
4.假定以校园内食堂每天卖出的盒饭数量作为被解释变量,盒饭价格、气温、附近餐厅的盒饭价格、学校当日的学生数量(单位:人)作为解释变量,进行回归分析;假设不管是否有假期,食堂都营业。

不幸的是,食堂内的计算机被一次病毒侵犯,所有的存储丢失,无法恢复,你不能说出独立变量分别代表着哪一项!下面是回归结果(括号内为标准差):
i i i i i X X X X Y 43219.561.07.124.286.10ˆ-+++=
() 63.02=R 35=n
要求:(1)试判定每项结果对应着哪一个变量?
(2)对你的判定结论做出说
解答:(1)1i x 是盒饭价格,2i x 是气温,3i x 是学校当日的学生数量,4i x 是附近餐厅的盒饭价格。

(2)在四个解释变量中,盒饭价格同校园内食堂每天卖出的盒饭数量应该是负相关关系,其符号应该为负,应为4i x ;学校当日的学生数量每变化一个单位,盒饭相应的变化数量不会是或者,应该是小于1的,应为3i x ;至于其余两个变量,从一般经验来看,被解释变量对价格的反应会比对气温的反应更灵敏一些,所以1i x 是附近餐厅的盒饭价格,2i x 是气温。

相关文档
最新文档