2020届四川省乐山市高中高三第三次调查研究考试数学(理)试题

合集下载

四川省乐山市高中2020届高三第三次调查研究考试数学(理)试题(解析版)

四川省乐山市高中2020届高三第三次调查研究考试数学(理)试题(解析版)

乐山市高中2020届第三次调查研究考试理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2,0,1M =-,{}23N x x =∈-<<N ,则M N ⋃=( ). A .{}2,1,0,1,2,3-- B .{}2,0,1,2,3- C .{}2,0,1,2-D .{}2,1,0,1,2--2.已知复数()1i z a a =+-(i 为虚数单位,a ∈R ),则“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()f x 是奇函数,且0x >时,()2π1sin 2f x x x =+,则()2f -=( ). A .2B .2-C .3D .3-4.已知a =344log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系是( ).A .a b c >>B .a c b >>C .b c a >>D .c a b >>5.已知向量a 与向量()4,6m =平行,()5,1b =-,且14a b ⋅=,则a =( ). A.⎝⎭B.⎛ ⎝⎭C .()4,6--D .()4,66.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的22⨯列联表:附表及公式:()()()()()22n ad cb K a b c d a c b d -=++++,n a b c d =+++()2P K k >0.050 0.010 0.001k 3.841 6.635 10.828则下列结论正确的是( ).A .在犯错的概率不超过1%的前提下,认为“支付方式与性别有关”B .在犯错的概率超过1%的前提下,认为“支付方式与性别有关”C .有99.9%以上的把握认为“支付方式与性别有关”D .有99.9%以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 为1,2,4,则输出的S 的值为( ).A .4B .10C .11D .128.数列{}n a 中,已知对任意n *∈N ,1231n n a a a +++=-,则22212n a a a +++=( ).A .912n -B .912n +C .922n -D .922n +9.双曲线()222210,0x y a b a b-=>>的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点()2,1在“右”区域内,则双曲线的离心率e 的取值范围是( ).A .51,2⎛⎫⎪ ⎪⎝⎭B .51,4⎛⎫⎪⎝⎭C .5,2⎛⎫+∞ ⎪ ⎪⎝⎭D .5,4⎛⎫+∞⎪⎝⎭10.已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC △的面积为()S θ,则函数()S θ的图象大致是( ).A .B .C .D .11.已知A BCD -是球O 的内接三棱锥,球O 的半径为2,且4AC =,2BD =,π3ACD ACB ∠=∠=,则点A 到平面BCD 的距离为(). A .263B .463C .233D .43312.已知函数()π4sin 26f x x ⎛⎫=-⎪⎝⎭,43π0,3x ⎡⎤∈⎢⎥⎣⎦,若函数()()3F x f x =-的所有零点依次记为1x ,2x ,3x ,…,n x ,且123n x x x x <<<<,则1231222n n x x x x x -+++++=( ).A .1190π3B .1192π3C .398πD .1196π3二、填空题:13.已知函数()()3211f x x xf '=+-,则函数()f x 在()()1,1f 处的切线方程为______.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为______.15.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,A 、B 分别为C 的右顶点和上顶点,直线FB 与直线x a =的交点为M ,若2BM FB =,且AFM △的面积为932,则椭圆的标准方程为______. 16.我们把一系列向量()1,2,,i a i n =按次序排列成一列,称之为向量列,记作{}i a .已知向量列{}i a 满足:()11,1a =,()()()11111,,22n n n n n n n a x y x y x y n ----==-+≥,设n θ表示向量1n a -与n a 的夹角,若2πn n n b θ=,对于任意正整数n ()1221111log 122n n n n a b b b +++>-恒成立,则实数a 的取值范围是______.三、解答题:解答应写出文字说明、证明过程或推演步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据需求作答. (一)必考题17.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin C B A A C -=-.(1)求角B 的值;(2)若7a c +=,13b =,求ABC △的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI ),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI 的平均值为依据播报该市的空气质量.(1)若某日播报的AQI 为119,已知轻度污染区AQI 平均值为70,中度污染区AQI 平均值为115,求重试污染区AQI 平均值;(2)如图是2018年11月份30天的AQI 的频率分布直方图,11月份仅有1天AQI 在[)140,150内.①某校参照官方公布的AQI ,如果周日AQI 小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;②环卫部门从11月份AQI 不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI 值不小于200的天数的分布列和数学期望.19.如图,在直三棱柱111ABC A B C -中,1AB AC AA ==,2π3BAC ∠=,E 、F 分别为AB 、11B C 的中点,G 为线段1CC 上的动点.(1)证明://EF 平面11AAC C ;(2)当二面角11F AG C --的余弦值为2114时,证明:1BF A G ⊥. 20.已知抛物线2:4C y x =,过点()2,0P 的直线与抛物线C 相交于M 、N 两点. (1)若点Q 是点P 关于坐标原点O 的对称点,求MQN △面积的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以PM 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由. 21.已知函数()2ln 2f x x x ax =+-.(1)讨论函数()f x 的单调性;(2)当1a =时,判断并说明函数()()3cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间[](),,m n m n ∈∈Z Z 内,求n m -的最小值.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系Ox . (1)求曲线C 的极坐标方程;(2)已知A 、B 是曲线C 上任意两点,且π4AOB ∠=,求OAB △面积的最大值. 23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足3a b c ++=.(13≤; (2)证明:9412ab bc ac abc ++≥.参考答案1.D【解析】{}{}231,0,1,2N x x =∈-<<=-N ,故{}2,1,0,1,2M N ⋃=--,故选D . 2.B【解析】在复平面内z 所对应的点在第一象限,有0a >,10a ->,得01a <<, 故“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的必要不充分条件,故选B . 3.D【解析】因为()f x 是奇函数,所以()()π122sin 4322f f ⎡⎤-=-=-+⨯=-⎢⎥⎣⎦,故选D . 4.B【解析】由题得140661a ==>=,33444log log 1021b =<=,2.9110133c ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,故有a c b >>,故选B . 5.C【解析】因为向量a 与向量()4,6m =平行,可设3,2a k k ⎛⎫= ⎪⎝⎭, 由14a b ⋅=可得35142k k -+=,得4k =-, 所以()4,6a =--,故选C . 6.C【解析】由22⨯列联表得到40a =,10b =,25c =,25d =,代入()()()()()22n ad cb K a b c d a c b d -=++++,解得()2210010002509.8950506535K ⨯-=≈⨯⨯⨯,因为6.6359.8910.828<<,所以有99%以上的把握认为“支付方式与性别有关”,故选C . 7.D【解析】输入1a =时,0211s =⨯+=,011k =+=,此时12k =>不成立; 输入2a =时,1224s =⨯+=,112k =+=,此时22k =>不成立; 输入4a =时,42412s =⨯+=,213k =+=,此时32k =>成立; 输出的S 的值为12,故选D . 8.A【解析】由1231n n a a a +++=-,当2n ≥时,112131n n a a a --+++=-,两式相减得()1232n n a n -=⨯≥,又12a =,满足123n n a -=⨯,则123n n a -=⨯.所以数列{}n a 是首项为12a =,公比3q =的等比数列,则{}2n a 是首项为214a =,29q =的等比数列,故()2221241991192n nna a a--+++==-,故选A.9.C【解析】双曲线的渐近线为by xa=±,且“右”区域是由不等式组by xaby xa⎧<⎪⎪⎨⎪>-⎪⎩所确定,又点()2,1在“右”区域内,于是有21ba<,即12ba>,因此双曲线的离心率251,bea⎛⎫⎛⎫=+∈+∞⎪⎪ ⎪⎝⎭⎝⎭,故选C.10.A【解析】由题知点()2,0A,点()2cos,2sinBθθ,则()()1122cos2sin022S AC BCθθθ=⨯⋅=-⋅≥,故排除A、B,又因为当3π4θ=时,()2Sθ>,故选A.11.B【解析】由题意知A,B,C,D四点都落在球面上,且AC为直径,所以AC的中点即为球心O,所以π2ADC ABC∠=∠=,因为4AC=,π3ACD ACB∠=∠=,所以2BC CD==,又知2BD=,所以BCD△为正三角形,取BCD△中心H,则OH⊥面BCD,所以OH HC⊥,233CH=,因为2OC=,所以263OH=.又因为AC中点为O,所以点A 到平面BCD 的距离为点O 到平面BCD 的2倍,即距离为3,故选B . 12.A【解析】函数()π4sin 26f x x ⎛⎫=- ⎪⎝⎭, 令ππ2π62x k -=+,得1ππ23x k =+,k ∈Z , 即()f x 的对称轴方程为1ππ23x k =+,k ∈Z ,因为()f x 的最小正周期为πT =,43π03x ≤≤,当0k =时,可得y 轴右侧第一条对称轴为π3x =,当28k =时,43π3x =,所以()f x 在43π0,3⎡⎤⎢⎥⎣⎦上有28条对称轴, 根据正弦函数性质可知,函数()π4sin 26f x x ⎛⎫== ⎪⎝⎭与3y =的交点有29个, 且1x ,2x 关于π3对称,2x ,3x 关于5π6对称,..., 即122π26x x +=⨯,235π26x x +=⨯, (282983)26x x +=⨯,以上各式相加得:12328292π5π83π1190π22226663x x x x x ⎛⎫+++++=+++=⎪⎝⎭, 故选A .13.330x y ++=【解析】因为()()2321f x x f ''=+,则()()1321f f ''=+,得()13f '=-,则()()11236f =+⨯-=-,故切线方程为()()631y x --=--,即330x y ++=. 14.38【解析】设拼成的正方形得面积为1, 由图知,最大的三角形面积为14,最小的三角形面积为116, 平行四边形的面积是最小三角形面积的2倍,由此可得阴影部分的面积为38,则所求的概率为38. 15.22143x y += 【解析】由2BM FB =,且//OB AM (O 为坐标原点), 得13OF OB AF AM ==,所以2a c =,3AM b =,b =, 又因为()1322AFM S a c b =+⨯=△,解得1c =, 所以2a =,b =22143x y +=. 16.()1 【解析】11cos n n n n na a a a θ--⋅=()()()11111111,,n n n n n n x y x y x y ------⎛⎫⋅-+ ⎪=221111n n x y --+==,所以π4n θ=,故24n n b =21222122n b n n n+=+++++, 令()222122f n n n n=+++++, 则()()()22222212321122f n f n n n n n n n ⎛⎫⎛⎫+-=+++-+++⎪ ⎪ ⎪+++++⎝⎭⎝⎭ 2202122n n =->++, 所以()f n 单调递增,所以()()min 11f n f ==,则()11log 122n a >-, 因为120a ->,所以102a <<,则212a a ->,解得11a -<<-综上所述,()1a ∈.17.【解析】(1)由222cos cos sin sin sin C B A A C -=-得222sin sin sin sin sin B C A A C -=-,由正弦定理得222b c a ac -=-,即222a c b ac +-=,所以2221cos 22a cb B ac +-==, 因为0πB <<,所以π3B =. (2)由(1)得222222cos b a c ac B a c ac =+-=+-, 即2213a c ac +-=,所以()2313a c ac +-=,即12ac =,所以11sin 1222ABC S ac B ==⨯= 18.解:(1)设重度污染区AQI 平均值为x , 则119970211543x ⨯=⨯+⨯+,解得157x =. (2)①AQI 在[)140,170上的有830308900⨯⨯=天, AQI 在[)170,200上的有530305900⨯⨯=天, AQI 在[)200,230上的有230302900⨯⨯=天,所以11月份AQI 不小于150天的共852114++-=天. 即能参加户外活动的概率为14813015P =-=. ②AQI 不小于170天的共7天,不小于200天的共2天,x 的所有可能取值为0,1,2.所以x 的分布列为则240127777EX =⨯+⨯+⨯=. 19.【解析】(1)证明:取BC 的中点M ,连接EM 、FM ,因为E 、F 分别为AB 、11B C 的中点,所以//EM AC ,1//MF CC ,EM MF M ⋂=,1AC CC C ⋂=,所以平面//EMF 平面11AAC C ,又因为EF ⊂平面EMF ,EF ⊄平面11AAC C ,所以//EF 平面11AAC C .(2)不妨设11AB AC AA ===, 由余弦定理得113B C =,如图建立空间直角坐标系1A xyz -, 设()0,1,G h ,131,022B ⎛⎫- ⎪ ⎪⎝⎭,31,,122B ⎛⎫- ⎪ ⎪⎝⎭,()1/C 0,1,0EF , 所以31,044F ⎛⎫ ⎪ ⎪⎝⎭,设平面1A FG 的一个法向量为(),,m x y z =, 则()10,1,AG h =,131,04A F ⎛⎫= ⎪ ⎪⎝⎭,则1100A G m A F m ⎧⋅=⎪⎨⋅=⎪⎩,得031044y hz x y +=⎧+=⎩, 可取(,33m h h =-,易知平面11AGC 的一个法向量为()1,0,0n =,所以2cos ,144m n m n m n h ⋅===⋅,解得34h =,此时3,14BF ⎛⎫=-- ⎪ ⎪⎝⎭,130,1,4A G ⎛⎫= ⎪⎝⎭, 所以10BF AG ⋅=,即1BF A G ⊥. 20.【解析】依题意,点Q 的坐标为()2,0Q -,可设()11,M x y ,()22,N x y , 直线MN 的方程为2x my =+,联立224x my y x=+⎧⎨=⎩,得2480y my --=, 则124y y m +=,128y y ⋅=-,所以12142MQN S y y =⨯⨯-==≥△,即当0m =时,MQN △面积的最小值为(2)假设满足条件的直线l 存在,其方程为x a =,则以PM 为直径的圆的方程为()()()1120x x x y y y --+-=,将直线x a =代入,得()()21120y y y a a x -+--=, 则()()()()2111424120y a a x a x a a ∆=---=-+->⎡⎤⎣⎦,设直线l 与以PM 为直径的圆的交点为()3,A a y ,()4,B a y ,则341y y y +=,()()3412y y a a x ⋅=--,于是有34AB y y =-==,当10a -=,即1a =时,2AB =为定值.故满足条件的直线l 存在,其方程为1x =.21.【解析】(1)()2ln 2f x x x ax =+-的定义域为()0,+∞, ()2122122ax x f x ax x x-++'=+-=,当0a =时,()210x f x x+'=>,所以()f x 在()0,+∞上单调递增; 当0a <时,所以()f x 在()0,+∞上单调递增;当0a >时,令22210ax a -++=,得x =x =.当10,2x a ⎛+∈ ⎝⎭时,()0f x '>,当1,2x a ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时,()0f x '<,所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 综上所述,当0a ≤时,()f x 在()0,+∞上单调递增.当0a >时,()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. (2)当1a =时,()2ln 23cos g x x x x x =+--, 当(]0,1x ∈时,()2ln 2f x x x x =+-单调递增, ()()11f x f ≤=,π33cos 3cos13cos32x ≥>=, 则()0g x <,故不存在零点. 当π1,2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+, ()122f x x x '=+-在π1,2⎛⎤ ⎥⎝⎦上单调递减, 所以()π22π2πf x f ⎛⎫''≥=+-⎪⎝⎭,π33sin 3sin13sin 62x >>=, 所以()232π0π2g x '>+-+>,所以()g x 单调递增. 又()113cos10g =-<,2πππln π0224g ⎛⎫=+-> ⎪⎝⎭, 所以存在唯一的1π1,2x ⎛⎤∈ ⎥⎝⎦,使得()10g x =.当π,π2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+,()2123cos 0g x x x ''=--+<, 所以()g x '单调递减, 又π22π302πg ⎛⎫'=+-+> ⎪⎝⎭,()1π22π0πg '=+-<, 所以存在0π,π2x ⎛⎤∈⎥⎝⎦,使得()00g x '=, 当0π,2x x ⎛⎤∈ ⎥⎝⎦,()00g x '>,()g x 单调递增; 当(]0,πx x ∈,()00g x '<,()g x 单调递减; 又π02g ⎛⎫> ⎪⎝⎭,()2πln π2ππ30g =+-+>. 因此,()0g x >在π,π2x ⎛⎤∈⎥⎝⎦上恒成立,故不存在零点. 当(]π,4x ∈时,()2123cos 0g x x x''=--+<, 所以()g x '单调递减, 因为()π0g '<,所以()0g x '<,()g x 单调递减.又()π0g >,()4ln 48163cos40g =+--<,所以存在唯一的(]2π,4x ∈,使得()20g x =,当()4,x ∈+∞时,()22123320g x x x x x x <-+-+=-++<,故不存在零点. 综上,()g x 存在两个零点1x ,2x ,且1π1,2x ⎛⎤∈ ⎥⎝⎦,(]2π,4x ∈, 因此n m -的最小值为3.22.【解析】(1)消去参数α,得到曲线C 的标准方程为()2224x y -+=, 故曲线C 的极坐标方程为4cos ρθ=.(2)在极坐标系Ox 中,设()10,A ρθ,20π,4B ρθ⎛⎫+ ⎪⎝⎭,其中10ρ>,20ρ>,0ππ22θ-<<, 由(1)知:104cos ρθ=,20π4cos 4ρθ⎛⎫=+⎪⎝⎭,则OAB △的面积12001ππsin cos 244S ρρθθ⎛⎫==+ ⎪⎝⎭, 即2000004cos 4sin cos 2cos 22sin 2S θθθθθ=-=-+0π2624θ⎛⎫=++ ⎪⎝⎭,当0π8θ=-时,max 2S =,所以OAB △面积的最大值为2.23.【解析】(1)证明:因为a ,b 为正数,所以a b +≥,同理可得b c +≥a c +≥,则()2a b c ++≥当且仅当1a b c ===时,等号成立.3≤.(2)证明:要证9412ab bc ac abc ++≥, 只要证14912a b c++≥即可, 即证()14936a b c a b c ⎛⎫++++≥⎪⎝⎭, 即证499414936b a a c b c a b c a c b++++++++≥, 即证499422b a a c b c a b c a c b+++++≥,因为44a b b a +≥=,96a c c a +≥=,9412b c c b+≥=, 所以499422b a a c b c a b c a c b+++++≥, 当且仅当12a =,1b =,32c =时等号成立,得证.。

四川省乐山市高考数学三模试卷(理科)含答案解析

四川省乐山市高考数学三模试卷(理科)含答案解析

四川省乐山市高考数学三模试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|2x≥4},集合B={x|y=lg(x﹣1)},则A∩B=()A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)2.复数的共轭复数=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q) C.(¬p)∧(¬q)D.p∨q4.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ35.如图,已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,=,=,则=()A.﹣B.﹣C. +D.+6.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:x1516181922y10298115115120由表中样本数据求得回归方程为y=bx+a,则点(a,b)与直线x+18y=100的位置关系是()A.a+18b<100 B.a+18b>100C.a+18b=100 D.a+18b与100的大小无法确定7.如图是秦九韶算法的一个程序框图,则输出的S为()A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值8.已知数列{a n}的前n项和为S n=2a n﹣1,则满足的最大正整数n的值为()A.2 B.3 C.4 D.59.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆面积9π,则p=()A.2 B.4 C.3 D.10.多面体MN﹣ABCD的底面ABCD矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.611.函数f(x)=(ω>0),|φ|<)的部分图象如图所示,则f(π)=()A.4 B.2C.2 D.12.已知曲线f(x)=e2x﹣2e x+ax﹣1存在两条斜率为3的切线,则实数a的取值范围为()A.(3,+∞) B.(3,)C.(﹣∞,)D.(0,3)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的前n项和为S n,若a3=9﹣a6,则S8=.14.若直线ax+y﹣3=0与2x﹣y+2=0垂直,则二项式展开式中x3的系数为.15.定义在R上的函数f(x)满足f(x)=则f()的值为.16.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t使得f(x+t)=tf(x)恒成立,则称y=f(x)是一个“关于t的函数”,现有下列“关于t函数”的结论:①常数函数是“关于t函数”;②正比例函数必是一个“关于t函数”;③“关于2函数”至少有一个零点;④f(x)=是一个“关于t函数”.其中正确结论的序号是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(12分)如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣,).(Ⅰ)若sinα=,求cos∠POQ;(Ⅱ)求△OPQ面积的最大值.18.(12分)某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.19.(12分)如图,在三棱锥P﹣ABC中,F、G、H分别是PC、AB、BC的中点,PA⊥平面ABC,PA=AB=AC=2,二面角B﹣PA﹣C为120°.(I)证明:FG⊥AH;(Ⅱ)求二面角A﹣CP﹣B的余弦值.20.(12分)设椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.21.(12分)已知函数f(x)=ax2﹣2lnx,a∈R.(1)求函数f(x)的单调区间;(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.四、请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.22.(10分)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)A,B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O 为坐标原点).23.设函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2﹣3t在[0,1]上无解,求实数t的取值范围.四川省乐山市高考数学三模试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|2x≥4},集合B={x|y=lg(x﹣1)},则A∩B=()A.[1,2)B.(1,2]C.[2,+∞)D.[1,+∞)【考点】1E:交集及其运算.【分析】先分别求出集合A和集合B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|2x≥4}={x|x≥2},集合B={x|y=lg(x﹣1)}={x>1},∴A∩B={x|x≥2}=[2,+∞).故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.复数的共轭复数=()A.1+i B.﹣1﹣i C.﹣1+i D.1﹣i【考点】A5:复数代数形式的乘除运算;A2:复数的基本概念.【分析】根据所给的复数的表示形式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理出最简形式,把虚部的符号变成相反的符号得到结果.【解答】解:∵==1+i∴=1﹣i故选D.【点评】本题考查复数的代数形式的运算和复数的基本概念,本题解题的关键是整理出复数的代数形式的最简形式,本题是一个基础题.3.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.(¬p)∨(¬q)B.p∨(¬q) C.(¬p)∧(¬q)D.p∨q【考点】25:四种命题间的逆否关系.【分析】由命题P和命题q写出对应的¬p和¬q,则命题“至少有一位学员没有降落在指定范围”即可得到表示.【解答】解:命题p是“甲降落在指定范围”,则¬p是“甲没降落在指定范围”,q是“乙降落在指定范围”,则¬q是“乙没降落在指定范围”,命题“至少有一位学员没有降落在指定范围”包括“甲降落在指定范围,乙没降落在指定范围”或“甲没降落在指定范围,乙降落在指定范围”或“甲没降落在指定范围,乙没降落在指定范围”三种情况.所以命题“至少有一位学员没有降落在指定范围”可表示为(¬p)V(¬q).故选A.【点评】本题考查了复合命题的真假,解答的关键是熟记复合命题的真值表,是基础题.4.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ3【考点】CP:正态分布曲线的特点及曲线所表示的意义.【分析】正态曲线关于x=μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果.【解答】解:∵正态曲线关于x=μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,故选D.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.5.如图,已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,=,=,则=()A.﹣B.﹣C. +D.+【考点】9H:平面向量的基本定理及其意义.【分析】直接利用向量的基本定理判断选项即可.【解答】解:如图:连结CD,OD,∵已知AB是圆O的直径,点C、D是半圆弧的两个三等分点,∴AODC是平行四边形,∴=.故选:D.【点评】本题考查平面向量基本定理的应用,是基础题.6.经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系.对某小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:x1516181922y10298115115120由表中样本数据求得回归方程为y=bx+a,则点(a,b)与直线x+18y=100的位置关系是()A.a+18b<100 B.a+18b>100C.a+18b=100 D.a+18b与100的大小无法确定【考点】BK:线性回归方程.【分析】由样本数据可得,,,利用公式,求出b,a,点(a,b)代入x+18y,求出值与100比较即可得到选项.【解答】解:由题意,=(15+16+18+19+22)=18,=(102+98+115+115+120)=110,xiyi=9993,5=9900,xi2=1650,n()2=5•324=1620,∴b==3.1,∴a=110﹣3.1×18=54.2,∵点(a,b)代入x+18y,∴54.2+18×3.1=110>100.即a+18b>100故选:B.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.7.如图是秦九韶算法的一个程序框图,则输出的S为()A.a1+x0(a3+x0(a0+a2x0))的值B.a3+x0(a2+x0(a1+a0x0))的值C.a0+x0(a1+x0(a2+a3x0))的值D.a2+x0(a0+x0(a3+a1x0))的值【考点】EF:程序框图.【分析】模拟执行程序框图,根据秦九韶算法即可得解.【解答】解:由秦九韶算法,S=a0+x0(a1+x0(a2+a3x0)),故选:C.【点评】本小题主要通过程序框图的理解考查学生的逻辑推理能力,同时考查学生对算法思想的理解与剖析,本题特殊利用秦九韶算法,使学生更加深刻地认识中国优秀的传统文化,属于基础题.8.已知数列{a n}的前n项和为S n=2a n﹣1,则满足的最大正整数n的值为()A.2 B.3 C.4 D.5【考点】8H:数列递推式.,化为:【分析】S n=2a n﹣1,n=1时,a1=2a1﹣1,解得a1.n≥2时,a n=S n﹣S n﹣1a n=2a n,利用等比数列的通项公式可得:a n=2n﹣1.化为:2n﹣1≤2n,即2n ﹣1≤4n.验证n=1,2,3,4时都成立.n≥5时,2n=(1+1)n,利用二项式定理展开即可得出.2n>4n.【解答】解:S n=2a n﹣1,n=1时,a1=2a1﹣1,解得a1=1.n≥2时,a n=S n﹣S n﹣1=2a n﹣1﹣(2a n﹣1﹣1),化为:a n=2a n﹣1,∴数列{a n}是等比数列,公比为2.a n=2n﹣1.化为:2n﹣1≤2n,即2n≤4n.n=1,2,3,4时都成立.n≥5时,2n=(1+1)n=++…+++≥2(+)=n2+n+2,下面证明:n2+n+2>4n,作差:n2+n+2﹣4n=n2﹣3n+2=(n﹣1)(n﹣2)>0,∴n2+n+2>4n,则满足的最大正整数n的值为4.故答案为:C.【点评】本题考查了数列递推关系、等比数列的通项公式、二项式定理的应用,考查了推理能力与计算能力,属于中档题.9.在平面直角坐标系xOy中,抛物线C:y2=2px(p>0)的焦点为F,M是抛物线C上的点,若△OFM的外接圆与抛物线C的准线相切,且该圆面积9π,则p=()A.2 B.4 C.3 D.【考点】K8:抛物线的简单性质.【分析】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.【解答】解:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径∵圆面积为9π,∴圆的半径为3又∵圆心在OF的垂直平分线上,|OF|=,∴+=3∴p=4故选:B.【点评】本题考查圆与圆锥曲线的综合,考查学生的计算能力,属于基础题.10.多面体MN﹣ABCD的底面ABCD矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则该多面体的体积为()A.B.C.D.6【考点】L!:由三视图求面积、体积.【分析】利用三视图的数据,把几何体分割为2个三棱锥1个三棱柱,求解体积即可.【解答】解:用割补法可把几何体分割成三部分,如图:棱锥的高为2,底面边长为4,2的矩形,棱柱的高为2.可得,故选:C.【点评】本题考查三视图复原几何体的体积的求法,考查计算能力.11.函数f(x)=(ω>0),|φ|<)的部分图象如图所示,则f(π)=()A.4 B.2C.2 D.【考点】35:函数的图象与图象变化;3T:函数的值.【分析】由图象的顶点坐标求出A,根据周期求得ω,再由sin[2(﹣)+φ]=0以及φ的范围求出φ的值,从而得到函数的解析式,进而求得f(π)的值.【解答】解:由函数的图象可得A=2,根据半个周期=•=,解得ω=2.由图象可得当x=﹣时,函数无意义,即函数的分母等于零,即sin[2(﹣)+φ]=0.再由|φ|<,可得φ=,故函数f(x)=,∴f(π)=4,故选A.【点评】本小题主要考查函数与函数的图象,求函数的值,属于基础题.12.已知曲线f(x)=e2x﹣2e x+ax﹣1存在两条斜率为3的切线,则实数a的取值范围为()A.(3,+∞) B.(3,)C.(﹣∞,)D.(0,3)【考点】6H:利用导数研究曲线上某点切线方程.【分析】求得f(x)的导数,由题意可得2e2x﹣2e x+a=3的解有两个,运用求根公式和指数函数的值域,解不等式可得a的范围.【解答】解:f(x)=e2x﹣2e x+ax﹣1的导数为f′(x)=2e2x﹣2e x+a,由题意可得2e2x﹣2e x+a=3的解有两个,即有(e x﹣)2=,即为e x=+或e x=﹣,即有7﹣2a>0且7﹣2a<1,解得3<a<.故选B.【点评】本题考查导数的运用:求切线的斜率,考查方程的解的个数问题的解法,注意运用配方和二次方程求根公式,以及指数函数的值域,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等差数列{a n}的前n项和为S n,若a3=9﹣a6,则S8=72.【考点】85:等差数列的前n项和.【分析】可得a1+a8=18,代入求和公式计算可得.【解答】解:由题意可得a3+a6=18,由等差数列的性质可得a1+a8=18故S8=(a1+a8)=4×18=72故答案为:72【点评】本题考查等差数列的求和公式和性质,属基础题.14.若直线ax+y﹣3=0与2x﹣y+2=0垂直,则二项式展开式中x3的系数为﹣80.【考点】DB:二项式系数的性质;IJ:直线的一般式方程与直线的垂直关系.【分析】根据两直线垂直求出a的值,再利用二项式展开式的通项公式求出展开式中x3的系数.【解答】解:直线ax+y﹣3=0与2x﹣y+2=0垂直,∴2a+1×(﹣1)=0,解得a=;∴二项式(﹣)5 =(2x﹣)5展开式的通项公式为T r=•(2x)5﹣r•=(﹣1)r•25﹣r••x5﹣2r,+1令5﹣2r=3,求得r=1,∴展开式中x3的系数为﹣1•24•=﹣80.故答案为:﹣80.【点评】本题主要考查了两条直线垂直以及二项式定理的应用问题,是基础题.15.定义在R上的函数f(x)满足f(x)=则f()的值为﹣1.【考点】3T:函数的值.【分析】根据已知分析出当x∈N时,函数值以6为周期,呈现周期性变化,可得答案.【解答】解:∵定义在R上的函数f(x)满足f(x)=,∴f(﹣1)=1,f(0)=0,f(1)=f(0)﹣f(﹣1)=﹣1,f(2)=f(1)﹣f(0)=﹣1,f(3)=f(2)﹣f(1)=0,f(4)=f(3)﹣f(2)=1,f(5)=f(4)﹣f(3)=1,f(6)=f(5)﹣f(4)=0,f(7)=f(6)﹣f(5)=﹣1,故当x∈N时,函数值以6为周期,呈现周期性变化,故f()=f(1)=﹣1,故答案为:﹣1.【点评】本题考查的知识点是分段函数的应用,函数求值,根据已知分析出当x ∈N时,函数值以6为周期,呈现周期性变化,是解答的关键.16.若函数y=f(x)在实数集R上的图象是连续不断的,且对任意实数x存在常数t使得f(x+t)=tf(x)恒成立,则称y=f(x)是一个“关于t的函数”,现有下列“关于t函数”的结论:①常数函数是“关于t函数”;②正比例函数必是一个“关于t函数”;③“关于2函数”至少有一个零点;④f(x)=是一个“关于t函数”.其中正确结论的序号是①④.【考点】3S:函数的连续性.【分析】根据抽象函数的定义结合“关于t函数”的定义和性质分别进行判断即可.【解答】解:①对任一常数函数f(x)=a,存在t=1,有f(1+x)=f(x)=a,即1•f(x)=a,所以有f(1+x)=1•f(x),∴常数函数是“关于t函数”,故①正确,②正比例函数必是一个“关于t函数”,设f(x)=kx(k≠0),存在t使得f(t+x)=tf(x),即存在t使得k(x+t)=tkx,也就是t=1且kt=0,此方程无解,故②不正确;③“关于2函数”为f(2+x)=2•f(x),当函数f(x)不恒为0时,有=2>0,故f(x+2)与f(x)同号.∴y=f(x)图象与x轴无交点,即无零点.故③错误,④对于f(x)=()x设存在t使得f(t+x)=tf(x),即存在t使得()t+x=t()x,也就是存在t使得()t()x=t()x,也就是存在t使得()t=t,此方程有解,故④正确.故正确是①④,故答案为①④.【点评】本题主要考查抽象函数的应用,利用函数的定义和性质是解决本题的关键.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤17.(12分)(•乐山三模)如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线y=x(x≥0)交于点Q,与x轴交于点M.记∠MOP=α,且α∈(﹣,).(Ⅰ)若sinα=,求cos∠POQ;(Ⅱ)求△OPQ面积的最大值.【考点】GI:三角函数的化简求值;G9:任意角的三角函数的定义.【分析】﹙Ⅰ﹚同角三角的基本关系求得cosα的值,再利用两角差的余弦公式求得cos∠POQ的值.(Ⅱ)利用用割补法求三角形POQ的面积,再利用正弦函数的值域,求得它的最值.【解答】解:﹙Ⅰ﹚因为,且,所以.所以.(Ⅱ)由三角函数定义,得P(cosα,sinα),从而,所以==.因为,所以当时,等号成立,所以△OPQ面积的最大值为.【点评】本题主要考查任意角三角函数的定义,正弦函数的值域,用割补法求三角形的面积,属于中档题.18.(12分)(•乐山三模)某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;BA:茎叶图;CC:列举法计算基本事件数及事件发生的概率;CG:离散型随机变量及其分布列.【分析】(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,由此能求出该顾客两次抽奖中恰有一次中奖的概率.(Ⅱ)X的可能取值为0,50,100,150,200,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,则P1+P2==,即中奖的概率为,∴该顾客两次抽奖中恰有一次中奖的概率为:P==.(Ⅱ)X的可能取值为0,50,100,150,200,P(X=0)=,P(X=50)==,P(X=100)==,P(X=150)==,P(X=200)==,∴X的分布列为:X050100 150200P∴EX==55(元).【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.19.(12分)(•乐山三模)如图,在三棱锥P﹣ABC中,F、G、H分别是PC、AB、BC的中点,PA⊥平面ABC,PA=AB=AC=2,二面角B﹣PA﹣C为120°.(I)证明:FG⊥AH;(Ⅱ)求二面角A﹣CP﹣B的余弦值.【考点】MT:二面角的平面角及求法;LO:空间中直线与直线之间的位置关系.【分析】(I)根据线面垂直的性质定理即可证明FG⊥AH;(Ⅱ)建立坐标系求出平面的法向量,利用向量法进行求解即可求二面角A﹣CP﹣B的余弦值.【解答】解:(I)设AC的中点是M,连接FM,GM,∵PF=FC,∴FM∥PA,∵PA⊥平面ABC,∴FM⊥平面ABC,∵AB=AC,H是BC的中点,∴AH⊥BC,∵GM∥BC,∴AH⊥GM,∴GF⊥AH(Ⅱ)建立以A为坐标原点的空间直角坐标系如图:则P(0,0,2),H(,,0),C(0,2,0),B(,﹣1,0),F(0,1,1),则平面PAC的法向量为=(1,0,0),设平面PBC的法向量为=(x,y,z),则,令z=1,则y=1,x=,即=(,1,1),cos<,>==,即二面角A﹣CP﹣B的余弦值是.【点评】本小题主要考查直线垂直的证明和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.20.(12分)(•乐山三模)设椭圆C: +=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且+=,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).(I)求椭圆C的方程;(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH 为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.【考点】KH:直线与圆锥曲线的综合问题;K3:椭圆的标准方程.【分析】(I)因为,知a,c的一个方程,再利用△AQF的外接圆与直线l相切得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;(II)设l的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用向量的坐标表示,利用基本不等式,即可求得m的取值范围.【解答】解:(I)因为,所以F1为F2Q中点.设Q的坐标为(﹣3c,0),因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2,且过A,Q,F2三点的圆的圆心为F1(﹣c,0),半径为2c因为该圆与直线l相切,所以,解得c=1,所以a=2,b=,所以所求椭圆方程为;(Ⅱ)设l的方程为y=kx+2(k>0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.设G(x1,y1),H(x2,y2),则x1+x2=﹣∴=(x1﹣m,y1)+(x2﹣m,y2)=(x1+x2﹣2m,y1+y2).=(x1+x2﹣2m,k(x1+x2)+4)又=(x2﹣x1,y2﹣y1)=(x2﹣x1,k(x2﹣x1)).由于菱形对角线互相垂直,则()•=0,所以(x2﹣x1)[(x1+x2)﹣2m]+k(x2﹣x1)[k(x1+x2)+4]=0.故(x2﹣x1)[(x1+x2)﹣2m+k2(x1+x2)+4k]=0.因为k>0,所以x2﹣x1≠0.所以(x1+x2)﹣2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k﹣2m=0.所以(1+k2)(﹣)+4k﹣2m=0.解得m=﹣,即因为k>,可以使,所以故存在满足题意的点P且m的取值范围是[).【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,解题时应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,属于中档题.21.(12分)(•乐山三模)已知函数f(x)=ax2﹣2lnx,a∈R.(1)求函数f(x)的单调区间;(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m ∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【分析】(1)先求函数的定义域,然后求导,利用导数大于0或导数小于0,得到关于x的不等式,解之即可;注意解不等式时要结合对应的函数图象来解;(2)因为对任意m∈[1,e],直线PM倾斜角都是钝角,所以问题转化为导数值小于0恒成立的问题,对于导函数小于0在区间[1,e]上恒成立,则问题转化为函数的最值问题,即函数f′(x)<0恒成立,通过化简最终转化为f(m)<1在区间[1,e]上恒成立,再通过研究f(x)在[1,e]上的单调性求最值,结合(Ⅰ)的结果即可解决问题.注意分类讨论的标准的确定.【解答】解:函数f(x)的定义域为(0,+∞),f′(x)=ax﹣=,(Ⅰ)当a<0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减;当a=0时,f′(x)=<0,故函数f(x)在(0,+∞)上单调递减;当a>0时,令f′(x)=0,结合x>0,解得,当x∈(0,)时,f′(x)<0,所以函数f(x)在(0,)上单调递减;当x∈(,+∞)时,f′(x)>0,所以函数f(x)在(,+∞)上单调递增;综上所述:当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减;当a>0时,函数f(x)在(0,)上单调递减,在(,+∞)上单调递增.(Ⅱ)因为对任意m∈[1,e],直线PM的倾斜角都是钝角,所以对任意m∈[1,e],直线PM的斜率小于0,即,所以f(m)<1,即f(x)在区间[1,e]上的最大值小于1.又因为f′(x)=ax﹣=,令g(x)=ax2﹣2,x∈[1,e](1)当a≤0时,由(Ⅰ)知f(x)在区间[1,e]上单调递减,所以f(x)的最大值为f(1)=<1,所以a<2,故a≤0符和题意;(2)当a>0时,令f′(x)=0,得,①当≤1,即a≥2时,f(x)在区间[1,e]上单调递增,所以函数f(x)的最大值f(e)=,解得a<,故无解;②当≥e,即时,f(x)在区间[1,e]上单调递减,函数f(x)的最大值为f(1)=<1,解得a<2,故0;③当,即时,函数f(x)在(1,)上单调递减;当x ∈(,e)上单调递增,故f(x)在区间x∈[1,e]上的最大值只能是f(1)或f(e),所以,即,故.综上所述a的取值范围.【点评】本题重点考查不等式恒成立问题的基本思路,一般是转化为函数的最值问题,然后从函数的单调性入手分析,注意本题第二问讨论时的标准,一般要借助于函数图象辅助来解决问题.一方面利用了数学结合思想,同时重点考查了分类讨论思想的应用,有一定难度.四、请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B铅笔在答题卡上把所选题目题号涂黑.22.(10分)(•乐山三模)已知曲线C1的参数方程是(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=4sinθ.(Ⅰ)求曲线C1与C2交点的平面直角坐标;(Ⅱ)A,B两点分别在曲线C1与C2上,当|AB|最大时,求△OAB的面积(O 为坐标原点).【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(Ⅰ)求出曲线C1,C1的平面直角坐标方程,把两式作差,得y=﹣x,代入x2+y2=4y,能求出曲线C1与C2交点的平面直角坐标.(Ⅱ)作出图形,由平面几何知识求出当|AB|最大时|AB|=2,O到AB 的距离为,由此能求出△OAB的面积.【解答】解:(Ⅰ)∵曲线C1的参数方程是(θ为参数),∴曲线C1的平面直角坐标方程为(x+2)2+y2=4.又由曲线C2的极坐标方程是ρ=4sinθ,得ρ2=4ρsinθ,∴x2+y2=4y,把两式作差,得y=﹣x,代入x2+y2=4y,得2x2+4x=0,解得或,∴曲线C1与C2交点的平面直角坐标为(0,0),(﹣2,2).(Ⅱ)如图,由平面几何知识可知:当A,C1,C2,B依次排列且共线时,|AB|最大,此时|AB|=2,O到AB的距离为,∴△OAB的面积为S=.【点评】本题考查两曲线交点的平面直角坐标的求法,考查三角形面积的求法,是中档题,解题时要认真审题,注意参数方程、直角坐标方程、极坐标方程间的相互转化及应用.23.(•乐山三模)设函数f(x)=|2x﹣1|﹣|x+2|.(1)求不等式f(x)≥3的解集;(2)若关于x的不等式f(x)≥t2﹣3t在[0,1]上无解,求实数t的取值范围.【考点】R5:绝对值不等式的解法.【分析】(1)通过对x范围的分类讨论,去掉绝对值符号,可得f(x)=,再解不等式f(x)≥3即可求得其解集;(2)当x∈[0,1]时,易求f(x)max=﹣1,从而解不等式t2﹣3t>﹣1即可求得实数t的取值范围.【解答】解:(1)∵f(x)=,∴原不等式转化为或或,解得:x≥6或﹣2≤x≤﹣或x<﹣2,∴原不等式的解集为:(﹣∞,﹣]∪[6,+∞);(2)只要f(x)max<t2﹣3t,由(1)知,当x∈[0,1]时,f(x)max=﹣1,∴t2﹣3t>﹣1,解得:t>或t<.∴实数t的取值范围为(﹣∞,)∪(,+∞).【点评】本题考查绝对值不等式的解法,通过对x范围的分类讨论,去掉绝对值符号是关键,考查转化思想与运算求解能力,属于中档题.。

乐山市2020届高三数学第三次调查研究考试试题理含解析

乐山市2020届高三数学第三次调查研究考试试题理含解析
A。 4B. 10C. 11D。 12
【答案】D
【解析】
【分析】
模拟程序运行,观察变量值的变化,判断循环条件后可得结论.
【详解】输入 时, , ,此时 不成立;
输入 时, , ,此时 不成立;
输入 时, , ,此时 成立;
输出的 的值为12,
故选:D。
【点睛】本题考查程序框图,考查循环结构,解题时可模拟程序运行,观察程序中变量值的变化,得出结论.
【详解】由 列联表得到 , , , ,
代入 ,
解得 ,
因为 ,
所以有 以上的把握认为“支付方式与性别有关”,
故选:C。
【点睛】本题主要考查独立性检验的应用,能否明确 、 、 、 所对应的数字是解决本题的关键,考查计算能力,是简单题.
7. 秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入 , ,依次输入 为1,2,4,则输出的 的值为( ).
10. 已知角 始边与 轴的非负半轴重合,与圆 相交于点 ,终边与圆 相交于点 ,点 在 轴上的射影为 , 的面积为 ,函数 的图象大致是( )
A。 B。
C。 D.
【答案】B
【解析】
如图A(2,0),在RT△BOC中,
|BC|=2|sinx|,|OC|=2|cosx|,
∴△ABC的面积为S(x)= |BC||AC|≥0,
即距离为 。
故选: .
点睛】本题考查点面距,属于中档题。
12。 已知函数 , ,若函数 的所有零点依次记为 ,且 ,则 ( )
A。 B. C. D.
【答案】A
【解析】
【分析】
由题可得,是要求解关于对称轴对称 两点与对称轴的关系问题,需要先求出对称轴通式 ,再判断在符合定义域取值范围内有多少条对称轴,确定每相邻两零点与对称轴关系,再通过叠加法表示出 ,结合数列通项公式求和即可

四川省乐山市高中高三第三次调查研究考试数学(理)试题

四川省乐山市高中高三第三次调查研究考试数学(理)试题

四川省乐山市高中高三第三次调查研究考试数学(理)试题一、单选题1.设集合{}1,0,1M =-,{}220N x x x =-<,则M N ⋂=( )A .{}0B .{}1C .{}0,1D .{}1,0,1-【答案】B【解析】可求出N ,然后进行交集的运算即可. 【详解】∵{}1,0,1M =-,{}()2200,2N x x x =-<=,∴MN ={}1故选:B 【点睛】本题考查二次不等式的解法,描述法、列举法表示集合的概念,以及交集的运算. 2.复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C【解析】先化简复数,再找到其对应的点所在的象限得解. 【详解】 由题得. 所以复数对应的点为(-1,-1),点在第三象限. 故选:C 【点睛】本题主要考查复数的除法运算和复数的几何意义,意在考查学生对这些知识的理解掌握水平和分析推理能力. 3.若,则( )A .B .C .D .【答案】D【解析】直接利用二倍角余弦公式与弦化切即可得到结果. 【详解】∵,∴,故选:D【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.4.已知向量满足,,,则=( )A.B.C.D.【答案】D【解析】直接利用向量的模的公式求解.【详解】由题得.故选:D【点睛】本题主要考查向量的模的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.5.已知抛物线上的点到其焦点的距离为,则该抛物线的标准方程为( )A.B.C.D.【答案】A【解析】利用抛物线的定义,转化列出方程求出a,即可得到抛物线方程.【详解】抛物线的准线方程,∵抛物线上的点到其焦点的距离为,∴,∴,即该抛物线的标准方程为,故选:A【点睛】本题考查抛物线的简单性质的应用,抛物线方程的求法,是基本知识的考查.6.设随机变量的概率分布列如下表,则=( )A.B.C.D.【答案】C【解析】根据随机变量的概率分布列,求出a的值,再利用和概率公式计算的值.【详解】解:根据随机变量的概率分布列知,1,解得;又,∴=1或=3,则故选:C.【点睛】本题考查了离散型随机变量的分布列计算问题,考查转化思想与计算能力,是基础题.7.已知,命題,则( )A.是真命题,B.是真命题,C.是假命题,D.是假命题,【答案】A【解析】利用导数求出函数的最小值,可知p是真命题,根据全称命题的否定为特称命题,可得结果.【详解】由题意可得,令,则∴在上单调递减,在上单调递增,∴,即p是真命题,命題的否定为:,故选:A【点睛】本题考查利用导数求函数的最小值,考查全称命题的否定为特称命题,属于容易题. 8.已知函数与的部分图像如图所示,则( )A.B.C.D.【答案】B【解析】先根据最值分析出A的值,再根据周期分析出的值.【详解】因为A>0,所以由题得故选:B【点睛】本题主要考查正弦函数余弦函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.函数y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.10.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的,则的值可以是( )(参考数据: ,,)A.B.C.D.【答案】C【解析】模拟执行程序,可得:,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出的值为.故.故选C.11.如图,边长为的正方形中,点分别是的中点,将,,分别沿,,折起,使得、、三点重合于点,若四面体的四个顶点在同一个球面上,则该球的表面积为( )A.B.C.D.【答案】A【解析】把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.【详解】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:.∴球的半径为,∴球的表面积为6π.故选:A.【点睛】本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.12.设双曲线的左、右焦点分别为,,过作轴的垂线与双曲线在第一象限的交点为,已知,,点是双曲线右支上的动点,且恒成立,则双曲线的离心率的取值范围是( )A.B.C.D.【答案】B【解析】根据点坐标得到线段|F2Q|和|F2A|,从而得>,进而有|AQ|=,结合|AF1|+|AQ|>|F1F2|,即可求得离心率的范围.【详解】AF2垂直于x轴,则|F2A|为双曲线的通径的一半,|F2A|=,A的坐标为,|AF1|=.Q,∴|F2Q|=.又|F2Q|>|F2A|⇒>,故有|AQ|=;A在第一象限上即在右支上,则有|AF1|+|AQ|>|F1F2|,即+->×2c⇒>3c⇒7a>6c⇒e=<.∵e>1,∴1<e<.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题13.在的展开式中,二项式系数最大的项为________.【答案】【解析】判断二项展开式的项数,即可判断二项式系数最大的项.【详解】解:因为的展开式中,共有7项,所以二项式系数最大的项是中间项,即第4项.所以二项式系数最大的项为,故答案为:【点睛】本题考查二项式定理系数的性质,展开式是奇数项,则中间项二项式系数最大,偶数项,中间两项二项式系数相等且最大. 14.已知正实数满足,则的最小值为_______.【答案】【解析】利用“乘1法”和基本不等式即可得出. 【详解】 解:∵正实数满足,∴(2a+b ),当且仅当时取等号.∴的最小值为故答案为.【点睛】本题考查了“乘1法”和基本不等式的应用,属于基础题. 15.已知函数()()21+4,1,1xa x x f x a x ⎧-≤=⎨>⎩的定义域为R ,数列{}()n a n N*∈满足()n a f n =,且{}n a 是递增数列,则实数a 的取值范围是_____.【答案】3a >【解析】根据已知得到关于a 的不等式组,解之即得. 【详解】由题得21211,,32+3a a a a a a a >>⎧⎧∴∴>⎨⎨<<⎩⎩. 故答案为:3a > 【点睛】本题主要考查分段函数和数列的单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力. 16.在中,,,,是的内心,若,其中,,则动点的轨迹所覆盖的面积为_______.【答案】【解析】试题分析:由,.可得点P 的轨迹如图的阴影部分的面积,在三角形ABC 中由余弦定理可得AB=5.所以三角形ABC 的面积为.又由.所以阴影部分面积.故填.【考点】1.向量知识.2.向量的坐标表示形式.三、解答题17.已知等差数列中,,,,成等比数列.(1)求数列的通项公式;(2)求数列的前项和为.【答案】(1) 或(2) 或5n.【解析】(1) 设等差数列的公差为,由题得,解方程得到d的值,即得数列的通项公式;(2)利用等差数列的前n项和公式求.【详解】(1)设等差数列的公差为,则,,因为,,成等比数列,所以,化简的,则或当时,.当时,,(2)由(1)知当时,.当时,则.【点睛】本题主要考查等差数列的通项的求法和等比数列的性质,考查等差数列的前n项和的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.每年圣诞节,各地的餐馆都出现了用餐需预定的现象,致使--些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们“用餐地点"以及“性别”作出调查,得到的情况如下表所示:(1)完成上述列联表;(2)根据表中的数据,试通过计算判断是否有的把握说明“用餐地点”与“性别"有关;(3)若在接受调查的所有人男性中按照“用餐地点”进行分层抽样,随机抽取人,再在人中抽取人赠送餐馆用餐券,记收到餐馆用餐券的男性中在餐馆用餐的人数为,求的分布列和数学期望.附:【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)根据表格中数据的关系,完善列联表;(2)根据表中数据,计算观测值,对照临界值即可得出结论;(3)由题意可知的可能值为,求出相应的概率值,即可得到的分布列和数学期望.【详解】(1)所求的列联表如下:(2)在本次试验中故有的把握说明“用餐地点”与“性别”有关.(3)由题意可知的可能值为,,,的分布列为【点睛】本题考查频率分布直方图的应用,独立性检验以及离散型随机变量的期望的求法,分布列的求法,考查计算能力.19.如图,在四棱锥中,底面是梯形,,,,,侧面底面.(1)求证:平面平面;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】试题分析:(1):取AB中点M,连接DM,可得DB⊥AD又侧面SAD⊥底面ABCD,可得BD⊥平面SAD,即可得平面SBD⊥平面SAD(2)以D为原点,DA,DB所在直线分别为x,y轴建立空间直角坐标系,求出设面SCB的法向量为:,面SBD的法向量为.利用向量即可求解.解析:(1)因为,,所以,是等腰直角三角形,故,因为,,所以∽,,即,因为侧面底面,交线为,所以平面,所以平面平面.(2)过点作交的延长线于点,因为侧面底面,所以底面,所以是底面与底面所成的角,即,过点在平面内作,因为侧面底面,所以底面,如图建立空间直角坐标系,设,,则,,设是平面法向量,则取,设是平面的法向量,则取,所以二面角的余弦值为.20.设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定值;若不是定值,请说明理由.【答案】(1);(2)见解析.【解析】(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可。

2020乐山三调高三数学(理)试题含答案 Word版

2020乐山三调高三数学(理)试题含答案 Word版

机密★启用前乐山市高中2020届第三次调查研究考试理科数学一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2,0,1M =-,{}23N x x =∈-<<N ,则M N ⋃=( ). A .{}2,1,0,1,2,3-- B .{}2,0,1,2,3- C .{}2,0,1,2-D .{}2,1,0,1,2--2.已知复数()1i z a a =+-(i 为虚数单位,a ∈R ),则“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()f x 是奇函数,且0x >时,()2π1sin 2f x x x =+,则()2f -=( ). A .2B .2-C .3D .3-4.已知a =344log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系是( ).A .a b c >>B .a c b >>C .b c a >>D .c a b >>5.已知向量a r 与向量()4,6m =r平行,()5,1b =-r ,且14a b ⋅=r r ,则a =r ( ).A.⎝⎭B.⎛ ⎝⎭C .()4,6--D .()4,66.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的22⨯列联表:附表及公式:()()()()()22n ad cb K a b c d a c b d -=++++,n a b c d =+++()2P K k >0.050 0.010 0.001 k3.8416.63510.828则下列结论正确的是( ).A .在犯错的概率不超过1%的前提下,认为“支付方式与性别有关”B .在犯错的概率超过1%的前提下,认为“支付方式与性别有关”C .有99.9%以上的把握认为“支付方式与性别有关”D .有99.9%以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 为1,2,4,则输出的S 的值为( ).A .4B .10C .11D .128.数列{}n a 中,已知对任意n *∈N ,1231nn a a a +++=-L ,则22212n a a a +++=L ( ).A .912n -B .912n +C .922n -D .922n +9.双曲线()222210,0x y a b a b-=>>的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点()2,1在“右”区域内,则双曲线的离心率e 的取值范围是( ).A .5⎛ ⎝⎭B .51,4⎛⎫⎪⎝⎭C .5⎫+∞⎪⎪⎝⎭D .5,4⎛⎫+∞⎪⎝⎭10.已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC △的面积为()S θ,则函数()S θ的图象大致是( ).A .B .C .D .11.已知A BCD -是球O 的内接三棱锥,球O 的半径为2,且4AC =,2BD =,π3ACD ACB ∠=∠=,则点A 到平面BCD 的距离为( ). A .26B .46C .23D .4312.已知函数()π4sin 26f x x ⎛⎫=-⎪⎝⎭,43π0,3x ⎡⎤∈⎢⎥⎣⎦,若函数()()3F x f x =-的所有零点依次记为1x ,2x ,3x ,…,n x ,且123n x x x x <<<<L ,则1231222n n x x x x x -+++++=L ( ).A .1190π3B .1192π3C .398πD .1196π3二、填空题:13.已知函数()()3211f x x xf '=+-,则函数()f x 在()()1,1f 处的切线方程为______.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为______.15.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,A 、B 分别为C 的右顶点和上顶点,直线FB 与直线x a =的交点为M ,若2BM FB =u u u u r u u u r ,且AFM △93,则椭圆的标准方程为______.16.我们把一系列向量()1,2,,i a i n =r L 按次序排列成一列,称之为向量列,记作{}i a r .已知向量列{}i a r满足:()11,1a =r ,()()()11111,,22n n n n n n n a x y x y x y n ----==-+≥r,设n θ表示向量1n a -r 与n a r的夹角,若2πn n n b θ=,对于任意正整数n ()1221111log 122n n n n a b b b ++>-L 恒成立,则实数a 的取值范围是______.三、解答题:解答应写出文字说明、证明过程或推演步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据需求作答. (一)必考题17.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin C B A A C -=-. (1)求角B 的值;(2)若7a c +=,13b =,求ABC △的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI ),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI 的平均值为依据播报该市的空气质量.(1)若某日播报的AQI 为119,已知轻度污染区AQI 平均值为70,中度污染区AQI 平均值为115,求重试污染区AQI 平均值;(2)如图是2018年11月份30天的AQI 的频率分布直方图,11月份仅有1天AQI 在[)140,150内.①某校参照官方公布的AQI ,如果周日AQI 小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;②环卫部门从11月份AQI 不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI 值不小于200的天数的分布列和数学期望.19.如图,在直三棱柱111ABC A B C -中,1AB AC AA ==,2π3BAC ∠=,E 、F 分别为AB 、11B C 的中点,G 为线段1CC 上的动点.(1)证明://EF 平面11AAC C ;(2)当二面角11F AG C --的余弦值为2114时,证明:1BF A G ⊥.20.已知抛物线2:4C y x =,过点()2,0P 的直线与抛物线C 相交于M 、N 两点.(1)若点Q 是点P 关于坐标原点O 的对称点,求MQN △面积的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以PM 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由. 21.已知函数()2ln 2f x x x ax =+-. (1)讨论函数()f x 的单调性;(2)当1a =时,判断并说明函数()()3cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间[](),,m n m n ∈∈Z Z 内,求n m -的最小值.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系Ox . (1)求曲线C 的极坐标方程;(2)已知A 、B 是曲线C 上任意两点,且π4AOB ∠=,求OAB △面积的最大值. 23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足3a b c ++=.(13≤; (2)证明:9412ab bc ac abc ++≥.参考答案1.D{}{}231,0,1,2N x x =∈-<<=-N ,故{}2,1,0,1,2M N ⋃=--,故选D .2.B在复平面内z 所对应的点在第一象限,有0a >,10a ->,得01a <<,故“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的必要不充分条件,故选B .3.D因为()f x 是奇函数,所以()()π122sin 4322f f ⎡⎤-=-=-+⨯=-⎢⎥⎣⎦,故选D . 4.B由题得140661a ==>=,33444log log 1021b =<=,2.9110133c ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,故有a c b >>,故选B . 5.C因为向量a r 与向量()4,6m =r 平行,可设3,2a k k ⎛⎫= ⎪⎝⎭r, 由14a b ⋅=rr 可得35142k k -+=,得4k =-, 所以()4,6a =--r,故选C . 6.C由22⨯列联表得到40a =,10b =,25c =,25d =,代入()()()()()22n ad cb K a b c d a c b d -=++++,解得()2210010002509.8950506535K ⨯-=≈⨯⨯⨯,因为6.6359.8910.828<<,所以有99%以上的把握认为“支付方式与性别有关”,故选C . 7.D输入1a =时,0211s =⨯+=,011k =+=,此时12k =>不成立; 输入2a =时,1224s =⨯+=,112k =+=,此时22k =>不成立; 输入4a =时,42412s =⨯+=,213k =+=,此时32k =>成立; 输出的S 的值为12,故选D . 8.A由1231nn a a a +++=-L ,当2n ≥时,112131n n a a a --+++=-L ,两式相减得()1232n n a n -=⨯≥, 又12a =,满足123n n a -=⨯,则123n n a -=⨯.所以数列{}n a 是首项为12a =,公比3q =的等比数列,则{}2n a 是首项为214a =,29q =的等比数列,故()2221241991192n n na a a --+++==-L ,故选A . 9.C双曲线的渐近线为b y x a =±,且“右”区域是由不等式组b y x ab y x a ⎧<⎪⎪⎨⎪>-⎪⎩所确定,又点()2,1在“右”区域内,于是有21b a <,即12b a >,因此双曲线的离心率,2e ⎛⎫=+∞ ⎪ ⎪⎝⎭,故选C . 10.A由题知点()2,0A ,点()2cos ,2sin B θθ,则()()1122cos 2sin 022S AC BC θθθ=⨯⋅=-⋅≥,故排除A 、B , 又因为当3π4θ=时,()2S θ>,故选A .11.B由题意知A ,B ,C ,D 四点都落在球面上,且AC 为直径, 所以AC 的中点即为球心O ,所以π2ADC ABC ∠=∠=, 因为4AC =,π3ACD ACB ∠=∠=,所以2BC CD ==, 又知2BD =,所以BCD △为正三角形,取BCD △中心H , 则OH ⊥面BCD , 所以OH HC ⊥,CH =, 因为2OC =,所以OH =又因为AC 中点为O ,所以点A 到平面BCD 的距离为点O 到平面BCD 的2倍,即距离为463,故选B . 12.A函数()π4sin 26f x x ⎛⎫=- ⎪⎝⎭, 令ππ2π62x k -=+,得1ππ23x k =+,k ∈Z , 即()f x 的对称轴方程为1ππ23x k =+,k ∈Z ,因为()f x 的最小正周期为πT =,43π03x ≤≤,当0k =时,可得y 轴右侧第一条对称轴为π3x =,当28k =时,43π3x =,所以()f x 在43π0,3⎡⎤⎢⎥⎣⎦上有28条对称轴, 根据正弦函数性质可知,函数()π4sin 26f x x ⎛⎫== ⎪⎝⎭与3y =的交点有29个, 且1x ,2x 关于π3对称,2x ,3x 关于5π6对称,…, 即122π26x x +=⨯,235π26x x +=⨯,…,282983π26x x +=⨯, 以上各式相加得:12328292π5π83π1190π22226663x x x x x ⎛⎫+++++=+++= ⎪⎝⎭L L , 故选A .13.330x y ++=因为()()2321f x x f ''=+,则()()1321f f ''=+,得()13f '=-, 则()()11236f =+⨯-=-,故切线方程为()()631y x --=--,即330x y ++=.14.38设拼成的正方形得面积为1, 由图知,最大的三角形面积为14,最小的三角形面积为116, 平行四边形的面积是最小三角形面积的2倍, 由此可得阴影部分的面积为38,则所求的概率为38. 15.22143x y += 由2BM FB =u u u u r u u u r,且//OB AM (O 为坐标原点),得13OF OB AF AM ==,所以2a c =,3AM b =,b =, 又因为()1322AFM S a c b =+⨯=△,解得1c =, 所以2a =,b =22143x y +=. 16.()111cos n nn n na a a a θ--⋅=u u u r u u ru u u r u u r()()()11111111,,n n n n n n x y x y x y ------⎛⎫⋅-+ ⎪=221111n n x y --+==,所以π4n θ=,故24n n b =222122n n n=+++++L L , 令()222122f n n n n=+++++L , 则()()()22222212321122f n f n n n n n n n ⎛⎫⎛⎫+-=+++-+++⎪ ⎪ ⎪+++++⎝⎭⎝⎭L L2202122n n =->++, 所以()f n 单调递增,所以()()min 11f n f ==,则()11log 122n a >-, 因为120a ->,所以102a <<,则212a a ->,解得11a -<<-综上所述,()1a ∈-.17.(1)由222cos cos sin sin sin C B A A C -=-得222sin sin sin sin sin B C A A C -=-,由正弦定理得222b c a ac -=-,即222a cb ac +-=,所以2221cos 22a cb B ac +-==, 因为0πB <<,所以π3B =. (2)由(1)得222222cos b a c ac B a c ac =+-=+-, 即2213a c ac +-=,所以()2313a c ac +-=,即12ac =,所以11sin 12222ABC S ac B ==⨯⨯= 18.解:(1)设重度污染区AQI 平均值为x , 则119970211543x ⨯=⨯+⨯+,解得157x =. (2)①AQI 在[)140,170上的有830308900⨯⨯=天, AQI 在[)170,200上的有530305900⨯⨯=天, AQI 在[)200,230上的有230302900⨯⨯=天, 所以11月份AQI 不小于150天的共852114++-=天. 即能参加户外活动的概率为14813015P =-=. ②AQI 不小于170天的共7天,不小于200天的共2天,x 的所有可能取值为0,1,2.所以x 的分布列为x 0 12 P27 47 17 则24160127777EX =⨯+⨯+⨯=. 19.(1)证明:取BC 的中点M ,连接EM 、FM ,因为E 、F 分别为AB 、11B C 的中点,所以//EM AC ,1//MF CC ,EM MF M ⋂=,1AC CC C ⋂=,所以平面//EMF 平面11AAC C ,又因为EF ⊂平面EMF ,EF ⊄平面11AAC C ,所以//EF 平面11AAC C .(2)不妨设11AB AC AA ===,由余弦定理得113B C =,如图建立空间直角坐标系1A xyz -,设()0,1,G h ,131,022B ⎛⎫- ⎪ ⎪⎝⎭,31,,122B ⎛⎫- ⎪ ⎪⎝⎭,()1/C 0,1,0EF ,所以31,04F ⎫⎪⎪⎝⎭,设平面1A FG 的一个法向量为(),,m x y z =r , 则()10,1,AG h =u u u u r ,131,04A F ⎫=⎪⎪⎝⎭u u u u r ,则1100A G m A F m ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u u r r,得0104y hz x y +=⎧+=,可取(,m h =r ,易知平面11AGC 的一个法向量为()1,0,0n =r,所以cos ,m n m n m n ⋅===⋅r r r r r r ,解得34h =,此时3,14BF ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,130,1,4A G ⎛⎫= ⎪⎝⎭u u u u r , 所以10BF AG ⋅=u u u r u u u u r ,即1BF A G ⊥. 20.依题意,点Q 的坐标为()2,0Q -,可设()11,M x y ,()22,N x y , 直线MN 的方程为2x my =+,联立224x my y x =+⎧⎨=⎩,得2480y my --=, 则124y y m +=,128y y ⋅=-, 所以12142MQN S y y =⨯⨯-==≥△, 即当0m =时,MQN△面积的最小值为(2)假设满足条件的直线l 存在,其方程为x a =,则以PM 为直径的圆的方程为()()()1120x x x y y y --+-=,将直线x a =代入,得()()21120y y y a a x -+--=,则()()()()2111424120y a a x a x a a ∆=---=-+->⎡⎤⎣⎦, 设直线l 与以PM 为直径的圆的交点为()3,A a y ,()4,B a y ,则341y y y +=,()()3412y y a a x ⋅=--,于是有34AB y y =-==,当10a -=,即1a =时,2AB =为定值.故满足条件的直线l 存在,其方程为1x =.21.(1)()2ln 2f x x x ax =+-的定义域为()0,+∞,()2122122ax x f x ax x x-++'=+-=, 当0a =时,()210x f x x+'=>,所以()f x 在()0,+∞上单调递增; 当0a <时,所以()f x 在()0,+∞上单调递增;当0a >时,令22210ax a -++=,得x =x =.当10,2x a ⎛+∈ ⎝⎭时,()0f x '>,当12x a ⎛⎫+∈+∞⎪ ⎪⎝⎭时,()0f x '<,所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 综上所述,当0a ≤时,()f x 在()0,+∞上单调递增.当0a >时,()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. (2)当1a =时,()2ln 23cos g x x x x x =+--,当(]0,1x ∈时,()2ln 2f x x x x =+-单调递增,()()11f x f ≤=,π33cos 3cos13cos32x ≥>=, 则()0g x <,故不存在零点. 当π1,2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+, ()122f x x x '=+-在π1,2⎛⎤ ⎥⎝⎦上单调递减, 所以()π22π2πf x f ⎛⎫''≥=+-⎪⎝⎭,π33sin 3sin13sin 62x >>=,所以()232π0π2g x '>+-+>,所以()g x 单调递增. 又()113cos10g =-<,2πππln π0224g ⎛⎫=+-> ⎪⎝⎭, 所以存在唯一的1π1,2x ⎛⎤∈ ⎥⎝⎦,使得()10g x =. 当π,π2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+,()2123cos 0g x x x ''=--+<, 所以()g x '单调递减, 又π22π302πg ⎛⎫'=+-+> ⎪⎝⎭,()1π22π0πg '=+-<, 所以存在0π,π2x ⎛⎤∈⎥⎝⎦,使得()00g x '=, 当0π,2x x ⎛⎤∈ ⎥⎝⎦,()00g x '>,()g x 单调递增; 当(]0,πx x ∈,()00g x '<,()g x 单调递减; 又π02g ⎛⎫> ⎪⎝⎭,()2πln π2ππ30g =+-+>. 因此,()0g x >在π,π2x ⎛⎤∈⎥⎝⎦上恒成立,故不存在零点. 当(]π,4x ∈时,()2123cos 0g x x x''=--+<, 所以()g x '单调递减, 因为()π0g '<,所以()0g x '<,()g x 单调递减.又()π0g >,()4ln 48163cos40g =+--<,所以存在唯一的(]2π,4x ∈,使得()20g x =,当()4,x ∈+∞时,()22123320g x x x x x x <-+-+=-++<,故不存在零点. 综上,()g x 存在两个零点1x ,2x ,且1π1,2x ⎛⎤∈ ⎥⎝⎦,(]2π,4x ∈, 因此n m -的最小值为3.22.(1)消去参数α,得到曲线C 的标准方程为()2224x y -+=, 故曲线C 的极坐标方程为4cos ρθ=.(2)在极坐标系Ox 中,设()10,A ρθ,20π,4B ρθ⎛⎫+⎪⎝⎭, 其中10ρ>,20ρ>,0ππ22θ-<<, 由(1)知:104cos ρθ=,20π4cos 4ρθ⎛⎫=+⎪⎝⎭,则OAB △的面积12001ππsin cos 244S ρρθθ⎛⎫==+ ⎪⎝⎭, 即2000004cos 4sin cos 2cos 22sin 2S θθθθθ=-=-+0π2624θ⎛⎫=++ ⎪⎝⎭,当0π8θ=-时,max 2S =,所以OAB △面积的最大值为2.23.(1)证明:因为a ,b 为正数,所以a b +≥,同理可得b c +≥a c +≥,则()2a b c ++≥当且仅当1a b c ===时,等号成立.3.(2)证明:要证9412ab bc ac abc ++≥, 只要证14912a b c++≥即可, 即证()14936a b c a b c ⎛⎫++++≥⎪⎝⎭, 即证499414936b a a c b c a b c a c b++++++++≥, 即证499422b a a c b c a b c a c b+++++≥,因为44a b b a +≥=,96a c c a +≥=,9412b c c b+≥=,所以499422 b a a c b ca b c a c b+++++≥,当且仅当12a=,1b=,32c=时等号成立,得证.。

2020年四川省乐山市高考数学三诊试卷(理科) (含答案解析)

2020年四川省乐山市高考数学三诊试卷(理科) (含答案解析)

2020年四川省乐山市高考数学三诊试卷(理科)一、选择题(本大题共12小题,共36.0分)1. 已知集合M ={x|x >0},N ={x|x 2−4≥0},则M ∪N =( )A. (−∞,−2]∪(0,+∞)B. (−∞,−2]∪[2,+∞)C. [3,+∞)D. (0,+∞)2. 已知复数z =a +(1−a)i(i 为虚数单位,a ∈R),则“a ∈(0,2)”是“在复平面内复数z 所对应的点位于第一象限”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知函数f(x)为奇函数,且当x >0时,f(x)=x 2+1x ,则f(−1)=( )A. −2B. 0C. 1D. 24. 已知a =√64,b =log 54421,c =(13)2.9,则( ) A. a >b >c B. a >c >b C. b >c >a D. c >a >b5. 已知向量a ⃗ =(−2,−1),b ⃗ =(2,−2),则(a ⃗ −b ⃗ )⋅(a ⃗ +2b ⃗ )等于( )A. 7B. −6C. −10D. −136. 支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的2×2列联表:附表及公式:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n =a +b +c +d .则下面结论正确的是( )A. 有99.9%以上的把握认为“支付方式与性别有关”B. 在犯错误的概率超过1%的前提下,认为“支付方式与性别有关”C. 在犯错误的概率不超过1%的前提下,认为“支付方式与性别有关”D. 有99%以上的把握认为“支付方式与性别无关”7. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图,执行该程序框图,若输入的x =3,n =2,依次输入的a 为2,2,5,则输出的s =( )A. 8B. 17C. 29D. 838. 数列{a n }满足a 1=2019,且对任意的n ∈N ∗,有a n+1−a n ≤2n ,a n+3−a n ≥7·2n ,则a 2020=( )A. 22019+2018B. 22019+2017C. 22020+2017D. 22020+20189. 双曲线x 2a 2−y2b2=1(a >0,b >0)的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e 的取值范围是( )A. (1,√52) B. (√52,+∞) C. (1,54)D. (54,+∞)10. 已知角θ的始边与x 的非负半轴重合,与圆C :x 2+y 2=4相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,△ABC 的面积为S(θ),则函数S(θ)的图像大致是( )A. B.C. D.11.在三棱锥A−BCD中,AC⊥底面BCD,BD⊥DC,BD=DC,AC=1,∠ABC=30°,则C到平面ABD的距离是()A. √55B. √155C. √35D. √15312.函数,x∈[0,2π3]的值域是()A. [0,1]B. [0,2]C. [0,√3]D. [√3,2]二、填空题(本大题共4小题,共12.0分)13.函数f(x)=x2+3xf′(1),在点(2,f(2))处的切线方程为______ .14.如图是我国三国时期著名数学家赵爽弦图,图中大正方形的面积是34,四个全等直角三角形组成的一个小正方形,直角三角形的较短边长为3,现向大正方形内随机抛一粒绿豆,则绿豆落在小正方形的概率为______.15.已知椭圆x2a2+y2b2=1(a>0,b>0)的左焦点为F,右顶点为A,上顶点为B,若点F到直线AB距离为5√1414b,则该椭圆的离心率为______.16.若|a⃗|=1,|b⃗ |=2,c⃗=a⃗+b⃗ 且c⃗⊥a⃗,则向量a⃗与b⃗ 的夹角为_________.三、解答题(本大题共7小题,共84.0分)17.在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且(a2+b2−c2)tanC=√3ab.(1)求角C的大小;(2)求√3sinBcosB+cos2B的取值范围.18.追求人类与生存环境的和谐发展是中国特色社会主义生态文明的价值取向.为了改善空气质量,某城市环保局随机抽取了一年内100天的空气质量指数(AQI)的检测数据,结果统计如下:(1)从空气质量指数属于[0,50],(50,100]的天数中任取3天,求这3天中空气质量至少有2天为优的概率;(2)已知某企业每天的经济损失y(单位:元)与空气质量指数x的关系式为y={0,0≤x≤100,220,100<x≤250,1480,250<x≤300,试估计该企业一个月(按30天计算)的经济损失的数学期望.19.直三棱柱ABC−A1B1C1中,AB=5,AC=4,BC=3,AA1=4,点D在AB上.(1)若D是AB中点,求证:AC1//平面B1CD;(2)当BDAB =13时,求二面角B−B1C−D的余弦值.20.已知点P(1,2)到抛物线C:y2=2px(p>0)准线的距离为2.(Ⅰ)求C的方程及焦点F的坐标;(Ⅱ)设点P关于原点O的对称点为点Q,过点Q作不经过点O的直线与C交于两点A,B,直线PA,PB分别交x轴于M,N两点.求|MF|⋅|NF|的值.21.已知函数f(x)=ae2x+(a−2)e x−x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.22.在平面直角坐标系xOy中,曲线C的参数方程为{x=rcosα+2y=rsinα(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l的极坐标方程为θ=π3.(Ⅰ)求曲线C的极坐标方程;(Ⅱ)当0<r<2时,若曲线C与射线l交于A,B两点,求1|OA|+1|OB|的取值范围.23.若a,b,c∈R+,且满足a+b+c=2.(1)求abc的最大值;(2)证明:1a +1b+1c≥92.-------- 答案与解析 --------1.答案:A解析:本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.先分别求出集合M ,N ,再利用并集定义求解. 解:∵集合M ={x|x >0},N ={x|x 2−4≥0}={x|x ≥2或x ≤−2},∴M ∪N ={x|x ≤−2或x >0}=(−∞,−2]∪(0,+∞). 故选:A .2.答案:B解析:本题考查了必要条件、充分条件与充要条件的判断和复数的代数表示及其几何意义,属于基础题. 若在平面内复数z 所对应的点位于第一象限,有{a >01−a >0,得0<a <1,即可得出结果.解:若在平面内复数z 所对应的点位于第一象限,有{a >01−a >0,得0<a <1,故“a ∈(0,2)”是“在复平面内复数z 所对应的点位于第一象限”的必要不充分条件, 故选B .3.答案:A解析:解:∵函数f(x)为奇函数,x >0时,f(x)=x 2+1x , ∴f(−1)=−f(1)=−2, 故选:A .利用奇函数的性质,f(−1)=−f(1),即可求得答案. 本题考查奇函数的性质,考查函数的求值,属于基础题.4.答案:B。

2020年四川省乐山市高考数学三模试卷(理科)(有答案解析)

2020年四川省乐山市高考数学三模试卷(理科)题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.设集合M={-1,0,1},N={x|x2-2x<0},则M∩N=()A. {0}B. {1}C. {0,1}D. {-1,0,1}2.i是虚数单位,复数在复平面上对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知tanα=,则cos2α的值为()A. B. C. D.4.已知向量,满足•=0,||=1,||=3,则|-|=()A. 0B. 2C. 2D.5.已知抛物线y2=ax上的点M(1,m)到其焦点的距离为2,则该抛物线的标准方程为()A. y2=2xB. y2=4xC. y2=3xD. y2=5x6.设随机变量X的概率分布表如表,则P(|X-2|=1)=()X1234P mA. B. C. D.7.已知f(x)=e x-x,命题p:∀x∈R,f(x)>(0),则()A. p是真命题,¬p:∃x0∈R,f(x0)<0B. p是真命题,¬p:∃x0∈R,f(x0)≤0C. p是假命题,¬p:∃x0∈R,f(x0)<0D. p是假命题,¬p:∃x0∈R,f(x0)≤08.已知函数f(x)=A sinωx(A>0,ω>0)与g(x)=cosωx的部分图象如图所示,则()A. A=1,ω=B. A=2,ω=C. A=1,ω=D. A=2,ω=9.函数y=2|x|sin2x的图象可能是()A. B.C. D.10.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和 3.1416这两个近似数值.如图所示是利用刘徽的割圆术设计的程序框图,若输出的n=24,则p的值可以是(参考数据:=1.732,sin15°≈0.2588,sin7.5°≈0.1305,sin3.75°≈0.0654)()A. 2.6B. 3C. 3.1D. 3.1411.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,△EBF,△FCD分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的表面积为()A. 8πB. 6πC. 11πD. 5π12.设双曲线C:的左、右焦点分别为F1,F2,|F1F2|=2c,过F2作x轴的垂线与双曲线在第一象限的交点为A,已知,|F2Q|>|F2A|,点P是双曲线C右支上的动点,且|PF1|+|PQ|>|恒成立,则双曲线的离心率的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.在(2x-)6的展开式中,二项式系数最大的项为______.14.若正实数a,b满足2a+b=1,则的最小值为______.15.已知函数f(x)=的定义城为R,数列{a n}(n∈N*)满足a n=f(n),且{a n}是递增数列,则实数a的取值范围是______.16.在△ABC中,AC=6,BC=7,,O是△ABC的内心,若,其中0≤x≤1,0≤y≤1,则动点P的轨迹所覆盖的面积为______.三、解答题(本大题共7小题,共84.0分)17.已知等差数列{a n}中,a2=5,a1,a4,a13成等比数列.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n项和为S n.18.每年圣诞节,各地的餐馆都出现了用餐需预定的现象,致使--些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们“用餐地点“以及“性别”作出调查,得到的情况如在家用餐在餐馆用餐总计女性30男性40总计50100()完成上述列联表;(2)根据表中的数据,试通过计算判断是否有99.9%的把握说明“用餐地点”与“性别“有关;(3)若在接受调查的所有人男性中按照“用餐地点”进行分层抽样,随机抽取6人,再在6人中抽取3人赠送餐馆用餐券,记收到餐馆用餐券的男性中在餐馆用餐的人数为ξ,求ξ的分布列和数学期望.附:P(K2≥k0)0.050.0100.001k0 3.841 6.63510.828K2=n =a+b+c+d19.如图,在四棱锥S-ABCD中,底面ABCD是梯形,AB∥CD,∠ABC=90°,AD=SD,BC=CD=AB,侧面SAD⊥底面ABCD.(1)求证:平面BD⊥平面SAD;(2)若∠SDA=120°,求二面角C-SB-D的余弦值.20.设椭圆(a>b>0)的离心率为,圆O:x2+y2=2与x轴正半轴交于点A,圆O在点A处的切线被椭圆C截得的弦长为.(Ⅰ)求椭圆C的方程;(Ⅱ)设圆O上任意一点P处的切线交椭圆C于点M,N,试判断|PM|•|PN|是否为定值?若为定值,求出该定值;若不是定值,请说明理由.21.已知函数f(x)=(1+a)x2-ln x-a+1.(1)讨论函数f(x)的单调性;(2)若a<1,求证:当x>0时,函数y=xf(x)的图象恒在函数y=ln x+(1+a)x3-x2的图象上方.22.在直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C1的参数方程为(θ为参数),以该直角坐标系的原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为.(Ⅰ)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;(Ⅱ)设直线l交曲线C1于O,A两点,交曲线C2于O,B两点,求|AB|的长.23.已知函数f(x)=|x|+|x-1|.(Ⅰ)若f(x)≥|m-1|恒成立,求实数m的最大值;(Ⅱ)记(Ⅰ)中m的最大值为M,正实数a,b满足a2+b2=M,证明:a+b≥2ab.-------- 答案与解析 --------1.答案:B解析:解:N={x|0<x<2};∴M∩N={1}.故选:B.可求出集合N,然后进行交集的运算即可.考查一元二次不等式的解法,描述法、列举法表示集合的概念,以及交集的运算.2.答案:C解析:解:z==-1-i,所以对应的点在第三象限;故选:C.首先化简复数为最简形式,然后根据复数的实部和虚部符号判断位置.本题考查了复数的运算以及其几何意义;属于基础题.3.答案:D解析:解:cos2α=cos2α-sin2α====.故选:D.利用余弦的二倍角公式可求得cos2α=cos2α-sin2α,进而利用同角三角基本关系,使其除以sin2α+cos2α,分子分母同时除以cos2a,转化成正切,然后把tanα的值代入即可.本题主要考查了同角三角函数的基本关系和二倍角的余弦函数的公式.解题的关键是利用同角三角函数中的平方关系,完成了弦切的互化.4.答案:D解析:解:∵•=0,||=1,||=3,∴=.故选:D.直接利用向量的模的公式求解.本题主要考查向量的模的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力,是基础题.5.答案:B解析:解:由题得点M(1,m)到准线的距离为2,所以1-,∴a=4.所以该抛物线的标准方程为y2=4x.故选:B.根据点M(1,m)到其焦点的距离为2得到点M到准线的距离为2,解方程组即得解.本题主要考查抛物线的定义和标准方程的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.6.答案:C解析:解:由|X-2|=1可解得x=3或x=1,再由分布列的性质可得m=1-(++)=,∴P(|X-2|=1)=P(X=1)+P(X=3)=+=故选:C.由题意可得X和的值,代入P(|X-2|=1)=P(X=1)+P(X=3)计算可得.本题考查离散型随机变量及其分布列,属基础题.7.答案:B解析:解:f(x)=e x-x,命题p:∀x∈R,f(x)>(0),是真命题,它的否定是:∃x0∈R,f(x0)≤0.故选:B.判断命题的真假,然后利用全称命题的否定是特称命题写出结果即可.本题考查命题的真假的判断,命题的否定,基本知识的考查.8.答案:B解析:解:由图象可知,A=1,=1.5,∴A=2,T=6,又6=T=,∴ω=,故选:B.结合图象可知,A=1,=1.5,然后再由周期公式即可求解ω本题主要考查了利用函数的图象求解函数解析式中的参数,属于基础试题.9.答案:D解析:【分析】本题考查函数的性质和赋值法的应用,属于中档题.直接利用函数的奇偶性和特殊值求出结果.【解答】解:根据函数的解析式y=2|x|sin2x,,得到函数为奇函数,其图象关于原点对称,故排除A和B.当x=时,函数的值为0,故排除C.故选D.10.答案:C解析:解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥p,n=12,S=6×sin30°=3,不满足条件S≥p,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥p,退出循环,输出n的值为24,故p=3.1,故选:C.列出循环过程中S与n的数值,满足判断框的条件即可结束循环.本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.11.答案:B解析:【分析】本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.【解答】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:=.∴球的半径为,∴球的表面积为=6π.故选:B.12.答案:B解析:【分析】本题考查双曲线的离心率的范围,注意运用双曲线的定义和三点共线的性质,考查运算能力,属于中档题.将x=c代入双曲线的方程,求得A的纵坐标,由|F2Q|>|F2A|,结合a,b,c和离心率公式可得e的范围;再由双曲线的定义和恒成立思想,讨论F2,P,Q共线时,|PF2|+|PQ|取得最小值|F2Q|,结合离心率公式可得e的范围,再由e>1,取交集即可得到所求范围.【解答】解:令x=c代入双曲线的方程可得y=±b=±,由|F2Q|>|F2A|,可得>,即为3a2>2b2=2(c2-a2),即有e=<①又|PF1|+|PQ|>|F1F2|恒成立,由双曲线的定义,可得2a+|PF2|+|PQ|>3c恒成立,由F2,P,Q共线时,|PF2|+|PQ|取得最小值|F2Q|=,可得3c<2a+,即有e=<②由e>1,结合①②可得,e的范围是(1,).故选:B.13.答案:-20x3解析:解:因为(2x-)6的展开式中,共有7项,所以二项式系数最大的项是中间项,即第4项.所以二项式系数最大的项为T4=•(2x)3•=-20x3,故答案为:-20x3.判断二项展开式的项数,即可判断二项式系数最大的项.本题考查二项式定理系数的性质,展开式是奇数项,则中间项二项式系数最大,偶数项,中间两项二项式系数相等且最大,属于基础题.14.答案:解析:解:=()(2a+b)=2++=.∵a,b是正实数,∴.即的最小值为.当且仅当,即a=b=时“=”成立.故答案为:.把看作()•1,然后把1换为2a+b,展开后利用基本不等式求最值.本题考查了利用基本不等式求最值,关键是对“1”的代换,利用基本不等式求最值要注意:“一正、二定、三相等”,是基础题.15.答案:(3,+∞)解析:解:由题得,∴,解得a>3.∴实数a的取值范围是(3,+∞).故答案为:(3,+∞).根据已知得到关于a的不等式组,求解不等式组可得实数a的取值范围.本题主要考查分段函数和数列的单调性的应用,意在考查学生对这些知识的理解掌握水平和分析推理能力,是中档题.16.答案:解析:解:∵,其中0≤x≤1,0≤y≤1,∴动点P的轨迹所覆盖的面积是以OA,OB为邻边的平行四边形∴S=AB×r,其中r为△ABC的内切圆的半径在△ABC中,由余弦定理可得cos A=∴5AB2-12AB-65=0∴AB=5∴∵O是△ABC的内心,∴O到△ABC各边的距离均为r,∴∴r=∴S=AB×r==.故答案为:.根据,其中0≤x≤1,0≤y≤1,可得动点P的轨迹所覆盖的面积是以OA,OB为邻边的平行四边形,S=AB×r,r为△ABC的内切圆的半径,计算AB及r,即可得到结论.本题考查向量知识的运用,考查余弦定理,考查三角形面积的计算,属于中档题.17.答案:解:(1)设等差数列{a n}的公差为d,a2=5,a1,a4,a13成等比数列,所以a1+d=5,a42=a1a13,即(a1+3d)2=a1(a1+12d),化简得d2=2d,则d=0或d=2,当d=0时,a n=5;当d=2时,a1=5-d=3,a n=3+2(n-1)=2n+1;(2)由(1)知当a n=5时,S n=5n;当 an=2n+1 时,则 Sn==2n+n2.解析:(1)设等差数列{an}的公差为 d,由等差数列的通项公式和等比数列的中项性质,解方程得到 d 和首项的值,即得数列的通项公式;(2)利用等差数列的前 n 项和公式可得所求和.本题主要考查等差数列的通项的求法和等比数列的性质,考查等差数列的前 n 项和的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.答案:解:(1)所求的 2×2 列联表如下:在家用餐在餐馆用餐总计女性103040男性402060总计5050100(2)K2==16.67>10.828,故有 99.9%的把握说明“用餐地点”与“性别”有关. (3)由题意可知 ξ 的可能值为 0,1,2,P(ξ=0)= = ,P(ξ=1)= = ,P(ξ=2)= = ,∴ξ 的分布列为:ξ012P∴Eξ=0× +1× +2× =1.解析:(1)根据表格中数据的关系,完善 2×2 列联表; (2)根据表中数据,计算观测值,对照临界值即可得出结论; (3)由题意可知 ξ 的可能值为 0,1,2,求出相应的概率值,即可得到 ξ 的分布列和数学期望. 本题考查频率分布直方图的应用,独立性检验以及离散型随机变量的期望的求法,分布列的求法, 考查计算能力.19.答案:证明:(1)因为∠ABC=90°,BC=CD,所以∠CBD=45°,△BCD 是等腰直角三角形, 故 BD= ,因为 AB= ,∠ABD=45°, 所以△ABD∽△BCD,∠ADB=90°,即 BD⊥AD, 因为侧面 SAD⊥底面 ABCD,交线为 AD, 所以 BD⊥平面 SAD,所以平面 SBD⊥平面 SAD. 解:(2)过点 S 作 SE⊥AD,交 AD 的延长线于点 E, 因为侧面 SAD⊥底面 ABCD,所以 SE⊥底面 ABCD, 所以∠SDE 是底面 SD 与底面 ABCD 所成的角,即∠SDE=60°, 过点 D 在平面 SAD 内作 DF⊥AD, 因为侧面 SAD⊥底面 ABCD,所以 DF⊥底面 ABCD,第 11 页,共 15 页如图建立空间直角坐标系 D-xyz,设 BC=CD=1,则 B(0,),C(- , ,0),S(- ,0, ),则 =(0,), =(- ,- , ), =(- ,- ,0),设 =(x,y,z)是平面 SBD 法向量,则,取 x= ,得 =(),设 =(x,y,z)是平面 SBC 的法向量,则,取 x= ,得 =(),|cos< >|= = = , 所以二面角 C-SB-D 的余弦值为 .解析:(1)取 AB 中点 M,连接 DM,可得 DB⊥AD 又侧面 SAD⊥底面 ABCD,可得 BD⊥平面 SAD, 即可得平面 SBD⊥平面 SAD. (2)以 D 为原点,DA,DB 所在直线分别为 x,y 轴建立空间直角坐标系,求出设面 SCB 的法向量 和面 SBD 的法向量.利用向量法即可求解. 本题考查面面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关 系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.答案:解:(Ⅰ)设椭圆的半焦距为 c,由椭圆的离心率为 知,,∴椭圆 C 的方程可设为.易求得,∴点在椭圆上,∴,解得,∴椭圆 C 的方程为;(Ⅱ)当过点 P 且与圆 O 相切的切线斜率不存在时,不妨设切线方程为 ,,由(Ⅰ)知,,,则,∴OM⊥ON.当过点 P 且与圆 O 相切的切线斜率存在时,可设切线的方程为 y=kx+m,M(x1,y1),N(x2,y2),∴,即 m2=2(k2+1).第 12 页,共 15 页联立直线和椭圆的方程得 x2+2(kx+m)2=6,∴(1+2k2)x2+4kmx+2m2-6=0,得.∵,,∴OM⊥ON.∴=x1x2+(kx1+m)(kx2+m)==,综上所述,圆 O 上任意一点 P 处的切线交椭圆 C 于点 M,N,都有 OM⊥ON. 在 Rt△OMN 中,由△OMP 与△NOP 相似得,|OP|2=|PM|•|PN|=2 为定值.解析:(Ⅰ)根据离心率得到,代入椭圆方程,根据题意得知点在椭圆上,并将该点的坐标代入椭圆,可求出 b 的值,进而得出 a 的值,从而求出椭圆 C 的方程;(Ⅱ)对圆 O 在点 P 处的切线的斜率是否存在进行分类讨论.一是斜率不存在时,可得出点 M、N 的坐标,从而求出|PM|•|PN|的值;二是斜率存在时,设该切线方程为 y=kx+m,设点 M(x1,y1),N(x2,y2),由直线 MN 与圆 O 相切得出 m 与 k 之间所满足的关系式,并将直线 MN 的方程与椭圆 C 的方程联立,列出韦达定理,利用向量数量积的运算得出,得出 OM⊥ON,由△OMP 与△NOP 相似得,|OP|2=|PM|•|PN|,于是证出结论. 本题考查直线与椭圆的综合问题,考查椭圆的方程以及韦达定理法在椭圆中的应用,并结合向量运 算一起考查,考查计算能力,属于难题.21.答案:解:(1)函数 f(x)=(1+a)x2-lnx-a+1 的定义域为:(0,+∞)且 f′(x)=2(1+a)xー =当 a≤-1 时,f′(x)<0,函数 f(x)在(0,+∞)上为增函数;当 a>-1 时,令 f′(x)=0,解得:x=,此时 f(x)在(0,)上递减,在(,+∞)上递增(2)证明:若 a<1,则当 x>0,时,问题转化为不等式: xf(x)>lnx+(1+a)x3-x2 在(0,+∞)上恒成立, 只需要证明: x[(1+a)x-lnx-a+1]>lnx+(1+a)x3-x2 在(0,+∞)上恒成立,即证:lnx-x<- -a+1 在(0,+∞)上恒成立,令 F(x)=lnx-x,g(x)=- -a+1第 13 页,共 15 页因为 F′(x)= -1= ,易得 F(x)在(0,1)单调递增,在(1,+∞)上单调递减, ∴F(x)≤F(1)=-1 又因为:g′(x)=- = ,当 0<x<e 时,g′(x)<0,当 x>e 时,g′(x)>0, 所以 g(x)在(0,e)上单调递减,在(e,+∞)上单调递增,所以 g(x)≥g(e)=- -a+1,∵a<1 时,所以- -a+1>- >-1,即 F(x)max<g(x)min,所以 lnx-x<- -a+1 在(0,+∞)上恒成立∴当 x>0 时,函数 y=xf(x)的图象恒在函数 y=lnx+(1+a)x3-x2 的图象上方. 故答案为:(1)当 a≤-1 时,f′(x)<0,函数 f(x)在(0,+∞)上为增函数;当 a>-1 时,令 f′(x)=0,解得:x=,此时 f(x)在(0, (2)见证明.)上递减,在(,+∞)上递增,解析:(1)求出函数求 f′(x),x>0,由此利用导数性质讨论函数 f(x)的单调性; (2)问题转化为不等式 xf(x)>lnx+(1+a)x3-x2 在(0,+∞)上恒成立,即证 F(x)max<g(x) min,恒成立即可. 本题考查函数的单调性质的讨论,考查不等式恒成立问题,考查两函数最值的关系,解题时要认真 审题,注意导数性质和构造法的合理运用.是难题,22.答案:解:(Ⅰ)直线 l 的参数方程为(t 为参数),转换为直角坐标方程为:,所以直线的倾斜角为 .所以:,曲线 C1 的参数方程为(θ 为参数),转换为直角坐标方程为:(x-2)2+y2=4.转换为极坐标方程为:ρ=4cosθ,曲线 C2 的极坐标方程为,转换为直角坐标的方程为:,整理得:,第 14 页,共 15 页线 l 交曲线 C1 于 O,A 两点,则:,解得:A(2 , ),直线和曲线 C2 于 O,B 两点则:,解得:B(4, ),所以:|AB|=|ρ1-ρ2|=4-2 .解析:(Ⅰ)直接利用转换关系式,把参数方程直角坐标方程和极坐标方程之间进行转换. (Ⅱ)利用直线和曲线的位置关系,建立方程组,利用极径的应用求出结果. 本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,极径的应用,主要考查学 生的运算能力和转化能力,属于基础题型.23.答案:解:(Ⅰ)由 f(x)=,得 f(x)min=1,要使 f(x)≥|m-1|恒成立, 只要 1≥|m-1|,即 0≤m≤2,实数 m 的最大值为 2; (Ⅱ)由(Ⅰ)知 a2+b2=2,又 a2+b2≥2ab,故 ab≤1, (a+b)2-4a2b2=a2+b2+2ab-4a2b2=2+2ab-4a2b2=-2(ab-1)(2ab+1), ∵0<ab≤1,∴(a+b)2-4a2b2=-2(ab-1)(2ab+1)≥0, ∴a+b≥2ab.解析:(Ⅰ)求出 f(x)的最小值,得到关于 m 的不等式,求出 m 的范围即可; (Ⅱ)求出 0<ab≤1,根据其范围证明即可. 本题考查了绝对值不等式问题,考查不等式的证明,是一道中档题.第 15 页,共 15 页。

2020届乐山三诊数学(理)试题

2020届乐山三诊理科数学一、选择题:(每小题5分)1.已知集合{}2,0,1M =-,{}23N x x =∈-<<N ,则M N ⋃=( ). A .{}2,1,0,1,2,3-- B .{}2,0,1,2,3- C .{}2,0,1,2- D .{}2,1,0,1,2--2.已知复数()1i z a a =+-(i 为虚数单位,a ∈R ),则“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()f x 是奇函数,且0x >时,()2π1sin 2f x x x =+,则()2f -=( ). A .2B .2-C .3D .3-4.已知a =344log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系是( ).A .a b c >>B .a c b >>C .b c a >>D .c a b >>5.已知向量a r 与向量()4,6m =r 平行,()5,1b =-r ,且14a b ⋅=r r ,则a =r( ).A.⎝⎭B.⎛ ⎝⎭C .()4,6--D .()4,66.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的22⨯列联表:附表及公式:()()()()()22n ad cb K a b c d a c b d -=++++,n a b c d =+++则下列结论正确的是( ).A .在犯错的概率不超过1%的前提下,认为“支付方式与性别有关”B .在犯错的概率超过1%的前提下,认为“支付方式与性别有关”C .有99.9%以上的把握认为“支付方式与性别有关”D .有99.9%以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 为1,2,4,则输出的S 的值为( ).A .4B .10C .11D .128.数列{}n a 中,已知对任意n *∈N ,1231n n a a a +++=-L ,则22212n a a a +++=L ( ).A .912n -B .912n +C .922n -D .922n +9.双曲线()222210,0x y a b a b-=>>的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点()2,1在“右”区域内,则双曲线的离心率e 的取值范围是( ).A .51,2⎛⎫⎪ ⎪⎝⎭B .51,4⎛⎫⎪⎝⎭C .5,2⎛⎫+∞ ⎪ ⎪⎝⎭D .5,4⎛⎫+∞⎪⎝⎭10.已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B 在x 轴上的射影为点C ,ABC △的面积为()S θ,则函数()S θ的图象大致是( ).A .B .C .D .11.已知A BCD -是球O 的内接三棱锥,球O 的半径为2,且4AC =,2BD =,π3ACD ACB ∠=∠=,则点A 到平面BCD 的距离为( ).A.263B.463C.233D.43312.已知函数()π4sin26f x x⎛⎫=-⎪⎝⎭,43π0,3x⎡⎤∈⎢⎥⎣⎦,若函数()()3F x f x=-的所有零点依次记为1x,2x,3x,…,nx,且123nx x x x<<<<L,则1231222n nx x x x x-+++++=L().A.1190π3B.1192π3C.398πD.1196π3二、填空题:13.已知函数()()3211f x x xf'=+-,则函数()f x在()()1,1f处的切线方程为______.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为______.15.已知椭圆()2222:10x yC a ba b+=>>的左焦点为F,A、B分别为C的右顶点和上顶点,直线FB与直线x a=的交点为M,若2BM FB=u u u u r u u u r,且AFM△的面积为932,则椭圆的标准方程为______.16.我们把一系列向量()1,2,,ia i n=rL按次序排列成一列,称之为向量列,记作{}i a r.已知向量列{}i a r满足:()11,1a=r,()()()11111,,22n n n n n n na x y x y x y n----==-+≥r,设nθ表示向量1na-r与nar的夹角,若2πn nnbθ=,对于任意正整数n()1221111log122nn n nab b b++>-L恒成立,则实数a的取值范围是______.三、解答题:解答应写出文字说明、证明过程或推演步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据需求作答.(一)必考题17.在ABC△中,角A、B、C所对的边分别为a、b、c,且222cos cos sin sin sinC B A A C-=-.(1)求角B的值;(2)若7a c+=,13b=ABC△的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI ),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI 的平均值为依据播报该市的空气质量.(1)若某日播报的AQI 为119,已知轻度污染区AQI 平均值为70,中度污染区AQI 平均值为115,求重试污染区AQI 平均值;(2)如图是2018年11月份30天的AQI 的频率分布直方图,11月份仅有1天AQI 在[)140,150内.①某校参照官方公布的AQI ,如果周日AQI 小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;②环卫部门从11月份AQI 不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI 值不小于200的天数的分布列和数学期望.19.如图,在直三棱柱111ABC A B C -中,1AB AC AA ==,2π3BAC ∠=,E 、F 分别为AB 、11B C 的中点,G 为线段1CC 上的动点.(1)证明://EF 平面11AAC C ;(2)当二面角11F AG C --的余弦值为2114时,证明:1BF A G ⊥.20.已知抛物线2:4C y x =,过点()2,0P 的直线与抛物线C 相交于M 、N 两点.(1)若点Q 是点P 关于坐标原点O 的对称点,求MQN △面积的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以PM 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由.21.已知函数()2ln 2f x x x ax =+-. (1)讨论函数()f x 的单调性;(2)当1a =时,判断并说明函数()()3cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间[](),,m n m n ∈∈Z Z 内,求n m -的最小值.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系Ox . (1)求曲线C 的极坐标方程;(2)已知A 、B 是曲线C 上任意两点,且π4AOB ∠=,求OAB △面积的最大值.23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足3a b c ++=.(13; (2)证明:9412ab bc ac abc ++≥.参考答案1.D【解析】{}{}231,0,1,2N x x =∈-<<=-N ,故{}2,1,0,1,2M N ⋃=--,故选D . 2.B【解析】在复平面内z 所对应的点在第一象限,有0a >,10a ->,得01a <<, 故“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的必要不充分条件,故选B . 3.D【解析】因为()f x 是奇函数,所以()()π122sin 4322f f ⎡⎤-=-=-+⨯=-⎢⎥⎣⎦,故选D . 4.B【解析】由题得140661a ==>=,33444log log 1021b =<=,2.9110133c ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,故有a c b >>,故选B . 5.C【解析】因为向量a r 与向量()4,6m =r 平行,可设3,2a k k ⎛⎫= ⎪⎝⎭r, 由14a b ⋅=r r 可得35142k k -+=,得4k =-,所以()4,6a =--r,故选C .6.C【解析】由22⨯列联表得到40a =,10b =,25c =,25d =,代入()()()()()22n ad cb K a b c d a c b d -=++++,解得()2210010002509.8950506535K ⨯-=≈⨯⨯⨯,因为6.6359.8910.828<<,所以有99%以上的把握认为“支付方式与性别有关”,故选C . 7.D【解析】输入1a =时,0211s =⨯+=,011k =+=,此时12k =>不成立; 输入2a =时,1224s =⨯+=,112k =+=,此时22k =>不成立;输入4a =时,42412s =⨯+=,213k =+=,此时32k =>成立; 输出的S 的值为12,故选D . 8.A【解析】由1231n n a a a +++=-L ,当2n ≥时,112131n n a a a --+++=-L ,两式相减得()1232n n a n -=⨯≥,又12a =,满足123n n a -=⨯,则123n n a -=⨯.所以数列{}n a 是首项为12a =,公比3q =的等比数列,则{}2n a 是首项为214a =,29q =的等比数列,故()2221241991192n n na a a --+++==-L ,故选A . 9.C【解析】双曲线的渐近线为b y x a =±,且“右”区域是由不等式组b y x ab y xa ⎧<⎪⎪⎨⎪>-⎪⎩所确定,又点()2,1在“右”区域内,于是有21b a <,即12b a >,因此双曲线的离心率2e ⎛⎫=+∞ ⎪ ⎪⎝⎭,故选C . 10.A【解析】由题知点()2,0A ,点()2cos ,2sin B θθ,则()()1122cos 2sin 022S AC BC θθθ=⨯⋅=-⋅≥,故排除A 、B , 又因为当3π4θ=时,()2S θ>,故选A .11.B【解析】由题意知A ,B ,C ,D 四点都落在球面上,且AC 为直径, 所以AC 的中点即为球心O ,所以π2ADC ABC ∠=∠=, 因为4AC =,π3ACD ACB ∠=∠=,所以2BC CD ==, 又知2BD =,所以BCD △为正三角形,取BCD △中心H , 则OH ⊥面BCD ,所以OH HC ⊥,233CH =, 因为2OC =,所以263OH =.又因为AC 中点为O ,所以点A 到平面BCD 的距离为点O 到平面BCD 的246,故选B . 12.A【解析】函数()π4sin 26f x x ⎛⎫=- ⎪⎝⎭, 令ππ2π62x k -=+,得1ππ23x k =+,k ∈Z , 即()f x 的对称轴方程为1ππ23x k =+,k ∈Z ,因为()f x 的最小正周期为πT =,43π03x ≤≤,当0k =时,可得y 轴右侧第一条对称轴为π3x =,当28k =时,43π3x =,所以()f x 在43π0,3⎡⎤⎢⎥⎣⎦上有28条对称轴, 根据正弦函数性质可知,函数()π4sin 26f x x ⎛⎫== ⎪⎝⎭与3y =的交点有29个, 且1x ,2x 关于π3对称,2x ,3x 关于5π6对称,…, 即122π26x x +=⨯,235π26x x +=⨯,…,282983π26x x +=⨯, 以上各式相加得:12328292π5π83π1190π22226663x x x x x ⎛⎫+++++=+++= ⎪⎝⎭L L , 故选A .13.330x y ++=【解析】因为()()2321f x x f ''=+,则()()1321f f ''=+,得()13f '=-,则()()11236f =+⨯-=-,故切线方程为()()631y x --=--,即330x y ++=. 14.38【解析】设拼成的正方形得面积为1, 由图知,最大的三角形面积为14,最小的三角形面积为116, 平行四边形的面积是最小三角形面积的2倍, 由此可得阴影部分的面积为38,则所求的概率为38. 15.22143x y += 【解析】由2BM FB =u u u u r u u u r,且//OB AM (O 为坐标原点),得13OF OB AF AM ==,所以2a c =,3AM b =,b =,又因为()132AFM S a c b =+⨯=△,解得1c =, 所以2a =,b =22143x y +=. 16.()1【解析】11cos n nn n na a a a θ--⋅=u u u r u u ru u u r u u r()()()11111111,,n n n n n n x y x y x y ------⎛⎫⋅-+ ⎪=2211112n n x y --+==,所以π4n θ=,故24n n b =222122n n n=+++++L L ,令()222122f n n n n=+++++L , 则()()()22222212321122f n f n n n n n n n ⎛⎫⎛⎫+-=+++-+++⎪ ⎪ ⎪+++++⎝⎭⎝⎭L L 2202122n n =->++, 所以()f n 单调递增,所以()()min 11f n f ==,则()11log 122n a >-, 因为120a ->,所以102a <<,则212a a ->,解得11a -<<-综上所述,()1a ∈.17.【解析】(1)由222cos cos sin sin sin C B A A C -=-得222sin sin sin sin sin B C A A C -=-,由正弦定理得222b c a ac -=-,即222a cb ac +-=,所以2221cos 22a cb B ac +-==, 因为0πB <<,所以π3B =. (2)由(1)得222222cos b a c ac B a c ac =+-=+-, 即2213a c ac +-=,所以()2313a c ac +-=,即12ac =,所以11sin 12222ABC S ac B ==⨯⨯=. 18.解:(1)设重度污染区AQI 平均值为x , 则119970211543x ⨯=⨯+⨯+,解得157x =. (2)①AQI 在[)140,170上的有830308900⨯⨯=天, AQI 在[)170,200上的有530305900⨯⨯=天, AQI 在[)200,230上的有230302900⨯⨯=天, 所以11月份AQI 不小于150天的共852114++-=天. 即能参加户外活动的概率为14813015P =-=.②AQI 不小于170天的共7天,不小于200天的共2天,x 的所有可能取值为0,1,2.()8387207C P x C ===,()213237417C C P x C ===,()123237127C C P x C ===, 所以x 的分布列为 x 0 1 2P27 47 17 则24160127777EX =⨯+⨯+⨯=. 19.【解析】(1)证明:取BC 的中点M ,连接EM 、FM ,因为E 、F 分别为AB 、11B C 的中点,所以//EM AC ,1//MF CC ,EM MF M ⋂=,1AC CC C ⋂=,所以平面//EMF 平面11AAC C ,又因为EF ⊂平面EMF ,EF ⊄平面11AAC C ,所以//EF 平面11AAC C .(2)不妨设11AB AC AA ===,由余弦定理得113B C =,如图建立空间直角坐标系1A xyz -,设()0,1,G h ,131,022B ⎛⎫- ⎪ ⎪⎝⎭,31,122B ⎛⎫- ⎪ ⎪⎝⎭,()1/C 0,1,0EF , 所以31,,044F ⎛⎫ ⎪ ⎪⎝⎭,设平面1A FG 的一个法向量为(),,m x y z =r , 则()10,1,AG h =u u u u r ,131,04A F ⎫=⎪⎪⎝⎭u u u u r ,则1100A G m A F m ⎧⋅=⎪⎨⋅=⎪⎩u u u u r r u u u u r r,得0104y hz x y +=⎧+=,可取(,m h =r ,易知平面11AGC 的一个法向量为()1,0,0n =r,所以cos ,14m n m n m n ⋅===⋅r r r r r r ,解得34h =,此时3,14BF ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,130,1,4A G ⎛⎫= ⎪⎝⎭u u u u r , 所以10BF AG ⋅=u u u r u u u u r ,即1BF A G ⊥. 20.【解析】依题意,点Q 的坐标为()2,0Q -,可设()11,M x y ,()22,N x y , 直线MN 的方程为2x my =+,联立224x my y x =+⎧⎨=⎩,得2480y my --=, 则124y y m +=,128y y ⋅=-, 所以12142MQN S y y =⨯⨯-==≥△, 即当0m =时,MQN △面积的最小值为(2)假设满足条件的直线l 存在,其方程为x a =,则以PM 为直径的圆的方程为()()()1120x x x y y y --+-=,将直线x a =代入,得()()21120y y y a a x -+--=,则()()()()2111424120y a a x a x a a ∆=---=-+->⎡⎤⎣⎦, 设直线l 与以PM 为直径的圆的交点为()3,A a y ,()4,B a y ,则341y y y +=,()()3412y y a a x ⋅=--,于是有34AB y y =-==,当10a -=,即1a =时,2AB =为定值.故满足条件的直线l 存在,其方程为1x =.21.【解析】(1)()2ln 2f x x x ax =+-的定义域为()0,+∞,()2122122ax x f x ax x x-++'=+-=, 当0a =时,()210x f x x+'=>,所以()f x 在()0,+∞上单调递增; 当0a <时,所以()f x 在()0,+∞上单调递增;当0a >时,令22210ax a -++=,得x =x =.当10,2x a ⎛+∈ ⎝⎭时,()0f x '>,当12x a ⎛⎫+∈+∞⎪ ⎪⎝⎭时,()0f x '<,所以()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 综上所述,当0a ≤时,()f x 在()0,+∞上单调递增.当0a >时,()f x 在⎛ ⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. (2)当1a =时,()2ln 23cos g x x x x x =+--, 当(]0,1x ∈时,()2ln 2f x x x x =+-单调递增, ()()11f x f ≤=,π33cos 3cos13cos32x ≥>=, 则()0g x <,故不存在零点. 当π1,2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+, ()122f x x x '=+-在π1,2⎛⎤ ⎥⎝⎦上单调递减, 所以()π22π2πf x f ⎛⎫''≥=+-⎪⎝⎭,π33sin 3sin13sin 62x >>=,所以()232π0π2g x '>+-+>,所以()g x 单调递增. 又()113cos10g =-<,2πππln π0224g ⎛⎫=+-> ⎪⎝⎭, 所以存在唯一的1π1,2x ⎛⎤∈ ⎥⎝⎦,使得()10g x =. 当π,π2x ⎛⎤∈ ⎥⎝⎦时,()1223sin g x x x x '=+-+,()2123cos 0g x x x ''=--+<, 所以()g x '单调递减, 又π22π302πg ⎛⎫'=+-+> ⎪⎝⎭,()1π22π0πg '=+-<, 所以存在0π,π2x ⎛⎤∈⎥⎝⎦,使得()00g x '=, 当0π,2x x ⎛⎤∈ ⎥⎝⎦,()00g x '>,()g x 单调递增; 当(]0,πx x ∈,()00g x '<,()g x 单调递减; 又π02g ⎛⎫> ⎪⎝⎭,()2πln π2ππ30g =+-+>. 因此,()0g x >在π,π2x ⎛⎤∈⎥⎝⎦上恒成立,故不存在零点. 当(]π,4x ∈时,()2123cos 0g x x x''=--+<, 所以()g x '单调递减, 因为()π0g '<,所以()0g x '<,()g x 单调递减.又()π0g >,()4ln 48163cos40g =+--<,所以存在唯一的(]2π,4x ∈,使得()20g x =,当()4,x ∈+∞时,()22123320g x x x x x x <-+-+=-++<,故不存在零点. 综上,()g x 存在两个零点1x ,2x ,且1π1,2x ⎛⎤∈ ⎥⎝⎦,(]2π,4x ∈, 因此n m -的最小值为3.22.【解析】(1)消去参数α,得到曲线C 的标准方程为()2224x y -+=, 故曲线C 的极坐标方程为4cos ρθ=.(2)在极坐标系Ox 中,设()10,A ρθ,20π,4B ρθ⎛⎫+⎪⎝⎭, 其中10ρ>,20ρ>,0ππ22θ-<<, 由(1)知:104cos ρθ=,20π4cos 4ρθ⎛⎫=+⎪⎝⎭,则OAB △的面积12001ππsin cos 244S ρρθθ⎛⎫==+ ⎪⎝⎭, 即2000004cos 4sin cos 2cos 22sin 2S θθθθθ=-=-+0π2624θ⎛⎫=++ ⎪⎝⎭,当0π8θ=-时,max 2S =,所以OAB △面积的最大值为2.23.【解析】(1)证明:因为a ,b 为正数,所以a b +≥,同理可得b c +≥a c +≥,则()2a b c ++≥当且仅当1a b c ===时,等号成立.3≤.(2)证明:要证9412ab bc ac abc ++≥, 只要证14912a b c++≥即可, 即证()14936a b c a b c ⎛⎫++++≥⎪⎝⎭, 即证499414936b a a c b c a b c a c b++++++++≥, 即证499422b a a c b c a b c a c b+++++≥,因为44a b b a +≥=,96a c c a +≥=,9412b c c b+≥=,所以499422 b a a c b ca b c a c b+++++≥,当且仅当12a=,1b=,32c=时等号成立,得证.。

2020年四川省乐山市高考数学三诊试卷(理科)(有答案解析)

2020年四川省乐山市高考数学三诊试卷(理科)一、选择题(本大题共12小题,共36.0分)1.已知集合0,,,则A. 0,1,2,B. 0,1,2,C. 0,1,D. 0,1,2.已知复数为虚数单位,,则“”是“在复平面内复数z所对应的点位于第一象限”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知函数是奇函数,且时,,则A. 2B.C. 3D.4.已知,,,则A. B. C. D.5.已知向量与向量平行,,且,则A. B.C. D.6.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民男女居民各50名喜欢支付宝支付还是微信支付,得到如表的列联表:支付方式支付宝支付微信支付性别男4010女2525附表及公式:,k则下列结论正确的是A. 在犯错的概率不超过的前提下,认为“支付方式与性别有关”B. 在犯错的概率超过的前提下,认为“支付方式与性别有关”C. 有以上的把握认为“支付方式与性别有关”D. 有以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入,,依次输入a为1,2,4,则输出的S的值为A. 4B. 10C. 11D. 128.数列中,已知对任意,,则A. B. C. D.9.双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域不含边界,若点在“右”区域内,则双曲线离心率e的取值范围是A. B. C. D.10.已知角的始边与x的非负半轴重合,与圆C:相交于点A,终边与圆C相交于点B,点B在x轴上的射影为点C,的面积为,则函数的图象大致是A. B.C. D.11.已知是球O的内接三棱锥,球O的半径为2,且,,,则点A到平面BCD的距离为A. B. C. D.12.已知函数,,若函数的所有零点依次记为,,,,,且,则A. B. C. D.二、填空题(本大题共4小题,共12.0分)13.已知函数,则函数在处的切线方程为______.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为______.15.已知椭圆C:的左焦点为F,A、B分别为C的右顶点和上顶点,直线FB与直线的交点为M,若,且的面积为,则椭圆的标准方程为______.16.我们把一系列向量2,,按次序排列成一列,称之为向量列,记作已知向量列满足:,,设表示向量与的夹角,若,对于任意正整数n,不等式恒成立,则实数a的取值范围是______.三、解答题(本大题共7小题,共84.0分)17.在中,角A、B、C所对的边分别为a、b、c,且.求角B的值;若,,求的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数,其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI的平均值为依据播报该市的空气质量.若某日播报的AQI为119,已知轻度污染区AQI平均值为70,中度污染区AQI平均值为115,求重度污染区AQI平均值;如图是2018年11月份30天的AQI的频率分布直方图,11月份仅有1天AQI在内.某校参照官方公布的AQI,如果周日AQI小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;环卫部门从11月份AQI不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI值不小于200的天数的分布列和数学期望.19.如图,在直三棱柱中,,,E、F分别为AB、的中点,G为线段上的动点.证明:平面;当二面角的余弦值为时,证明:G.20.已知抛物线C:,过点的直线与抛物线C相交于M、N两点.若点Q是点P关于坐标原点O的对称点,求面积的最小值;是否存在垂直于x轴的直线l,使得l被以PM为直径的圆截得的弦长恒为定值?若存在,求出l的方程和定值;若不存在,说明理由.21.已知函数.讨论函数的单调性;当时,判断并说明函数的零点个数.若函数所有零点均在区间,内,求的最小值22.在平面直角坐标系xOy中,曲线C的参数方程为为参数,以O为极点,x轴的正半轴为极轴,建立极坐标系Ox.Ⅰ求曲线C的极坐标方程;Ⅱ已知A,B是曲线C上任意两点,且,求面积的最大值.23.已知a,b,c为正数,且满足.证明:.证明:.-------- 答案与解析 --------1.答案:D解析:解:集合0,,0,1,,故0,1,,故选:D.求出集合M,N,由此能求出.本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.答案:B解析:解:对应点的坐标为,若在复平面内复数z所对应的点位于第一象限,则得,得,则“”是“在复平面内复数z所对应的点位于第一象限”的必要不充分条件,故选:B.根据复数的几何意义,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合复数的几何意义以及点与象限之间的关系是解决本题的关键.3.答案:D解析:解:因为是奇函数,所以,故选:D.由已知奇函数可得,代入即可直接求解.本题主要考查了利用奇函数的性质求解函数值,属于基础试题.4.答案:B解析:解:依题意,,所以,故选:B.本题考查指数函数的性质,对数函数的性质,比较大小,属于基础题.利用指数函数和对数函数的性质,即可求解.5.答案:B解析:解:因为向量与向量平行,可设,由可得,得,所以,故选:B.设出向量,利用向量的数量积转化求解即可.本题考查向量的数量积的应用,向量共线的充要条件的应用,考查坐标运算,是基础题.6.答案:C解析:解:由列联表得到,,,,代入,解得,,有以上的把握认为“支付方式与性别有关”,故选:C.由列联表中的数据结合公式求得,再结合临界值表得结论.本题考查独立性检验,考查计算能力,是基础题.7.答案:D解析:解:模拟程序的运行,可得输入时,,,此时不成立;输入时,,,此时不成立;输入时,,,此时成立;输出的S的值为12.故选:D.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.8.答案:A解析:解:当,得,又,符合,为等比数列,首项,公比为,为等比数列,首项,公比为,故.由已知条件推导出,由此求出为等比数列,首项,公比为,从而能求出的值.本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意构造法的合理运用.9.答案:B解析:解:双曲线的一条渐近线方程为:,点在“右”区域内,,即,,又,则双曲线离心率e的取值范围是.故选:B.由于双曲线的一条渐近线方程为:,及点在“右”区域内,得出,从而得出双曲线离心率e的取值范围.本小题主要考查双曲线的简单性质、不等式组与平面区域、不等式的性质等基础知识,考查运算求解能力与转化思想.属于基础题.10.答案:A解析:解:由题知,点,点,点,则,故排除选项C和D,又因为当时,,排除选项B.故选:A.由题可知,点,点,点,则,故排除选项C和D,又因为当时,,排除选项B,可得所求图象.本题考查函数的图象与应用,考查学生的分析能力和运算能力,属于基础题.11.答案:B解析:解:如图,由球O的半径为2,且,可知AC为球O的直径,又B,D均在球O的表面上,可得,又,,则.取BD中点G,连接AG,CG,得,,又,平面AGC,在中,求得,在中,求得,又,由余弦定理可得,则...又,设A到平面BCD的距离为h,由,得.平面BCD的距离为.故选:B.由题意画出图形,可得,再由,得到BC、CD、AB、AD的长,取BD中点G,连接AG,CG,得,,分别求出三角形AGC与三角形BCD的面积,则由等体积法求A到平面BCD的距离.本题考查空间中点、线、面间的距离计算,考查空间想象能力与思维能力,考查计算能力,训练了利用等体积法求解点到面的距离,是中档题.12.答案:A解析:解:函数,,令得,,即的对称轴方程为,.的最小正周期为,,当时,可得第一根对称轴,当时,可得,在上有29条对称轴,根据正弦函数的性质可知:函数,与的交点有29个点,即,关于对称,,关于对称,,即,,,,将以上各式相加得:故选:A.函数的所有零点,转化为函数,与的交点问题,求出函数的对称轴,根据的对称性得出任意两相邻两零点的和,从而得出答案.本题考查了正弦函数的图象与性质,函数对称性的应用,属于中档题.13.答案:解析:解:因为,则,得,则,故切线方程为,即.故答案为:.求得函数的导数,再令,可得切线的斜率,求得,可得切点,再由点斜式方程可得切线的方程.本题考查导数的运用:求切线的方程,考查直线方程的运用,考查方程思想和运算能力,属于基础题.14.答案:解析:解:设拼成的正方形的面积为1,由图知,最大的三角形面积为,最小的三角形面积为,平行四边形的面积是最小三角形面积的2倍,由此可得阴影部分的面积为,则所求的概率为.故答案为:.设出大正方形的面积,求出阴影部分的面积,从而求出满足条件的概率即可.本题考查了几何概型问题,考查面积之比,是一道基础题.15.答案:解析:解:由,且为坐标原点,得,所以,,,又因为,解得,所以,,故椭圆的标准方程为.故答案为:.由,且为坐标原点,可得,可得a,c的关系,及面积的值可得a,b的值,进而求出椭圆的方程.本题考查椭圆的性质及面积公式,属于中档题.16.答案:解析:解:,所以,故,,令,则,所以单调递增,所以,则,因为,所以,则,解得,综上所述,.故答案为:.运用向量的夹角公式,可得,,令,判断的单调性,求得的最小值,可得关于a的不等式,解不等式可得所求范围.本题考查数列与向量的综合,考查数列的单调性和不等式恒成立问题,考查化简运算能力、推理能力,属于中档题.17.答案:解:由,得,由正弦定理得,即,所以;又因为,所以.由得,即,所以,即,所以.解析:利用三角恒等变换和正弦、余弦定理,即可求得B的值;利用余弦定理和三角形面积公式,即可求出三角形的面积.本题考查了三角恒等变换和解三角形的应用问题,也考查了运算求解能力,是中档题.18.答案:解:设重度污染区AQI平均值为x,则,解得.重度污染区AQI平均值为157.在上的有天,AQI在上的有天,AQI在上的有天,所以11月份AQI不小于150天的共天.即能参加户外活动的概率为.不小于170天的共7天,不小于200天的共2天,x的所有可能取值为0,1,2.,,,X 0 1 2P.解析:设重度污染区AQI平均值为x,利用频率分布直方图的性质列出方程,能求出重度污染区AQI平均值.在上的有天,AQI在上的有天,AQI在上的有天,由此能求出11月份AQI不小于150天的共14天.从而能求出能参加户外活动的概率.不小于170天的共7天,不小于200天的共2天,x的所有可能取值为0,1,分别求出相应的概率,由此能求出X的分布列和数学期望.本题考查平均值、概率、离散型随机变量的分布列、数学期望的求法,考查频率分布直方图、古典概型等基础知识,考查运算求解能力,是中档题.19.答案:证明:取BC的中点M,连接EM、FM,因为E、F分别为AB、的中点,所以,,,,所以平面平面,又因为平面EMF,平面,所以平面C.解:不妨设,由余弦定理得,如图建立空间直角坐标系,设1,,,,1,,E 、F分别为AB、的中点,G为线段上的动点.所以,设平面的一个法向量为,则,,则,,可得,可取,易知平面的一个法向量为,所以,解得,此时,,所以,即G.解析:取BC的中点M,连接EM、FM,推出平面平面,然后证明平面C.不妨设,建立空间直角坐标系,设1,,,求出设平面的一个法向量,平面的一个法向量.利用空间向量的数量积求解二面角,推出h,然后证明,得到G.本题考查二面角的平面角的求法,直线与平面平行的判定定理的应用,考查空间想象能力以及逻辑推理能力以及计算能力,是中档题.20.答案:解:依题意,点Q的坐标为,可设,,直线MN的方程为,联立,得,则,,所以,即当时,面积的最小值为.假设满足条件的直线l存在,其方程为,则以PM为直径的圆的方程为,将直线代入,得,则,设直线l与以PM为直径的圆的交点为,,则,,于是有,当,即时,为定值.故满足条件的直线l存在,其方程为.解析:求出点Q的坐标,可设,,直线MN的方程为,联立,得,利用韦达定理,结合三角形的面积,求解即可.假设满足条件的直线l存在,其方程为,得到PM为直径的圆的方程为,将直线代入,得,利用韦达定理以及判别式大于0,弦长公式求出,然后求解直线方程.本题考查直线与抛物线的位置关系的综合应用,考查转化思想以及计算能力,是中档题.21.答案:解:函数的定义域为,,当时,,故函数在上单调递增;当时,,,故函数在上单调递增;当时,令,解得舍,当时,,当时,,故函数在上单调递减,在上单调递增;当时,,,当时,单调递增,,则,函数不存在零点;当时,在上单调递减,,,单增,又,存在唯一,使得;当时,,单减,又,存在,使得,在递增,在递减,又,在恒成立,不存在零点;当时,,单减,又,,单减,又,,存在唯一,使得,;当时,,故不存在零点;综上,存在两个零点的最小值为3.解析:求导,分,及分别讨论导函数与0的关系,进而得出单调性情况;求出,分,,,分别讨论零点情况,由此即可得出结论.本题考查利用导数研究函数的单调性,极值及最值,以及函数的零点问题,考查分类讨论思想及运算求解能力,属于较难题目.22.答案:解:Ⅰ消去参数,得到曲线C的标准方程为:,故曲线C的极坐标方程为Ⅱ极坐标系OX中,不妨设,,其中,,,由Ⅰ知:,,的面积,,当时,即,有最大值1,此时,故的面积的最大值为.解析:Ⅰ消去参数,得到曲线C的标准方程为:,故曲线C的极坐标方程为Ⅱ根据极径的几何意义、面积公式、三角函数的性质可得.本题考查了简单曲线的极坐标方程,属中档题.23.答案:证明:,b,c为正数,,,,,当且仅当时取等号,.方法一:要证,只需证,即证,即证,即证,因为,,,,当且仅当,,取等号,从而.方法二:要证,只需证,即证,根据柯西不等式可得,当且仅当,,取等号.从而.解析:根据基本不等式,借助综合法即可证明,方法一:利用分析法,根据基本不等式即可证明,方法一:利用分析法,根据柯西不等式即可证明.本题考查了不等式的证明,考查了转化思想,属于中档题.。

2019-2020年高三第三次质量调研数学(理)试题 含答案

2019-2020年高三第三次质量调研数学(理)试题 含答案一.填空题(每小题4分,满分56分)1.已知C ∈x ,且42-=x ,则=x ____________.2.方程1lg )3lg(=+-x x 的解=x ____________.3.已知集合},082{2Z ∈<-+=x x x x A ,集合},3|2|{R ∈<-=x x x B ,则=B A __________. 4.函数⎪⎭⎫ ⎝⎛-=32cos 2πx y 的单调递减区间是__________________________.5.若函数ax x y -+=12的图像关于直线x y =对称,则实数a 的值为_____________.6.若圆柱的侧面展开图是边长为4和2的矩形,则圆柱的体积为_________________.7.已知α、β均为锐角,且)sin()cos(βαβα-=+,则=αtan ___________.8.已知向量)sin ,(cos θθ=a(],0[πθ∈),)1,3(-=b ,则|2|b a -的取值范围是________. 9.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧+-=+=θθsin 23cos 22y x (θ为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,若直线l 上两点A 、B 的极坐标分别为)0,2(、)2,332(π,则直线l 与圆C 的位置关系是____________.10.计算:=+++++++∞→nnn n nn C C C 212421lim ____________. 11.若函数)(x f 是R 上的奇函数,)(x g 是R 上的偶函数,且满足xe x g xf =-)()(,将)2(f 、)3(f 、)0(g 按从小到大的顺序排列为___________________.12.在等差数列}{n a 中,0≠n a ,当2≥n 时,0121=+-+-n nn a a a ,n S 为}{n a的前n 项和,若4612=-k S ,则=k __________.13.如图,F 为双曲线12222=-by ax (0>>a b )的右焦点,过F 作直线l 与圆222b y x =+切于点M ,与双曲线交于点P ,且M 恰为线段PF 的中点,则双曲线的渐近线方程是________________________. 14.函数)cos()(x x f π=与函数||1|log |)(2-=x x g 的图像所有交点的横坐标之和为___________. 二.选择题(每小题5分,满分20分)15.“122<+b a ”是“1||<a ,1||<b ”的……………………………………………………………( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 16.已知随机变量ξ的分布律如下:x)(x P =ξ其中a ,b ,c 成等差数列,若ξ的均值34)(=ξE ,则ξ的方差)(ξD 等于……………………( ) A .91 B .31 C . 95 D . 9717.已知平面上三条直线012=+-y x ,01=-x ,0=+ky x ,如果这三条直线将平面分为六部分,则实数k 的个数是……………………………………………………………………………………( ) A .4 B .3 C .2 D .111第13题的取值范围是……………………………………………………………………………………………( ) A .)3,1( B .)5,3( C .),2(∞+ D .),1(∞+ 三.解答题(本大题共有5题,满分74分) 19.(本题满分12分,第1小题6分,第2小题6分)如图,在四棱锥ABCD P -中,底面ABCD 是边长为1的正方形,⊥PA 底面ABCD ,点M 是棱PC 的中点,⊥AM 平面PBD .(1)求四棱锥ABCD P -的体积;(2)求直线PC 与平面AMD 所成角的大小.20.(本题满分14分,第1小题6分,第2小题8分)如图,某市拟在长为8千米的道路OP 的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM ,该曲线段为函数x A y ωsin =(0>A ,0>ω),]4,0[∈x 的图像,且图像的最高点为)32,3(S ;赛道的后一部分为折线段MNP ,为保证参赛运动员的安全,限定2π=∠MNP (1)求A ,ω的值和线段MP 的长;(2)设θ=∠PMN ,问θ为何值时,才能使折线段赛道MNP 最长? PA B D M21.(本题满分14分,第1小题6分,第2小题8分)在等比数列}{n a 中,公比1≠q ,等差数列}{n b 满足311==a b ,24a b =,313a b =. (1)求数列}{n a 与}{n b 的通项公式;(2)记n n nn a b c +⋅-=)1(,求数列}{n c 的前n 项和n S .22.(本题满分16分,第1小题4分,第2小题6分,第3小题6分)已知点)0,2(-A ,)0,2(B ,动点C 、D 依次满足2||=AC ,)(21AC AB AD +=. (1)求动点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,若线段MN 的中点到y 轴的距离为54,且直线l 与圆122=+y x 相切,求该椭圆的方程;(3)经过(2)中椭圆的上顶点G 作直线m 、n ,使n m ⊥,直线m 、n 分别交椭圆于点P 、Q .求证:PQ 必过y 轴上一定点.23.(本题满分18分,第1小题4分,第2小题6分,第3小题8分)已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上的最大值为4,最小值为1,记|)(|)(x g x f =.(1)求实数a ,b 的值;(2)若不等式)2()(log 2f k f >成立,求实数k 的取值范围;(3)对于任意满足q x x x x x p n n =<<<<<=-1210 (*N ∈n ,3≥n )的自变量0x ,1x ,2x ,…,n x ,如果存在一个常数0>M ,使得定义在区间],[q p 上的一个函数)(x m ,M x m x m x m x m x m x m n n ≤-++-+--|)()(||)()(||)()(|11201 恒成立,则称函数)(x m 为区间],[q p 上的有界变差函数.试判断函数)(x f 是否区间]3,1[上的有界变差函数,若是,求出M 的最小值;若不是,请说明理由.上海市嘉定区2014届高考第三次质量调研数学试卷(理)参考答案与评分标准一.填空题(每小题4分,满分56分) 1.i 2±; 2. 5; 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前乐山市高中2020届第三次调查研究考试理科数学学校:___________姓名:___________班级:___________考号:___________注意事项:注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上机密★启用前一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}2,0,1M =-,{}23N x x =∈-<<N ,则M N ⋃=( ). A .{}2,1,0,1,2,3-- B .{}2,0,1,2,3- C .{}2,0,1,2-D .{}2,1,0,1,2--2.已知复数()1i z a a =+-(i 为虚数单位,a ∈R ),则“()0,2a ∈”是“在复平面内z 所对应的点在第一象限”的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数()f x 是奇函数,且0x >时,()2π1sin 2f x x x =+,则()2f -=( ). A .2B .2-C .3D .3-4.已知a =344log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系是( ).A .a b c >>B .a c b >>C .b c a >>D .c a b >>5.已知向量a r 与向量()4,6m =r 平行,()5,1b =-r ,且14a b ⋅=r r ,则a =r( ).A.,1313⎛⎫⎪ ⎪⎝⎭B.,1313⎛⎫-- ⎪ ⎪⎝⎭C .()4,6--D .()4,66.支付宝和微信已经成为如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的22⨯列联表:附表及公式:()()()()()22n ad cb K a b c d a c b d -=++++,n a b c d =+++()2P K k >0.050 0.010 0.001 k3.8416.63510.828则下列结论正确的是( ).A .在犯错的概率不超过1%的前提下,认为“支付方式与性别有关”B .在犯错的概率超过1%的前提下,认为“支付方式与性别有关”C .有99.9%以上的把握认为“支付方式与性别有关”D .有99.9%以上的把握认为“支付方式与性别无关”7.秦九韶算法的主要功能就是计算函数多项式的值,如图是实现该算法的程序框图.执行该程序框图,若输入2x =,2n =,依次输入a 为1,2,4,则输出的S 的值为( ).A .4B .10C .11D .128.数列{}n a 中,已知对任意n *∈N ,1231n n a a a +++=-L ,则22212n a a a +++=L ( ).A .912n -B .912n +C .922n -D .922n +9.双曲线()222210,0x y a b a b-=>>的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点()2,1在“右”区域内,则双曲线的离心率e 的取值范围是( ).A .5⎛ ⎝⎭B .51,4⎛⎫⎪⎝⎭C .5⎫+∞⎪⎪⎝⎭D .5,4⎛⎫+∞⎪⎝⎭10.已知角θ的始边与x 的非负半轴重合,与圆22:4C x y +=相交于点A ,终边与圆C 相交于点B ,点B在x 轴上的射影为点C ,ABC △的面积为()S θ,则函数()S θ的图象大致是( ).A .B .C .D .11.已知A BCD -是球O 的内接三棱锥,球O 的半径为2,且4AC =,2BD =,π3ACD ACB ∠=∠=,则点A 到平面BCD 的距离为( ). A .26B .46C .23D .4312.已知函数()π4sin 26f x x ⎛⎫=-⎪⎝⎭,43π0,3x ⎡⎤∈⎢⎥⎣⎦,若函数()()3F x f x =-的所有零点依次记为1x ,2x ,3x ,…,n x ,且123n x x x x <<<<L ,则1231222n n x x x x x -+++++=L ( ).A .1190π3B .1192π3C .398πD .1196π3二、填空题:13.已知函数()()3211f x x xf '=+-,则函数()f x 在()()1,1f 处的切线方程为______.14.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它是由五块等腰直角三角形,一块正方形和一块平行四边形组成.如图是一块用七巧板组成的正方形,若在此正方形中任意取一点,则该点来自于阴影部分的概率为______.15.已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,A 、B 分别为C 的右顶点和上顶点,直线FB 与直线x a =的交点为M ,若2BM FB =u u u u r u u u r ,且AFM △93,则椭圆的标准方程为______.16.我们把一系列向量()1,2,,i a i n =r L 按次序排列成一列,称之为向量列,记作{}i a r .已知向量列{}i a r满足:()11,1a =r ,()()()11111,,22n n n n n n n a x y x y x y n ----==-+≥r,设n θ表示向量1n a -r 与n a r 的夹角,若2πn n n b θ=,对于任意正整数n ()1221111log 122n n n n a b b b ++>-L 恒成立,则实数a 的取值范围是______.三、解答题:解答应写出文字说明、证明过程或推演步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据需求作答. (一)必考题17.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,且222cos cos sin sin sin C B A A C -=-. (1)求角B 的值;(2)若7a c +=,13b =,求ABC △的面积.18.为了治理空气污染,某市设9个监测站用于监测空气质量指数(AQI ),其中在轻度污染区、中度污染区、重度污染区分别设有2、4、3个监测站,并以9个监测站测得的AQI 的平均值为依据播报该市的空气质量.(1)若某日播报的AQI 为119,已知轻度污染区AQI 平均值为70,中度污染区AQI 平均值为115,求重试污染区AQI 平均值;(2)如图是2018年11月份30天的AQI 的频率分布直方图,11月份仅有1天AQI 在[)140,150内.①某校参照官方公布的AQI ,如果周日AQI 小于150就组织学生参加户外活动,以统计数据中的频率为概率,求该校学生周日能参加户外活动的概率;②环卫部门从11月份AQI 不小于170的数据中抽取三天的数据进行研究,求抽取的这三天中AQI 值不小于200的天数的分布列和数学期望.19.如图,在直三棱柱111ABC A B C -中,1AB AC AA ==,2π3BAC ∠=,E 、F 分别为AB 、11B C 的中点,G 为线段1CC 上的动点.(1)证明://EF 平面11AAC C ;(2)当二面角11F AG C --的余弦值为2114时,证明:1BF A G ⊥.20.已知抛物线2:4C y x =,过点()2,0P 的直线与抛物线C 相交于M 、N 两点.(1)若点Q 是点P 关于坐标原点O 的对称点,求MQN △面积的最小值;(2)是否存在垂直于x 轴的直线l ,使得l 被以PM 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程和定值;若不存在,说明理由. 21.已知函数()2ln 2f x x x ax =+-. (1)讨论函数()f x 的单调性;(2)当1a =时,判断并说明函数()()3cos g x f x x =-的零点个数.若函数()g x 所有零点均在区间[](),,m n m n ∈∈Z Z 内,求n m -的最小值.(二)选考题22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线C 的参数方程为22cos 2sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点,x 轴的正半轴为极轴,建立极坐标系Ox . (1)求曲线C 的极坐标方程;(2)已知A 、B 是曲线C 上任意两点,且π4AOB ∠=,求OAB △面积的最大值. 23.[选修4-5:不等式选讲]已知a ,b ,c 为正数,且满足3a b c ++=.(13≤; (2)证明:9412ab bc ac abc ++≥.参考答案1.D 2.B 3.D 4.B 5.C 6.C7.D 8.A 9.C 10.A 11.B 12.A13.330x y ++= 14.3815.22143x y += 16.()111cos n nn n na a a a θ--⋅=u u u r u u ru u u r u u r()()()11111111,,n n n n n n x y x y x y ------⎛⎫⋅-+ ⎪=221111n n x y --+==,所以π4n θ=,故24n n b =222122n n n=+++++L L , 令()222122f n n n n=+++++L , 则()()()22222212321122f n f n n n n n n n ⎛⎫⎛⎫+-=+++-+++⎪ ⎪ ⎪+++++⎝⎭⎝⎭L L 2202122n n =->++, 所以()f n 单调递增,所以()()min 11f n f ==,则()11log 122n a >-, 因为120a ->,所以102a <<,则212a a ->,。

相关文档
最新文档