0沪科版7年级数学上册教案汇编

合集下载

沪科版七年级上册数学教案(精编版)

沪科版七年级上册数学教案(精编版)

沪科版七年级上册数学教案所谓教案的艺术性就是构思巧妙,能让学生在课堂上不仅能学到知识,而且得到艺术的欣赏和快乐的体验。

下面是给大家整理的沪科版七年级上册数学教案,仅供参考希望能够帮助到大家。

沪科版七年级上册数学教案1一、素质教育目标(一)知识教学点1.掌握的三要素,能正确画出.2.能将已知数在上表示出来,能说出上已知点所表示的数.(二)能力训练点1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.对学生渗透数形结合的思想方法.(三)德育渗透点使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.(四)美育渗透点通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.二、学法引导1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.三、重点、难点、疑点及解决办法1.重点:正确掌握画法和用上的点表示有理数.2.难点:有理数和上的点的对应关系。

四、课时安排1课时五、教具学具准备电脑、投影仪、自制胶片.六、师生互动活动设计师生同步画,学生概括三要素,师出示投影,生动手动脑练习七、教学步骤(一)创设情境,引入新课师:大家知识温度计的用途是什么?生:温度计可以测量温度(出示投影1)三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.师:三个温度计所表示的温度是多少?生:2℃,-5℃,0℃.我们能否用类似温度计的图形表示有理数呢?这种表示数的图形就是今天我们要学的内容—(板书课题).【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.(二)探索新知,讲授新课1.的画法与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:第一步:画直线定原点原点表示0(相当于温度计上的0℃).第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.让学生观察画好的直线,思考以下问题:(出示投影1)(1)原点表示什么数?(2)原点右方表示什么数?原点左方表示什么数?(3)表示+2的点在什么位置?表示-1的点在什么位置?(4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义.学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充.【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.教师根据学生回答给予肯定或否定,纠正后板书.2.的定义:规定了原点、正方向和单位长度的直线叫做.向学生提出问题:上为什么要规定原点、正方向和单位长度呢?它们各起什么作用?引导学生结合温度订正确回答这个问题,从而知道三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是的依据.学生活动:同桌之间、前后桌之间讨论.使学生从直观认识上升到理性认识.3.尝试反馈,巩固练习请大家回答下列问题:(出示投影2)(1)有人说一条直线是一条,对不对?为什么?(2)下列所画对不对?如果不对,指出错在哪里?学生活动:学生思考,不准讨论,想好后举手回答.让其他学生对其回答进行评判,对确有疑问的题目,教师给予讲解.【教法说明】此组练习的目的是巩固的概念.答案:(2)①缺原点,②缺正方向,③不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轮上必须用同一单位长度进行度量.⑤⑦是,同时⑦为学习平面直角坐标系打基础.4.有理数与上点的关系通过刚才的学习我们知道所有的有理数都可以用上的点来表示.例1画一条,并画出表示下列各数的点:1,5,0,-2.5,.学生练习:同学们在练习本上画一条,然后在上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.【教法说明】让学生动手自己画,有助于培养学生实际操作能力.例1是把给定的有理数用上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对概念的理解.(出示投影4)例2指出上A、B、C、D、E各点分别表示什么数?先让学生思考一会,然后学生举手回答解:A表示-3;B表示;C表示3;D表示;E表.【教法说明】例2是让学生说出上的点表示的有理数,完成了由“形”到“数”的思维过程.例1、例2从各自不同的两个侧面,体现出数形结合,渗透了数形之间相互转化的数学思想.5.尝试反馈,巩固练习(出示投影5)①说出下面上A、B、C、D、O、M各点表示什么数?②将-3,,1.5,-6,,2.25,,-5,1各数用上的点表示出来.【教法说明】①题由点读数练习,②题由数找点练习,进一步巩固加深本节所学的内容.(三)归纳小结师:①是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合进行的.②掌握三要素,正确地画出,提醒同学们,所有的有理数都可用上的各点来表示,但是反过来不成立,即上的各点,并不是都表示有理数.以后再研究.八、随堂练习1.判断题(1)直线就是()(2)是直线()(3)任何一个有理数都可以用上的点来表示()(4)上到原点距离等于3的点所表示的数是+3()(5)上原点左边表示的数是负数,右边表示的数是正数,原点表示的数是0.()2.画一条数轮,并画出表示下列各数的点,-5,0,+3.2,-1.4九、布置作业(-)必做题:课本第56页1、2.(二)选做题:课本第56页及第57页B组l.(三)思考题:①在数轮上距原点3个单位长度的点表示的数是_____________②在数轮上表示-6的点在原点的___________侧,距离原点___________个单位长度,表示+6的点在原点的__________侧,距离原点____________个单位长度.【教法说明】由于学生在知识、技能、能力方面发展不尽相同,所以分层次地布置作业,兼顾学习有困难和学有余力的学生,使他们都能达到大纲中规定的基本要求,并使部分学生能发展他们的数学才能.十、板书设计随堂练习答案1.×√√×√2.略作业答案(一)必做题1.(1)依次是(2)依次是2.依次是(二)选做题:3.略B组1.(1)-6,(2)-1,(3)3;(4)0(三)思考题:①②左,6,右,6探究活动(1)在上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.分析:画时,的三要素:原点、正方向、单位长度缺一不可.(1)在上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了;(2)在上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2.解:(1)上,距离原点3个单位的点是+3和-3,距离原点4.5个单位的点是+4.5和-4.5.由图看出:-4.5<-3<3<4.5(2)在上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2.点评:利用,数形结合,是解这一类问题的好方法.沪科版七年级上册数学教案2教学目标1.了解的概念和的画法,掌握的三要素;2.会用上的点表示有理数,会利用比较有理数的大小;3.使学生初步了解数形结合的思想方法,培养学生相互联系的观点。

七年级数学教案沪科版

七年级数学教案沪科版

七年级数学教案沪科版【篇一:沪科版初中数学七年级第一学期教学案】初中数学七年级(上册)导学案第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本p1和p2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示. (3)阅读p3练习前的内容 3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. p3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________。

3.已知下列各数:?13,?2,3.14,+3065,0,-239; 54则正数有_____________________;负数有____________________。

上海科学技术出版社七年级数学上册全套教案

上海科学技术出版社七年级数学上册全套教案

正数和负数【课时安排】2课时【第一课时】【教学目标】一、知识与技能:(一)借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性。

整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念。

(二)能区分两种不同意义的量,会用符号表示正数和负数。

二、过程和方法:体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

三、情感态度与价值观:通过正数与负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力。

【教学重难点】难点:正数、负数的意义以及对基准的理解。

重点:两种相反意义的量与对基准的理解。

【教学过程】一、设置情境,引入课题师:今天我们已经是七年级的学生了,我是你们的数学老师。

下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重78.5千克,今年27岁,我们班级有46个同学,其中男同学有27个,约占全班总人数的58.7%。

(一)问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?学生活动:思考,交流师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。

(二)问题2:在生活中,仅有整数和分数够用了吗?有没有比0更小的数呢?(学生在脑中产生疑问。

)请同学们看大屏幕(教师展示投影)1.在冬日的某一天,国家气象中心天气预报当天温度如图所示,你能读出北京、上海、哈尔滨三座城市的最低温度各是多少吗?2.在中国地形图上,可以看到我国有一座世界最高峰——珠穆朗玛峰,地图上标着8844,在西部有一吐鲁番盆地,地图上标着-155,这两个数表示的高度是相对于海平面来说的,你能说说8844,-155各表示什么吗?学生思考,讨论并尝试回答。

学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。

沪科版七年级上册初一数学全册教案(教学设计)

沪科版七年级上册初一数学全册教案(教学设计)
【教学难点】
正数和负数的意义与对基准的理解.
【教学过程】
一、师生活动
1.实例引入
师1:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XXX,身高1.76米,体重78.5千克,今年37岁.我们的班级是七(2)班,有46个同学,其中男同学有27个,约占全班总人数的58.7%…
【分析】 原点、正方向、单位长度,数轴的这三要素缺一不可.
【答案】 都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.
【例2】 说出下图所示的数轴上A,B,C,D各点表示的数.
【答案】 点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.
注:整数有正整数,零,负整数;分数有正分数和负分数
2.定义:整数和分数统称为有理数,即
三、例题讲解
例1、(课本例2)
(强调:审题;)
例题引申:
(1)本题中哪些数放入非正有理数集合,哪些数放入非负有理数集合?
总结:有理数还可以分为:正有理数,零,负有理数.即
(老师可以告诉学生,π是无理数,我们今后学习)
其中0既不是正数,也不是负数
注:(1)正数前面“+”(读作正号),通常可省略不写,有时为了强调,也写上,如+7,+1;
(2)负数前面“-”(读作负号),不能省略不写.
3.正、负数常见的表示:
(1)计量温度时,人们把冰点作为基准,定为0℃.0℃以上的温度用正数表示,0℃以下的温度用负数表示.
(2)海平面常作为基准,定为海拔0m,海平面以上用正数表示,海平面以下用负数表示.

沪科版七年级数学全册教案模板

沪科版七年级数学全册教案模板

沪科版七年级数学全册教案沪科版七年级数学全册教案模板作为一名教学工作者,就难以避免地要准备教案,借助教案可以有效提升自己的教学能力。

写教案需要注意哪些格式呢?下面是小编精心整理的沪科版七年级数学全册教案模板,欢迎大家借鉴与参考,希望对大家有所帮助。

沪科版七年级数学全册教案模板1一、教学目标1、通过测量各种目标物影子长度的实践活动,使学生主动探索掌握影子长度与目标物实际高度之间的比例关系。

2、通过分组合作,培养学生动手动脑、解决实际问题的能力和团结协作精神。

3、通过活动,使学生感受到数学与现实生活的密切联系,进一步激发学习数学的兴趣,并在活动中培养创新精神。

二、教学过程(一)创设情境,激起兴趣1、播放动画片《聪明的阿凡提——卖树荫》片段(故事简介:一个炎热的下午,长工们正和阿凡提在巴依大老爷家门外的一棵大树下乘凉。

这时,巴依大老爷出现了,非常蛮横地要大家出100个钱买下树荫。

聪明的阿凡提一下就看穿了巴依贪婪的用心,决定将计就计,教训他一下。

于是大伙凑够了100个钱给了巴依,巴依心满意足地走了。

到了晚上,圆圆的月亮升上了天空,皎洁的月光照在大树上,大树长长的影子正好落在巴依大老爷的院子里和屋顶上。

长工们在阿凡提的带领下,涌进巴依的家里,有的还爬上了房顶。

巴依吓坏了,急忙赶大伙出去。

这时,阿凡提说:“树荫是我们花钱买下来的。

树荫移到哪里,我们就跟到哪里。

你要想让我们出去,就得给钱。

”巴依大老爷只好认输求饶,不仅退还了100个钱,还答应再也不阻挠大伙在树荫下乘凉了。

)师:故事看完了,你们觉得阿凡提怎么样?生:聪明机智,敢于同巴依大老爷作斗争,为穷人谋幸福师:可是,故事并没有结束。

巴依大老爷不甘心就此认输,一直在寻找着报复的机会。

过了几天,阿凡提有急事出了门,巴依便带着几个打手来到了树下,把乘凉的长工们撵到一边,然后命令打手们把大树砍倒。

附近只有这么一棵大树,枝叶茂密,正是长工们避暑的去处。

长工们纷纷恳求巴依大老爷不要砍树,这下正中了他的诡计。

沪科版数学七年级上册教案

沪科版数学七年级上册教案

第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】(1)与去年相比,某乡今年的水稻种植面积扩大了10hm2(公顷),小麦的种植面积减少了5hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.【答案】(1)与去年相比,该乡今年的水稻种植面积增加了10hm2,小麦种植面积增加了-5hm2,油菜种植面积增加了0hm2.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%, 德国 1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.四、巩固练习1.-10表示支出10元,那么+50表示;如果零上5度记作5℃,那么零下2度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.?2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.?【答案】 1.收入50元,-2℃五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.?(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?个单位长度的B点表示什么数?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1122.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】 判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析 原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】 都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】 说出下图所示的数轴上A 、B 、C 、D 各点表示的数.【答案】 点C 在原点表示0,点A 在原点左边与原点距离2个单位长度,故表示-2.同理,点B 表示-3.5.点D 在原点右边与原点距离2个单位长度,故表示2.【例3】 把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-32,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】 略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确. 第2课时 相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-312与312,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-312与312,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】 判断下列说法是否正确:(1)-5是5的相反数.( )(2)5是-5的相反数.( )(3)5与-5互为相反数.( )(4)-5是相反数.( )【答案】 (1)√ (2)√ (3)√ (4)×【例2】 (1)分别写出5、-7、-312、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】 (1)5的相反数是-5.-7的相反数是7.-312的相反数是312.+11.2的相反数是-11.2. 我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】 化简下列各数:(1)-(+10); (2)+(-0.15);(3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本P 10练习的第1~3题.【答案】 1.5,-1,3,2.6,-1.2,0.9,-12.2.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3.C五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:|= ;?(1)|+2|= ,|15(2)|0|= ;?(3)|-3|= ,|-0.2|= .?师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.3.绝对值的非负性.由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解【例1】 求下列各数的绝对值:-712,+110,-4.75,10.5.【答案】 |-712|=712;|+110|=110;|-4.75|=4.75;|10.5|=10.5 【例2】 计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)|-23|-(-23).分析 求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】 (1)0.62; (2)0; (3)43.四、巩固练习课本P 11~P 12练习的第1~5题.【答案】 1.略 2.3,1.5,0,5,0.02,34,16,100 3.(1)17 (2)1 (3)0 (4)6 4.D 5.8,8,14,14五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数. 1.3 有理数的大小教学目标【知识与技能】会借助数轴直观比较两个有理数的大小.【过程与方法】培养学生的逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力.【情感、态度与价值观】通过两个负数大小比较的推理分析,培养学生良好的思维能力.教学重难点【重点】有理数比较大小的法则.【难点】比较两个负数的大小.教学过程一、复习引入师:同学们,上节课我们学习了什么知识?一起来回顾一下吧!1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么?(3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-34和-23的大小.(1)解法一 先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2. 解法二 直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2.(2)①先分别求出它们的绝对值:|-34|=34=912,|-23|=23=812.②比较绝对值的大小:∵912>812 ∴34>23③得出结论:-34<-23.3.归纳:有理数大小比较的一般法则:(1)负数小于0,0小于正数,负数小于正数;(2)两个正数,应用已有的方法比较;(3)两个负数,绝对值大的反而小.三、例题讲解师:下面一起来做几个例题巩固一下吧!【例1】 比较下列各对数的大小:(1)-1与-0.01;(2)-|-2|与0;(3)-(-0.3)与-13;(4)-(-19)与-|-110|.【答案】 (1)这是两个负数比较大小.∵|-1|=1,|-0.01|=0.01,且1>0.01,∴-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0.(3)这是一个正数、一个负数比较大小,∵-(-0.3)=0.3,正数大于负数,∴-(-0.3)>-13.(4)分别化简两数,得:-(-19)=19,-|-110|=-110,∵正数大于负数,∴-(-19)>-|-110|. 说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力;②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分,将分母化为相同.【例2】 用“>”连接下列各数:2.6,-4.5,110,0,-223.分析 多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>110>0>-223>-4.5.四、巩固练习课本P 15练习第1~3题.【答案】略五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定.学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.2.要求学生严格按格式书写,训练学生逻辑推理的能力,提醒学生注意符号“∵”、“∴”的写法、读法和用法. 1.4 有理数的加减第1课时 有理数的加法(1)教学目标【知识与技能】使学生了解有理数加法的意义,理解有理数加法的法则,能熟练地进行有理数加法运算.【过程与方法】在有理数加法法则的导出和运用过程中,注意培养学生独立分析问题和口头表达以及运用数形结合的方法解决问题的能力.【情感、态度与价值观】通过观察、归纳、比较,体验数学学习交流的探索性和创造性,在运用知识解决问题时体验成功的喜悦.教学重难点【重点】有理数加法法则.【难点】异号两数相加的法则.教学过程一、复习导入1.师:同学们,在小学里我们已经学过了正整数、正分数(包括正小数)及数0的四则运算.现在引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向.二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50. 思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=( ),即这位同学位于原来位置的( )方( )米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次: 你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(-3)=( ); (+3)+(-10)=( );(-5)+(+7)=( ); (-6)+2=( ).再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=( ).(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=( ).我们不难得出它们的结果.2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同.三、例题讲解教师出示例题.【例1】 计算:(1)(+2)+(-11); (2)(+20)+(+12);(3)(-112)+(-23); (4)(-3.4)+4.3.【答案】 (1)原式=-(11-2)=-9;(2)原式=+(20+12)=+32=32;(3)原式=-(11+2)=-21;(4)原式=+(4.3-3.4)=0.9.【例2】 足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.分析 (1)每队进球总数记为正,失球总数记为负,这两个数的和为该队的净胜球数.(2)比赛双方中一方的进球数也是对方的失球数.三场比赛中,红队共进 球,失 球,净胜数为 + = ;黄队共进 球,失 球,净胜球数为 + = ;蓝队共进 球,失 球,净胜球数为 + = .? 四、巩固练习课本P 19练习的第1、2题. 【答案】 略 五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时 有理数的加法(2)教学目标 【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算. 【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力. 【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯. 教学重难点【重点】有理数加法运算律. 【难点】灵活运用运算律使运算简便. 教学过程 一、复习导入师:上节课我们学习了什么,一起来复习一下吧! 1.指名学生叙述有理数加法法则. 2.计算:(1)6.18+(-9.18); (2)(+5)+(-12);(3)3.75+2.5+(-2.5); (4)12+(-23)+(-12)+(-13).说明:通过练习巩固加法法则,突出计算简化问题,引出新课. 二、讲授新课1.发现、总结. (1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.。

2024秋七年级数学上册第2章整式加减2.1代数式3列代数式教案(新版)沪科版

= 6x^2 + 8xy - 8y^2 - 4x^2 + 14xy - 6y^2
= 2x^2 + 22xy - 14y^2
补充和说明:
1. 例题1中的化简代数式,主要考察学生对同类项的识别和合并能力。
2. 例题2中的求代数式的值,要求学生掌握代入法,将已知数值代入代数式中计算。
3. 例题3的合并同类项,强调学生在合并过程中注意符号的变化和处理。
- 在作业本上写下对学生的评价和建议,指出学生在代数式概念、分类、加减运算等方面存在的问题。
- 对于普遍存在的问题,及时在课堂上进行讲解和纠正。
- 对于个别学生的错误,进行个别辅导,帮助学生解决问题。
- 定期对学生的作业情况进行总结,分析学生在代数式学习中的进步和不足,为后续教学提供参考。
- 鼓励学生积极参与作业讨论,相互学习,共同进步。
解答:
小华买书的总价 = 3
例题5:代数式的运算
计算以下代数式的值:(3x - 2y)(2x + 4y) - (x - 3y)(4x - 2y)
解答:
(3x - 2y)(2x + 4y) - (x - 3y)(4x - 2y)
= 6x^2 + 12xy - 4xy - 8y^2 - (4x^2 - 2xy - 12xy + 6y^2)
3. 重点难点解析:在讲授过程中,我会特别强调代数式的构成要素和加减法则这两个重点。对于难点部分,比如合并同类项,我会通过具体例子和逐步解析来帮助大家理解。
三、实践活动(用时10分钟)
1. 分组讨论:学生们将分成若干小组,每组讨论一个与代数式相关的实际问题,如物品的价格计算、距离和速度的关系等。
2. 实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实物或代数式卡片,演示代数式的构成和加减运算的基本原理。

沪科版七年级上册数学教案范文

沪科版七年级上册数学教案范文课程完成后,总结归纳,完善教案,经过一学期的授课,老师会发觉自己的教案渐渐丰富开“花”。

那么应当怎么写好教案呢?今日我在这里给大家共享一些有关于最新沪科版七年级上册数学教案范文,盼望可以协助到大家。

最新沪科版七年级上册数学教案范文1教学目标:1、学问与技能:联系生活实际,引导学生相识一些常见的百分率,理解这些百分率的含义,并通过自主探究,驾驭求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,造就学生的迁移类推实力和数学的应用意识。

2、过程与方法:引导学生经验探究、发觉、沟通等丰富多彩的数学活动过程,自主建构学问,归纳出求百分率的方法。

3、数学思索:使学生学会从数学的角度去相识世界,逐步形成“数学的思维”习惯。

4、情感、看法与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。

教学重点:理解百分率的含义,驾驭求百分率的方法。

教学难点:探究百分率的含义。

教学用具:PPT课件教学过程:一、复习导入(8分)1、出示口算题,1分钟,并校正题目。

2、小结学生所提问题,并指名口头列式。

3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。

4、小结:算法一样,但计算结果的表示方法不同。

5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。

这些统称为百分率。

导入新课,提醒目标。

6、口算竞赛:(1分钟)(见课件)7、依据口算状况,提出数学问题。

(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)8、尝试解答修改后的问题。

9、比拟:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么一样点和不同点?10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。

(2)学习求百分率的方法,会解决求百分率的问题。

沪科版七年级数学上册全册教案.docx

沪科版2017-2018学年七年级数学上册全册教案目录1.1 正数和负数1.2 数轴、相反数和绝对值1.3 有理数的大小1.4.1有理数的加法1.4.2有理数的减法1.4.3加、减混合运算1.5.1有理数的乘法1.5.2有理数的除法1.5.3乘、除混合运算1.6.1有理数的乘方1.6.2科学计数法1.7 近似数2.1.1用字母表示数2.1.3单项式与多项式2.1.4代数式的值2.2.1合并同类项2.2.2去括号、添括号及整式加减3.1.1一元一次方程及其解法(1)3.1.2一元一次方程及其解法(2)3.2.1一元一次方程的应用(1)3.2.2一元一次方程的应用(2)3.3.1二元一次方程组3.3.2消元解方程组(1)3.3.3消元解方程(2)3.4.1二元一次方程组的应用(1)3.4.2二元一次方程组的应用(2)3.5 三元一次方程组及其解法3.6 综合与实践4.1 几何图形4.2 线段、射线、直线4.3 线段的长短比较4.4 角4.5 角的比较与补(余)角4.6 用尺规作线段与角5.1 数据的收集5.2 数据的整理5.3 用统计图描述数据5.4 从图表中的数据获取信息5.5 综合与实践1.1 正数和负数【教学目标】1.借助生活中的实例理解有理数的意义,体会和认识引入负数的必要性.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念.2.能区分两种不同意义的量,会用符号表示正数和负数.【重点难点】重点:两种相反意义的量与对基准的理解. 难点:正数、负数的意义以及对基准的理解.对有理数的分类的理解.1.1 正数和负数有理数⎩⎪⎨⎪⎧整数⎩⎨⎧正整数负整数分数⎩⎨⎧正分数负分数【教学反思】本节课紧密联系实际生活,使学生体会到数学的应用价值,在授课过程中充分体现了学生自主学习、小组合作交流的教学理念.在知识结构上与以前的知识相连接,体现了数学的1.2数轴、相反数和绝对值第1课时数轴【教学目标】了解数轴的概念,会画数轴,知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.【重点难点】重点:理解数形结合的数学方法,掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数和数轴上的点的对应关系.教学过程一、创设情境,导入新课1.古代部落酋长上任时先在绳上打个绳结表示财物往来.从0开始,如捕获一只羊就在红绳结右边顺次打一个结,每向其他部落借一只羊,就在红绳结左边顺次打一个结,你能解读图中A,B,C处绳结的含义吗?2.让学生阅读教科书上机器人走步取物实验.以小组为单位进行讨论.二、师生互动,探究新知【教学小结】【板书设计】第1课时数轴1.数轴2.任意一个有理数,都可以用数轴上的一个点来表示.【教学反思】从历史与现实生活实例引入新课,提高了学生的学习兴趣.在授课过程中教师注重了对学生自学能力的培养,让学生主动探究.在顺利完成本节课的内容之后,让学生预习下一节课的内容,培养学生良好的学习习惯.第2课时相反数【教学目标】1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.【重点难点】重点:相反数的概念.难点:相反数的识别及理解.【教学过程设计】【教学小结】【板书设计】第2课时相反数1.只有符号不同的两个数互为相反数.2.0的相反数是0.3.两个互为相反数的数在数轴上所表示的点在原点的两旁,与原点的距离相等.【教学反思】借助数轴让学生直观地观察,得出了相反数的特点,充分发挥小组的合作优势,体现了学为主体、教为主导的教学理念.第3课时绝对值【教学目标】1.理解绝对值的意义,会求一个数的绝对值.2.理解绝对值与相反数的联系.3.通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.【重点难点】重点:绝对值的意义.难点:绝对值的意义的学习.【教学过程设计】教学过程一、创设情境,导入新课师:如下图所示.小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同)________,他们行走的距离(即路程远近)________.生:口答.二、师生互动,探究新知【教学小结】【板书设计】 第3课时 绝对值1.定义:在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.2.|a |=⎩⎪⎨⎪⎧a (a ≥0)-a (a <0)【教学反思】通过数轴设置情境并引导学生观察数轴得出绝对值的意义,在此基础上得出如何求一个数的绝对值,让学生初步感知数形结合思想.通过不同形式的练习题让学生掌握并巩固知识.1.3 有理数的大小【教学目标】1.得出比较有理数的大小的方法并能熟练地应用解决具体问题.2.经历探索比较有理数的大小的方法的过程,培养学生的探索能力.【重点难点】重点:比较有理数的大小的方法.难点:探索比较有理数的大小的方法的过程,熟练地应用解决具体问题.【教学小结】【板书设计】1.3有理数的大小1.数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大.2.正数大于0,0大于负数,正数大于负数.3.两个负数比较大小,绝对值大的反而小.【教学反思】从学生已经学习的数轴入手,引导学生探究出了比较有理数大小的方法.在授课过程中充分发挥了小组合作的作用,增强了学生的合作意识.1.4有理数的加减第1课时有理数的加法【教学目标】1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能运用有理数的加法解决实际问题.【重点难点】重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.【教学过程设计】生:小组讨论之后分别列出算式:(1)(+2)+(+3)=+5.(2)(-2)+(-3)=-5.(3)(+2)+(-3)=-1.(4)(+3)+(-2)=+1.师:引导学生归纳两个有理数相加的几种情况.师:用课件出示以下5个问题:(1)如果规定向东为正,向西为负,那么一个人向东走4米,再向东走2米,两次共向东走了________米,这个问题用算式表示就是________.如图所示.(2)如果规定向东为正,向西为负,那么一个人向西走2米,再向西走4米,两次共向西走了多少米?很明显,两次共向西走了________米,这个问题用算式表示就是______________.如图所示.(3)如果向西走2米,再向东走4米,那么两次运动后,这个人从起点向东走了________米,写成算式就是____________.这个问题用数轴表示如下图所示.【教学小结】【板书设计】第1课时有理数的加法有理数的加法法则:1.同号两数相加,取与加数相同的符号,并把绝对值相加.2.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.3.一个数与0相加,仍得这个数.【教学反思】通过足球比赛这个实际例子引入新课,提高了学生的学习兴趣.利用数轴,充分发挥小组的合作优势,引导得出有理数的加法法则.教师设计的一系列问题由浅入深,非常恰当,充分体现了教师的主导作用.1.4有理数的加减第2课时有理数的减法【教学目标】1.掌握有理数的减法法则.2.能运用有理数的减法法则进行运算.3.通过对有理数减法法则的探究,体验数学的转化思想.4.通过对有理数减法法则的探讨,培养学生的创新思维.【重点难点】重点:有理数的减法法则.难点:对有理数的减法法则的探究.【教学过程设计】【教学小结】【板书设计】第2课时有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数.【教学反思】本节课从生活实例引入新课,提高了学生的学习兴趣.利用减法是加法的逆运算探究得出减法法则,体现了数学的转化思想.在教学中充分发挥学生的积极主动性,体现了学生为主体的教学思想.1.4有理数的加减第3课时加、减混合运算【教学目标】1.理解加减法统一成加法运算的意义.2.会将有理数的加、减混合运算转化为有理数的加法运算.3.通过对有理数的加、减混合运算的学习,体验数学中的转化思想.【重点难点】重点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.难点:1.有理数的加、减混合运算.2.将加减法统一成加法的省略括号的形式并读出来.【教学过程设计】【教学小结】【板书设计】第3课时加、减混合运算1.加法交换律:a+b=b+a2.加法结合律:(a+b)+c=a+(b+c)【教学反思】本节课是在学生学习了有理数的加法法则和减法法则的基础上进行的,所以本节课的关键是如何引导学生进行转化,这样有理数的加、减混合运算就转化成了有理数的加法运算.然后让学生认识到引入负数后加法的两个运算律仍然适用是本节课的重点,对计算器的使用,因为品种很多,程序和方法不尽相同,所以留作课下作业进行探究.1.5有理数的乘除第1课时有理数的乘法【教学目标】1.使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算.2.通过教学,渗透化归、分类等数学思想方法,初步培养学生的化归意识和观察、比较、概括等思维能力.【重点难点】重点:有理数的乘法法则.难点:有理数乘法中的符号法则以小组为单位,先独立思考再小组交流.二、师生互动,探究新知问题2:如图,一只蜗牛沿数轴爬行.它现在位置恰在数轴上的点0.(1)如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置?(2)如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置?(3)如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置?(4)如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置?以小组为单位交流、讨论.思考:一个数同0相乘,如何解释?问题3:正数乘正数积为________数.负数乘正数积为________数.正数乘负数积为________数.【教学小结】【板书设计】1.5有理数的乘除第2课时有理数的除法【教学目标】1.了解有理数除法的定义.2.经历有理数除法法则的探究过程,会进行有理数的除法运算.3.通过有理数除法法则的导出及运用,让学生体会转化思想.4.培养学生运用数学思想指导数学思维活动的能力.【重点难点】重点:正确运用法则进行有理数的除法运算.难点:怎样根据不同的情况来选取适当的方法求商.【教学小结】【板书设计】第2课时有理数的除法有理数的除法法则:1.两数相除,同号得正,异号得负,并把绝对值相除.2.0除以一个不为0的数仍得0.0不能做除数.3.除以一个不为0的数,等于乘以这个数的倒数.1.5有理数的乘除第3课时乘、除混合运算【教学目标】1.掌握有理数加、减、乘、除运算的法则、运算顺序,能够熟练运算.2.能运用法则解决实际问题.【重点难点】重点:如何按有理数的运算顺序,正确而合理地进行计算.难点:如何按有理数的运算顺序,正确而合理地进行计算.【板书设计】第3课时 乘、除混合运算1.有理数乘、除的混合运算,从左到右依次计算,也可统一化为乘法运算.2.含加、减、乘、除的算式,如没有括号,应先做乘除运算,后做加减运算;如有括号,应先做括号里的运算.3.乘法运算律⎩⎪⎨⎪⎧ab =ba (ab )c =a (bc )a (b +c )=ab +ac1.6有理数的乘方第1课时有理数的乘方【教学目标】1.正确理解有理数的乘方、幂、指数、底数等概念;会进行有理数的乘方运算.2.能确定有理数加、减、乘、除、乘方混合运算的顺序.3.会进行有理数的混合运算.【重点难点】重点:正确理解乘方的意义,掌握有理数乘方的符号规律.难点:幂、底数、指数的概念及其表示,理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.【教学过程设计】一、复习旧知,导入新课师:到今天为止我们已经学了哪些运算?生:有理数的加、减、乘、除运算.师:你能说出有理数的乘法法则吗?生:两数相乘,同号得正,异号得负,并把绝对值相乘,任何数与0相乘得0.师:你能说出多个不为0的有理数相乘的符号法则吗?生:几个不为0的有理数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.师:今天我们将继续探究有理数的乘方运算.二、师生互动,探究新知师:用多媒体出示乘方的定义:一般地,几个相同的因数a相乘,记作a n,即这种求n个相同因数的积的运算叫做乘方.乘方的结果叫做幂.在乘方运算a n中,a叫做底数,n叫做a的幂的指数.a n 既表示n个a相乘,又表示n个a相乘的结果.因此a n可读作a的n次方,或a的n次幂,如图所示.师:用多媒体出示:例如,在幂52中,底数是________,指数是________,52读作________(或5的平方)或5的2次幂.23读作【板书设计】第1课时有理数的乘方12.3.乘方法则:非0有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取______;负数的奇次乘方取________,负数的偶次乘方取________.0的正数次方是0.【教学反思】本节课从已经学过的知识入手,探究有理数的乘方运算,体现了知识之间的前后联系,在教学中先让学生试做,教师再根据实际情况进行校正,体现了先学后教,以学定教的教学思想.第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学过程设计】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n 等于原数的整数位数减1.1.6有理数的乘方第2课时科学计数法【教学目标】1.借助身边熟悉的事物进一步体会大数,并会用科学记数法表示大数.2.知道科学记数法中字母a的规定及10的幂指数与原数整数位数的关系.【重点难点】重点:正确使用科学记数法表示大于10的数.难点:10的幂指数的特征.【教学小结】【板书设计】第2课时科学记数法一般地,一个绝对值大于10的数都可记成±a×10n的形式,其中1≤a<10,n等于原数的整数位数减1.1.7近似数【教学目标】1.理解近似数的意义.2.给一个近似数,能说出它精确到哪一位.3.了解近似数是在实践中产生的.【重点难点】重点:理解近似数的精确度.难点:正确把握一个近似数的精确度.【教学小结】【板书设计】1.7近似数1.近似数2.误差3.精确度2.1代数式第1课时用字母表示数【教学目标】1.经历探索规律并用字母表示规律的过程.2.能用字母表示以前学过的运算律和计算公式.3.体会字母表示数的意义,形成初步的符号感.【重点难点】重点:理解字母表示数的意义.难点:探索规律的过程及用字母表示规律的方法.你能继续唱下去吗?二、师生互动,探究新知师:出示问题1.问题12008年9月25日,我国成功发射了“神舟七号”载人飞船.它在椭圆形轨道上环绕地球飞过45周,历时约68h,试求:(1)该飞船绕地球飞行一周约需________min(精确到1min);(2)该飞船绕地球飞行n周约需________min.生:小组讨论回答.师:出示问题2.问题2能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数.设k表示任意一个整数,用含有k的代数式表示:(1)任意一个偶数;(2)任意一个奇数.生:小组讨论回答.师:出示问题3.问题3如图,月历中用长方形框任意框出的3个数错误!之间的关系是________(请用一个等式表示这个关系).生:小组讨论回答.师:从以上三个问题中你有什么发现?生:讨论得出:用字母表示数,可以把一些数量关系更简明地表【教学小结】【板书设计】第1课时用字母表示数1.明确地表明数量关系.2.给计算带来方便.【教学反思】本节课在教学内容上尽可能地以实际生活为问题情境呈现出来,使学生有亲切感,激发学生的学习兴趣,让学生感受到数学来源于生活,并为现实生活而服务,认识到学习数学的实用价值.在整节课中,充分地让学生进行合作学习,共同交流与探索,发现问题、解决问题,使他们在操作过程中建立起“用字母表示数、数量关系等”的数学模型,形成初步的符号感.2.1代数式第3课时单项式与多项式【教学目标】1.理解单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.掌握多项式的概念,进而理解整式的概念.3.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.【重点难点】重点:1.掌握单项式及单项式系数、次数的概念,并会找出单项式系数、次数.2.多项式的概念及多项式的项数、次数的概念.难点:识别单项式的系数与次数及多项式的次数.【教学小结】【板书设计】第3课时 单项式与多项式整式⎩⎪⎨⎪⎧单项式⎩⎪⎨⎪⎧定义:数与字母的积系数:单项式中的数字因数次数:所有字母的指数之和多项式⎩⎪⎨⎪⎧定义:几个单项式之和次数:次数最高的项的次数2.1代数式第4课时代数式的值【教学目标】1.会求代数式的值.2.通过求代数式的值,体会代数式实际上是由计算关系反映的一种数量间的关系.【重点难点】重点:1.会求代数式的值.2.理解字母表示数的意义,增强符号感.难点:求代数式的值.【教学小结】【板书设计】第4课时代数式的值定义:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果.步骤:(1)指出字母的值(2)抄写代数式(3)替换字母(4)计算结果2.2整式加减第1课时合并同类项【教学目标】1.理解多项式中同类项的概念,会识别同类项.2.掌握合并同类项法则.3.利用合并同类项法则来化简整式.【重点难点】重点:同类项的概念、合并同类项的法则及应用.难点:正确判断同类项;准确合并同类项.二、师生互动,探究新知师:出示下面两个问题(情景一):问题1:我们到动物园参观时,发现老虎与老虎关在一个笼子里,熊猫与熊猫关在另一个笼子里.为何不把老虎与熊猫关在同一个笼子里呢?问题2:(1)在日常生活中,你发现还有哪些事物也需要分类?能举出例子吗?如:垃圾、零钱、水果及各种产品分类.(2)生活中处处有分类的问题,在数学中也有分类的问题吗?生:小组合作交流.师:出示下面的问题让学生议一议:10a和20a;2b2和6b2;-9xy和5xy;5ab和-13ab有什么共同点?生:小组合作交流.师:引导学生归纳同类项的定义.师:用多媒体出示情景二:4+2=64a+2a=(4+2)a4-=34x-x=3x师:通过情景二请同学们思考:如果一个多项式中含有同类项,【教学小结】【板书设计】第1课时合并同类项1.同类项:所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并在一起.3.法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变.2.2整式加减第2课时去括号、添括号及整式加减【教学目标】1.初步掌握去括号、添括号的法则.2.会运用去括号、添括号法则,并根据要求去括号、添括号.3.能利用去括号法则将整式化简.【重点难点】重点:去括号法则;准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【教学小结】【板书设计】第2课时去括号、添括号及整式加减1.去括号法则2.添括号法则3.按某个字母降(升)幂排列3.1一元一次方程及其解法第1课时一元一次方程及其解法(1)【教学目标】1.理解移项法则,知道移项的依据.2.会熟练运用移项法则解方程.【重点难点】重点:会用移项法则解方程.难点:对移项法则的理解与应用.【教学小结】【板书设计】第1课时一元一次方程及其解法(1)定义:只含有一个未知数,未知数的次数都是1,且等式两边都是整式的方程.移项时注意改变符号.3.1一元一次方程及其解法第2课时一元一次方程及其解法(2)【教学目标】1.使学生掌握去括号的方法步骤.2.会把实际问题建成数学模型,会用去分母的方法解一元一次方程.【重点难点】重点:1.去括号解方程.2.会用去分母的方法解一元一次方程.难点:灵活地解含括号与含分母的方程.【教学小结】【板书设计】第2课时一元一次方程及其解法(2)解一元一次方程的一般步骤:①去分母②去括号③移项④合并同类项⑤系数化为13.2一元一次方程的应用第1课时一元一次方程的应用(1)【教学目标】1.通过分析实际问题,探索等积变形问题和行程问题中所体现的数量关系,正确的列出一元一次方程.2.进一步理解一元一次方程在实际生活中的应用.【重点难点】重点:能正确地找出数量之间的等量关系.难点:找出题目中的等量关系并列出一元一次方程.【教学过程设计】。

2020沪科版数学七年级上册教案全集

第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】(1)与去年相比,某乡今年的水稻种植面积扩大了10hm2(公顷),小麦的种植面积减少了5hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.【答案】(1)与去年相比,该乡今年的水稻种植面积增加了10hm2,小麦种植面积增加了-5hm2,油菜种植面积增加了0hm2.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%, 德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%, 德国 1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.四、巩固练习1.-10表示支出10元,那么+50表示;如果零上5度记作5℃,那么零下2度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m; 2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2 数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?个单位长度的B点表示什么数?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1122.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-32,+3.5;3(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-312与312,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-312与312,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律. 学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数. 理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0. 说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数. 三、例题讲解教师出示例题.【例1】 判断下列说法是否正确: (1)-5是5的相反数.( ) (2)5是-5的相反数.( ) (3)5与-5互为相反数.( ) (4)-5是相反数.( )【答案】 (1)√ (2)√ (3)√ (4)×【例2】 (1)分别写出5、-7、-312、+11.2的相反数;(2)指出-2.4是什么数的相反数. 【答案】 (1)5的相反数是-5.-7的相反数是7.-312的相反数是312.+11.2的相反数是-11.2. 我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数. 【例3】 化简下列各数:(1)-(+10); (2)+(-0.15); (3)+(+3); (4)-(-20).【答案】 (1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20. 四、巩固练习课本P 10练习的第1~3题.【答案】 1.5,-1,3,2.6,-1.2,0.9,-12. 2.(1)2.8 -3.2 (2)4 -7 (3)-8 9 3.C 五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:|= ;(1)|+2|= ,|15(2)|0|= ;(3)|-3|= ,|-0.2|= .师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0. 3.绝对值的非负性.由绝对值的定义可知:不论有理数a 取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0. 三、例题讲解【例1】 求下列各数的绝对值:-712,+110,-4.75,10.5. 【答案】 |-712|=712;|+110|=110;|-4.75|=4.75;|10.5|=10.5 【例2】 计算:(1)|0.32|+|0.3|; (2)|-4.2|-|4.2|; (3)|-23|-(-23).分析 求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】 (1)0.62; (2)0; (3)43. 四、巩固练习课本P 11~P 12练习的第1~5题.【答案】 1.略 2.3,1.5,0,5,0.02,34,16,100 3.(1)17 (2)1 (3)0 (4)6 4.D 5.8,8,14,14五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a 的绝对值就是数轴上表示数a 的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.1.3 有理数的大小教学目标 【知识与技能】会借助数轴直观比较两个有理数的大小. 【过程与方法】培养学生的逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力. 【情感、态度与价值观】通过两个负数大小比较的推理分析,培养学生良好的思维能力. 教学重难点【重点】有理数比较大小的法则. 【难点】比较两个负数的大小. 教学过程 一、复习引入师:同学们,上节课我们学习了什么知识?一起来回顾一下吧!1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么? (3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-34和-23的大小.(1)解法一 先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2. 解法二 直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2. (2)①先分别求出它们的绝对值:|-34|=34=912,|-23|=23=812. ②比较绝对值的大小:∵912>812 ∴34>23 ③得出结论:-34<-23. 3.归纳:有理数大小比较的一般法则:(1)负数小于0,0小于正数,负数小于正数; (2)两个正数,应用已有的方法比较; (3)两个负数,绝对值大的反而小. 三、例题讲解师:下面一起来做几个例题巩固一下吧! 【例1】 比较下列各对数的大小: (1)-1与-0.01; (2)-|-2|与0; (3)-(-0.3)与-13; (4)-(-19)与-|-110|. 【答案】 (1)这是两个负数比较大小.∵|-1|=1,|-0.01|=0.01,且1>0.01, ∴-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0. (3)这是一个正数、一个负数比较大小, ∵-(-0.3)=0.3,正数大于负数, ∴-(-0.3)>-13. (4)分别化简两数,得: -(-19)=19,-|-110|=-110,∵正数大于负数,∴-(-19)>-|-110|.说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力; ②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行; ④异分母分数比较大小时要通分,将分母化为相同. 【例2】 用“>”连接下列各数: 2.6,-4.5,110,0,-223.分析 多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>110>0>-223>-4.5. 四、巩固练习课本P 15练习第1~3题. 【答案】略 五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定.学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.2.要求学生严格按格式书写,训练学生逻辑推理的能力,提醒学生注意符号“∵”、“∴”的写法、读法和用法.1.4 有理数的加减第1课时 有理数的加法(1)教学目标 【知识与技能】使学生了解有理数加法的意义,理解有理数加法的法则,能熟练地进行有理数加法运算. 【过程与方法】在有理数加法法则的导出和运用过程中,注意培养学生独立分析问题和口头表达以及运用数形结合的方法解决问题的能力. 【情感、态度与价值观】通过观察、归纳、比较,体验数学学习交流的探索性和创造性,在运用知识解决问题时体验成功的喜悦. 教学重难点【重点】有理数加法法则. 【难点】异号两数相加的法则. 教学过程 一、复习导入1.师:同学们,在小学里我们已经学过了正整数、正分数(包括正小数)及数0的四则运算.现在引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向. 二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50. 思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=( ),即这位同学位于原来位置的( )方( )米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有什么关系吗? (+4)+(-3)=( ); (+3)+(-10)=( ); (-5)+(+7)=( ); (-6)+2=( ). 再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=( ).(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=( ).我们不难得出它们的结果. 2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值; (3)互为相反数的两个数相加得0; (4)一个数同0相加,仍得这个数. 注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同. 三、例题讲解教师出示例题. 【例1】 计算:(1)(+2)+(-11); (2)(+20)+(+12); (3)(-112)+(-23); (4)(-3.4)+4.3. 【答案】 (1)原式=-(11-2)=-9; (2)原式=+(20+12)=+32=32;(3)原式=-(112+23)=-216; (4)原式=+(4.3-3.4)=0.9.【例2】 足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 分析 (1)每队进球总数记为正,失球总数记为负,这两个数的和为该队的净胜球数.(2)比赛双方中一方的进球数也是对方的失球数.三场比赛中,红队共进 球,失 球,净胜数为 + = ;黄队共进 球,失 球,净胜球数为 + = ;蓝队共进 球,失 球,净胜球数为 + = . 四、巩固练习课本P 19练习的第1、2题. 【答案】 略 五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时 有理数的加法(2)教学目标 【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算. 【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力. 【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯. 教学重难点【重点】有理数加法运算律. 【难点】灵活运用运算律使运算简便. 教学过程 一、复习导入师:上节课我们学习了什么,一起来复习一下吧! 1.指名学生叙述有理数加法法则. 2.计算:(1)6.18+(-9.18); (2)(+5)+(-12);(3)3.75+2.5+(-2.5); (4)12+(-23)+(-12)+(-13).说明:通过练习巩固加法法则,突出计算简化问题,引出新课. 二、讲授新课1.发现、总结. (1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c). 这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化. 三、例题讲解教师板书例题并和学生共同完成. 【例1】 计算:(1)(+26)+(-18)+5+(-16); (2)(-123)+112+(+714)+(-213)+(-812).【答案】 (1)原式=(26+5)+[(-18)+(-16)]=31+(-34)=-(34-31)=-3.(2)原式=[(-123)+(-213)]+[112+(-812)]+714=(-4)+(-7)+714=(-4)+[(-7)+714]=(-4)+14=-(4-14)=-334. 从几个例题中你能发现应用运算律时,通常将哪些加数结合在一起,能使运算简便吗? 【例2】 运用加法运算律计算下列各题:(1)(+66)+(-12)+(+11.3)+(-7.4)+(+8.1)+(-2.5); (2)(+325)+(-278)+(-3512)+(-118)+(+535)+(+5512); (3)(+614)+(+12)+(-6.25)+(+13)+(-79)+(-56).分析 利用运算律将正、负数分别结合,然后相加,可以使运算比较简便;有分数相加时,利用运算律把分母相同的分数结合起来,将带分数拆开,计算比较简便.一定要注意不要遗漏括号.相加的若干个数中出现了相反数时,先将相反数结合起来抵消掉,或通过拆数、部分结合凑成相反数抵消掉,这样计算比较简便.【答案】 (1)原式=(66+11.3+8.1)+[(-12)+(-7.4)+(-2.5)]=85.4+(-21.9)=63.5.(2)原式=(3+25)+(5+35)+[-(2+78)]+[-(1+18)]+(5+512)+[-(3+512)] =3+5+25+35+(-2)+(-1)+(-78)+(-18)+5+(-3)+512+(-512)=7. (3)原式=(+614)+(-6.25)+(12+13)+(-56)+(-79)=-79.【例3】 10袋小麦的质量(单位:kg)分别如下:91,91,91.5,89,91.2,91.3,88.7,88.8,91.8,91.1,这10袋小麦一共多少kg?如果每袋小麦以90kg 为标准,10袋小麦总计超过多少kg 或不足多少kg?【解】 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4(kg). 90×10=900(kg),905.4-900=5.4(kg).答:这10袋小麦一共905.4kg.如果每袋小麦以90kg 为标准,10袋小麦总计超过5.4kg. 四、巩固练习课本P 20练习的第4、5题. 【答案】 略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1章有理数1.1 正数和负数教学目标【知识与技能】1.会判断一个数是正数还是负数.2.会用正负数表示生活中常用的具有相反意义的量.【过程与方法】1.了解负数产生的背景是从实际需要产生的.2.培养学生的数学应用意识,渗透对立统一的辩证思想.【情感、态度与价值观】体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣.教学重难点【重点】了解正数与负数是由实际需要产生的并会用正负数表示生活中常用的具有相反意义的量.【难点】明白学习负数的必要性,能结合生活情境举出具有相反意义的量的典型例子.教学过程一、新课引入1.师:同学们,你们看过电视或听过广播中的天气预报吗?中国地形图上的温度阅读.(可让学生模拟预报)请大家来当小小气象员,记录温度计所示的气温:25℃,10℃,零下10℃,零下30℃.为书写方便,将测量气温写成25℃,10℃,-10℃,-30℃.2.师:同学们,我们已经学了哪些数,它们是怎样产生和发展起来的?教师引导学生说出:在生活中为了表示物体的个数或事物的顺序,产生了数1,2,3,…;为了表示“没有”,引入了数0;有时分配和测量的结果不是整数,需要用分数(小数)表示.总之,数是为了满足生产和生活的需要而产生和逐步发展起来的.二、讲授新课1.相反意义的量:师:同学们,在我们的日常生活中,常会遇到这样一些量(事情):例1:汽车向东行驶3千米和向西行驶2千米.例2:温度是零上10℃和零下5℃.例3:收入500元和支出237元.例4:水位升高1.2米和下降0.7米.例5:买进100辆自行车和卖出20辆自行车.(1)试着让学生考虑这些例子中出现的每一对量有什么共同特点.(都具有相反意义,向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义.)(2)你能举出几对日常生活中具有相反意义的量吗?2.正数和负数:(1)能用我们已学过的数表示这些具有相反意义的量吗?例如,零上5℃用5来表示,零下5℃呢?也用5来表示,行吗?说明:在天气预报图中,零下5℃是用-5℃来表示的.一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正,用过去学过的数来表示;把与它意义相反的量规定为负,用过去学过的数(零除外)前面放一个“-”(读作“负”)号来表示.以温度为例,通常规定零上为正,零下为负;零上10℃就用10℃表示,零下5℃则用-5℃来表示.(2)怎样表示具有相反意义的量呢?你们能否从天气预报出现的标记中得到一些启发呢?在例1中,我们如果规定向东为正,那么向西则为负.汽车向东行驶3千米记作3千米,向西2千米应记作-2千米.后面的例子让学生来说(注意词的表达).在以上的讨论中,出现了哪些新数?为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7等数.像这样的一些新数,叫做负数(negative number).过去学过的那些数(零除外),如10,3,500,1.2等,叫做正数(positive number).正数前面有时也可放一个“+”(读作“正”),如5可以写成+5.注意:零既不是正数,也不是负数.三、例题讲解【例1】(1)与去年相比,某乡今年的水稻种植面积扩大了10hm2(公顷),小麦的种植面积减少了5hm2,油菜的种植面积不变,写出这三种农作物今年种植面积的增加量;(2)某市12315中心2011年国庆期间受理消费申诉件数:日用百货类比上年同期增长了10%,家用电子电器类比上年下降了20%,写出这两类消费商品申诉件数的增长率.【答案】(1)与去年相比,该乡今年的水稻种植面积增加了10hm2,小麦种植面积增加了-5hm2,油菜种植面积增加了0hm2.(2)与上年同期相比,消费商品申诉件数:日用百货类增长了10%,家用电子电器类增长了-20%.【例2】(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%, 英国减少3.5%,意大利增长0.2%, 中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.【答案】(1)这个月小明体重增加2kg,小华体重增加-1kg,小强体重增加0kg.(2)六个国家这一年商品进出口总额的增长率是:美国-6.4%, 德国 1.3%,法国-2.4%, 英国-3.5%,意大利0.2%, 中国7.5%.四、巩固练习1.-10表示支出10元,那么+50表示;如果零上5度记作5℃,那么零下2度记作;如果上升10m记作10m,那么-3m表示;太平洋中的马里亚纳海沟低于海平面达11 034米,可记作海拔米(即低于海平面11 034米).比海平面高50m的地方,它的高度记作海拔;比海平面低30m的地方,它的高度记作海拔.2.一种零件的内径尺寸在图纸上是10±0.05(单位:mm),表示这种零件的标准尺寸是10mm,加工要求最大不超过标准尺寸,最小不超过标准尺寸.【答案】 1.收入50元,-2℃,下降3m,-11034,+50m,-30m; 2.0.05mm,-0.05mm.五、课堂小结正数和负数表示的是一对具有相反意义的量,哪种意义的量为正是可以任意规定的.如果把一种意义的量规定为正,则相反意义的量规定为负.常将“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负.1.2数轴、相反数和绝对值第1课时数轴教学目标【知识与技能】使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示.【过程与方法】在探索数轴画法的过程中,鼓励学生类比、猜想,初步理解数与形的结合.【情感、态度与价值观】向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想.教学重难点【重点】初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.【难点】正确理解有理数与数轴上点的对应关系.教学过程一、复习导入师:在上课之前老师先提几个问题,看大家学得怎样.1.有理数包括哪些数?0是正数还是负数?2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直尺、弹簧秤等)?教学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.演示从温度计抽象成数轴,激发学生学习的兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程.二、讲授新课1.师:请同学们阅读课本第7页,思考并讨论:(1)25℃用正数表示;0℃用数表示;零下10℃用负数表示.(2)数轴要具备哪三个要素?(3)原点表示什么数?原点右方表示什么数?原点左方表示什么数?(4)表示+2的点在什么位置?表示-3的点在什么位置?(5)原点向右0.5个单位长度的A点表示什么数?原点向左1个单位长度的B点表示什么数?2.数轴的画法.师生共同总结数轴的画法步骤:第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0(相当于温度计上的0℃);第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来).相反的方向就是负方向(相当于温度计0℃以上为正,0℃以下为负);第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度(相当于温度计上1℃占1小格的单位长度).在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,……,从原点向左,每隔一个单位长度取一点,它们依次表示-1,-2,-3,…….3.数轴的定义.规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的选择、单位长度大小的确定,都是根据需要人为规定的,此外,直线也不一定是水平的.动态演示各种类型的数轴,认识并掌握判断一条直线是不是数轴的依据.三、例题讲解师:同学们,下面我们一起来做几个例题.【例1】判断下图中所画的数轴是否正确;如不正确,指出错在哪里.分析原点、正方向、单位长度,数轴的这三要素缺一不可.【答案】都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致.【例2】说出下图所示的数轴上A、B、C、D各点表示的数.【答案】点C在原点表示0,点A在原点左边与原点距离2个单位长度,故表示-2.同理,点B表示-3.5.点D在原点右边与原点距离2个单位长度,故表示2.【例3】把下面各小题的数分别表示在三条数轴上:(1)2,-1,0,-3,+3.5;(2)-5,0,+5,15,20;(3)-1 500,-500,0,500,1 000.【答案】略.四、课堂小结教师引导学生小结:1.数轴是非常重要的数学工具,它使数和直线上的点建立了一一对应的关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但并不是数轴上的所有点都表示有理数.2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确.第2课时相反数教学目标【知识与技能】1.使学生了解互为相反数的几何意义.2.会求一个已知数的相反数;会对含有多重符号的数进行化简.【过程与方法】培养学生的观察、归纳与概括的能力,渗透数形结合思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考与合作学习的过程,培养学生积极参与、善于与他人合作交流的学习习惯.教学重难点【重点】理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数.【难点】多重符号的数的化简问题的理解.教学过程一、复习导入师:同学们,在上课之前,老师先出几个题目考考大家.1.在数轴上分别找出表示下列各数的点:6与-6,-3与3,-1.5与1.5.想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与-6,-3与3,-1.5与1.5有何特点.观察每组数所对应的两个点的位置关系有什么规律.学生归纳:每组中的每个数只有符号不同,它们所对应的两点分别在原点的两侧,到原点的距离相等.二、讲授新课师:下面我们一起来学习新课.1.发现并总结相反数的定义.只有符号不同的两个数称互为相反数.理解:代数定义:只有符号不同的两个数互为相反数.0的相反数是0.几何定义:在数轴上原点两旁,与原点的距离相等的两个点所表示的两个数互为相反数.0的相反数是0.说明:“互为相反数”的含义是相反数是成对出现的,因而不能说“-6是相反数”.“0的相反数是0”是相反数定义的一部分.这是因为0既不是正数,也不是负数,它到原点的距离就是0,0是唯一的相反数仍等于它本身的数.三、例题讲解教师出示例题.【例1】判断下列说法是否正确:(1)-5是5的相反数.()(2)5是-5的相反数.()(3)5与-5互为相反数.()(4)-5是相反数.()【答案】(1)√(2)√(3)√(4)×【例2】(1)分别写出5、-7、-3、+11.2的相反数;(2)指出-2.4是什么数的相反数.【答案】(1)5的相反数是-5.-7的相反数是7.-3的相反数是3.+11.2的相反数是-11.2.我们通常在一个数的前面添上“-”号,表示这个数的相反数.例如-(-4)=4,-(+5.5)=-5.5;同样,在一个数前面添上“+”号,表示这个数本身.例如+(-4)=-4,+(+12)=12.(2)-2.4是2.4的相反数.【例3】化简下列各数:(1)-(+10);(2)+(-0.15);(3)+(+3); (4)-(-20).【答案】(1)-(+10)=-10;(2)+(-0.15)=-0.15;(3)+(+3)=+3=3;(4)-(-20)=20.四、巩固练习课本P10练习的第1~3题.【答案】 1.5,-1,3,2.6,-1.2,0.9,-.2.(1)2.8-3.2(2)4-7(3)-89 3.C五、课堂小结1.只有符号不同的两个数互为相反数,其中一个是另一个的相反数,0的相反数是0,从数轴上看,求一个数的相反数就是找一个点关于原点的对称点.2.相反数是表示具有特定关系(只有符号不同)的两个数,单独一个数不能被称为相反数,相反数是成对出现的.3.正号“+”的功能是对一个数的符号予以确认;而负号“-”的功能是对一个数的符号予以改变.第3课时绝对值教学目标【知识与技能】1.使学生初步理解绝对值的概念.2.明确绝对值的代数定义和几何意义,会求一个已知数的绝对值,会在已知一个数的绝对值的条件下求这个数.【过程与方法】培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想.【情感、态度与价值观】通过由具体实例抽象概括的独立思考和合作学习的过程,培养学生积极主动的学习习惯.教学重难点【重点】让学生掌握求一个已知数的绝对值的方法及正确理解绝对值的概念.【难点】对绝对值的几何意义和代数定义的导出与对“负数的绝对值是它的相反数”的理解.教学过程一、复习导入师:同学们,我们先来做几个题目来复习一下上节课所学的知识.1.在数轴上分别标出-5,3.5,0及它们的相反数所对应的点.2.在数轴上找出与原点距离等于6的点.3.相反数是怎样定义的?引导学生从代数与几何两方面的特点出发回答相反数的定义.从几何方面可以说在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数;从代数方面说只有符号不同的两个数互为相反数.那么互为相反数的两个数有什么相同的特征呢?由此引入新课,归纳出绝对值的定义.二、讲授新课师:下面我们一起来学习新课.1.发现、总结绝对值的定义.我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.例如,在数轴上表示数-6与表示数6的点与原点的距离都是6,所以-6和6的绝对值都是6,记作|-6|=|6|=6.同样可知|-4|=4,|+1.7|=1.7.2.试一试:你能从中发现什么规律?由绝对值的意义,我们可以知道:(1)|+2|=,=;(2)|0|=;(3)|-3|=,|-0.2|=.师引导学生概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点,在原点左边的点表示的数(负数)的绝对值又有什么特点.由学生分类讨论,归纳出数a的绝对值的一般规律:(1)一个正数的绝对值是它本身;(2)0的绝对值是0;(3)一个负数的绝对值是它的相反数.即①若a>0,则|a|=a;②若a<0,则|a|=-a;③若a=0,则|a|=0.3.绝对值的非负性.由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0.三、例题讲解【例1】求下列各数的绝对值:-7,+,-4.75,10.5.【答案】=7;=;|-4.75|=4.75;|10.5|=10.5【例2】计算:(1)|0.32|+|0.3|;(2)|-4.2|-|4.2|;(3)|-|-(-).分析求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到.在(3)中要注意区分绝对值符号与括号的不同含义.【答案】(1)0.62;(2)0;(3).四、巩固练习课本P11~P12练习的第1~5题.【答案】 1.略 2.3,1.5,0,5,0.02,,,100 3.(1)17(2)1(3)0(4)6 4.D 5.8,8,,五、课堂小结教师引导学生小结:1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值时注意先判断这个数是正数还是负数.1.3有理数的大小教学目标【知识与技能】会借助数轴直观比较两个有理数的大小.【过程与方法】培养学生的逻辑思维能力,渗透数形结合思想,注意培养学生的推理论证能力.【情感、态度与价值观】通过两个负数大小比较的推理分析,培养学生良好的思维能力.教学重难点【重点】有理数比较大小的法则.【难点】比较两个负数的大小.教学过程一、复习引入师:同学们,上节课我们学习了什么知识?一起来回顾一下吧!1.任意写出两个正数,在数轴上画出表示它们的点,较大的数与较小的数的对应点的位置有什么关系?2.1℃与-2℃哪个温度高?-1℃与0℃哪个温度高?这个关系在温度计上表现为怎样的情况?二、讲授新课1.发现、总结:(1)师:同学们,请仔细观察温度计的刻度,发现上面的温度总比下面的高,与之类似,在数轴上表示的两个数,右边的数总比左边的数大.(2)在数轴上,所有的负数都在0的左边,所有的正数都在0的右边,这说明了什么?(3)由学生归纳出:正数都大于0,负数都小于0;正数大于一切负数;(4)在数轴上,画出表示-2和-5的点,这两个数中哪个较大?再找几对类似的数试一下,从中你能概括出直接比较两个负数大小的法则吗?(5)我们发现:两个负数,绝对值大的反而小.这样,比较两个负数的大小,只要比较它们的绝对值的大小就可以了.2.例如:(1)比较-3,0,2的大小;(2)比较两个负数-和-的大小.(1)解法一先在数轴上分别找出表示-3,0,2的点,由右边的数总比左边的数大,得到-3<0<2.解法二直接由“正数大于0,负数小于0,正数大于负数”的规律得出-3<0<2.(2)①先分别求出它们的绝对值:==,==.②比较绝对值的大小:∵>∴>③得出结论:-<-.3.归纳:有理数大小比较的一般法则:(1)负数小于0,0小于正数,负数小于正数;(2)两个正数,应用已有的方法比较;(3)两个负数,绝对值大的反而小.三、例题讲解师:下面一起来做几个例题巩固一下吧!【例1】比较下列各对数的大小:(1)-1与-0.01;(2)-|-2|与0;(3)-(-0.3)与-;(4)-(-)与-.【答案】(1)这是两个负数比较大小.∵|-1|=1,|-0.01|=0.01,且1>0.01,∴-1<-0.01.(2)化简:-|-2|=-2,因为负数小于0,所以-|-2|<0.(3)这是一个正数、一个负数比较大小,∵-(-0.3)=0.3,正数大于负数,∴-(-0.3)>-.(4)分别化简两数,得:-(-)=,-=-,∵正数大于负数,∴-(-)>-.说明:①要求学生严格按此格式书写,训练学生逻辑推理的能力;②注意符号“∵”、“∴”的写法、读法和用法;③对于两个负数的大小比较可以不必再借助于数轴而直接进行;④异分母分数比较大小时要通分,将分母化为相同.【例2】用“>”连接下列各数:2.6,-4.5,,0,-2.分析多个有理数比较大小时,应根据“正数大于一切负数和0,负数小于一切正数和0,0大于一切负数而小于一切正数”进行分组比较,即只需正数和正数比、负数和负数比.【答案】 2.6>>0>-2>-4.5.四、巩固练习课本P15练习第1~3题.【答案】略五、课堂小结教师引导学生小结:1.先由学生叙述比较有理数大小的两种方法——利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定.学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了.2.要求学生严格按格式书写,训练学生逻辑推理的能力,提醒学生注意符号“∵”、“∴”的写法、读法和用法.1.4有理数的加减第1课时有理数的加法(1)教学目标【知识与技能】使学生了解有理数加法的意义,理解有理数加法的法则,能熟练地进行有理数加法运算.【过程与方法】在有理数加法法则的导出和运用过程中,注意培养学生独立分析问题和口头表达以及运用数形结合的方法解决问题的能力.【情感、态度与价值观】通过观察、归纳、比较,体验数学学习交流的探索性和创造性,在运用知识解决问题时体验成功的喜悦.教学重难点【重点】有理数加法法则.【难点】异号两数相加的法则.教学过程一、复习导入1.师:同学们,在小学里我们已经学过了正整数、正分数(包括正小数)及数0的四则运算.现在引入了负数,数的范围扩大到了有理数,那么如何进行有理数的运算呢?2.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题得不到确定的答案,因为问题中并未指出行走方向.二、讲授新课1.发现、总结:师:同学们,我们必须把问题说得详细些,并规定向东为正,向西为负.(1)若两次都是向东走,很明显,一共向东走了50米,写成算术就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处.这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(-20)+(-30)=-50.思考:还有哪些可能情形?你能把问题补充完整吗?(3)若第一次向东走20米,第二次向西走30米.我们先在数轴上表示如图:写成算式是(+20)+(-30)=-10,即这位同学位于原来位置的西方10米处.(4)若第一次向西走20米,第二次向东走30米,写成算式是:(-20)+(+30)=(),即这位同学位于原来位置的()方()米处.后两种情形中两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次:你能发现和与两个加数的符号和绝对值之间有什么关系吗?(+4)+(-3)=();(+3)+(-10)=();(-5)+(+7)=();(-6)+2=().再看两种特殊情形:(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(-30)+(+30)=().(6)第一次向西走了30米,第二次没走.写成算式是:(-30)+0=().我们不难得出它们的结果.2.概括.师:综合以上情形,我们得到有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不等的异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数.注意:一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同.三、例题讲解教师出示例题.【例1】计算:(1)(+2)+(-11);(2)(+20)+(+12);(3)(-1)+(-); (4)(-3.4)+4.3.【答案】(1)原式=-(11-2)=-9;(2)原式=+(20+12)=+32=32;(3)原式=-(1+)=-2;(4)原式=+(4.3-3.4)=0.9.【例2】足球循环赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数.分析(1)每队进球总数记为正,失球总数记为负,这两个数的和为该队的净胜球数.(2)比赛双方中一方的进球数也是对方的失球数.三场比赛中,红队共进球,失球,净胜数为+=;黄队共进球,失球,净胜球数为+=;蓝队共进球,失球,净胜球数为+=.四、巩固练习课本P19练习的第1、2题.【答案】略五、课堂小结1.这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.2.应用有理数加法法则进行计算时,要同时注意确定“和”的符号与计算“和”的绝对值这两个问题.第2课时有理数的加法(2)教学目标【知识与技能】理解加法运算律在加法运算中的作用,能运用加法运算律简化加法运算.【过程与方法】通过灵活运用加法运算律优化运算过程,培养学生观察、比较、归纳及运算的能力.【情感、态度与价值观】在优化运算的过程中体验成功的喜悦,培养仔细观察的学习习惯.教学重难点【重点】有理数加法运算律.【难点】灵活运用运算律使运算简便.教学过程一、复习导入师:上节课我们学习了什么,一起来复习一下吧!1.指名学生叙述有理数加法法则.2.计算:(1)6.18+(-9.18);(2)(+5)+(-12);(3)3.75+2.5+(-2.5);(4)+(-)+(-)+(-).说明:通过练习巩固加法法则,突出计算简化问题,引出新课.二、讲授新课1.发现、总结.(1)提出问题:师:同学们,在小学里,我们曾经学过加法的交换律、结合律,这两个运算律在有理数加法运算中也是成立的吗?(2)探索:任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个算式的运算结果.□+○和○+□任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个算式的运算结果.(□+○)+◇和□+(○+◇)(3)总结:让学生总结出加法的交换律、结合律.加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c).这样,多个有理数相加,可以任意交换加数的位置,也可先把其中的几个数相加,使计算简化.三、例题讲解教师板书例题并和学生共同完成.【例1】计算:(1)(+26)+(-18)+5+(-16);。

相关文档
最新文档