电磁感应精讲精练:法拉第电磁感应定律 典型习题 (1) 含答案

合集下载

高中物理法拉第电磁感应定律习题知识点及练习题含答案解析

高中物理法拉第电磁感应定律习题知识点及练习题含答案解析

高中物理法拉第电磁感应定律习题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。

t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。

在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。

求:(1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离;(3)ab 棒开始下滑至EF 的过程中回路中产生的热量。

【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。

【解析】 【详解】(1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。

(2)ab 棒在到达区域Ⅱ前做匀加速直线运动,a =sin mg mθ=gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得:1Blv t∆Φ=∆ 2(sin )x xB l IBI g t t θ⋅⋅= 解得2sin x lt g θ=ab 棒在区域Ⅱ中做匀速直线运动的速度12sin v gl θ=则ab 棒开始下滑的位置离EF 的距离21232x h at l l =+= (3)ab 棒在区域Ⅱ中运动时间222sin xl lt v g θ== ab 棒从开始下滑至EF 的总时间222sin x lt t t g θ=+= 感应电动势:12sin E Blv Bl gl θ==ab 棒开始下滑至EF 的过程中回路中产生的热量:Q =EIt =4mgl sin θ2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④(2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=E R⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mvI Rt-=4.如图甲所示,光滑导体轨道PMN 和P ′M ′N ′是两个完全一样的轨道,是由半径为r 的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M 和M ′点相切,两轨道并列平行放置,MN 和M ′N ′位于同一水平面上,两轨道之间的距离为L ,PP ′之间有一个阻值为R 的电阻,开关K 是一个感应开关(开始时开关是断开的),MNN ′M ′是一个矩形区域内有竖直向上的磁感应强度为B 的匀强磁场,水平轨道MN 离水平地面的高度为h ,其截面图如图乙所示.金属棒a 和b 质量均为m 、电阻均为R ,在水平轨道某位置放上金属棒b ,静止不动,a 棒从圆弧顶端PP ′处静止释放后,沿圆弧轨道下滑,若两导体棒在运动中始终不接触,当两棒的速度稳定时,两棒距离2222mR grx B L=,两棒速度稳定之后,再经过一段时间,b 棒离开轨道做平抛运动,在b 棒离开轨道瞬间,开关K 闭合.不计一切摩擦和导轨电阻,已知重力加速度为g .求:(1)两棒速度稳定时的速度是多少? (2)两棒落到地面后的距离是多少?(3)从a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热是多少? 【答案】(1)12gr v =rhx ∆=12Q mgr =【解析】 【分析】 【详解】(1)a 棒沿圆弧轨道运动到最低点M 时,由机械能守恒定律得:2012mgr mv =解得a 棒沿圆弧轨道最低点M 时的速度02v gr =从a 棒进入水平轨道开始到两棒达到相同速度的过程中,两棒在水平方向受到的安培力总是大小相等,方向相反,所以两棒的总动量守恒.由动量守恒定律得:012mv mv =解得两棒以相同的速度做匀速运动的速度01222gr v v ==(2)经过一段时间,b 棒离开轨道后,a 棒与电阻R 组成回路,从b 棒离开轨道到a 棒离开轨道过程中a 棒受到安培力的冲量大小:2222A B L xI ILBt BL Rit R∆Φ===由动量定理:21A I mv mv --=解得224grv =由平抛运动规律得,两棒落到地面后的距离()1222h rh x v v g ∆=-= (3)由能量守恒定律可知,a 棒开始运动至b 棒离开轨道的过程中,回路中产生的焦耳热:220111(2)22Q mv m v =- 解得:12Q mgr =5.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件: F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++6.如图所示,足够长的固定平行粗糙金属双轨MN 、PQ 相距d =0.5m ,导轨平面与水平面夹角α=30°,处于方向垂直导轨平面向上、磁感应强度大小B =0.5T 的匀强磁场中。

法拉第电磁感应定律及其应用-精美解析版 (1)

法拉第电磁感应定律及其应用-精美解析版 (1)

法拉第电磁感应定律及其应用-精美解析版 (1)1 4×3R=34R当导体棒向右运动的过程中,开始时的电阻值:R0=R1×(R1+R2)R1+(R1+R2)=916R当导体棒位于中间位置时,左右两侧的电阻值是相等的,此时:R中=3R2⋅3R23R2+3R2=34R>916R,可知当导体棒向右运动的过程中,开始时的电阻值小于中间位置处的电阻值,所以当导体棒向右运动的过程中电路中的总电阻先增大后减小。

A、导体棒由靠近ad边向bc边匀速滑动的过程中,产生的感应电动势E=BLv,保持不变,外电路总电阻先增大后减小,由欧姆定律分析得知电路中的总电流先减小后增大,即PQ中电流先减小后增大。

故A错误。

B、PQ中电流先减小后增大,PQ两端电压为路端电压,U=E−IR,可知PQ两端的电压先增大后减小。

故B错误;C、导体棒匀速运动,PQ上外力的功率等于回路的电功率,而回路的总电阻R先增大后减小,由P=E2R得知,PQ上外力的功率先减小后增大。

故C正确。

D、由以上的分析可知,导体棒PQ上的电阻始终大于线框的电阻,当导体棒向右运动的过程中电路中的总电阻先增大后减小,根据闭合电路的功率的分配关系与外电阻的关系可知,当外电路的电阻值与电源的内电阻相等时外电路消耗的电功率最大,所以可得线框消耗的电功率先增大后减小。

故D错误。

故选:C。

本题分段过程分析:当PQ从左端滑到ab中点的过程和从ab中点滑到右端的过程,抓住PQ产生的感应电动势不变.导体棒由靠近ab边向dc边匀速滑动的过程中,产生的感应电动势不变,外电路总电阻先增大后减小,由欧姆定律分析PQ两端的电压如何变化;由题意,PQ上外力的功率等于电功率,由P= E2,分析功率的变化;R当PQ从左端滑到ab中点的过程中,由于总电阻增大,则干路电流减小,PQcb回路的电阻减小,通过cb的电流增大,可知ab中电流减小;当PQ从ab中点滑到右端的过程中,干路电流增大,PQda回路的电阻增大,PQ两端的电压减小,可知ab中电流减小;根据矩形线框总电阻与PQ电阻的关系,分析其功率如何变化.当矩形线框的总电阻等于PQ 的电阻时,线框的功率最大.本题一要分析清楚线框总电阻如何变化,抓住PQ位于ad中点时线框总电阻最大,分析电压的变化和电流的变化;二要根据推论:外电阻等于电源的内阻时电源的输出功率最大,分析功率的变化.1.如图(a)所示,半径为r的带缺口刚性金属圆环固定在水平面内,缺口两端引出两根导线,与电阻R构成闭合回路.若圆环内加一垂直于纸面变化的磁场,变化规律如图(b)所示.规定磁场方向垂直纸面向里为正,不计金属圆环的电阻.以下说法正确的是()A. 0−1s内,流过电阻R的电流方向为a→bB. 1−2s内,回路中的电流逐渐减小C. 2−3s内,穿过金属圆环的磁通量在减小D. t=2s时,U ab=πr2B0D(济南一中)解:A、依据楞次定律,在0−1s 内,穿过线圈的向里磁通量增大,则线圈中产生顺时针方向感应电流,那么流过电阻R的电流方向为b→a,故A错误;B、在1−2s内,穿过线圈的磁通量均匀减小,根据法拉第电磁感应定律,则回路中的电流恒定不变,故B错误;C、在2−3s内,穿过金属圆环的磁通量在增大,故C错误;D、当t=2s时,根据法拉第电磁感应定律,S=πr2B0;E=△B△t因不计金属圆环的电阻,因此U ab=E=πr2B0,故D正确;故选:D。

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。

法拉第电磁感应定律习题知识点及练习题含答案

法拉第电磁感应定律习题知识点及练习题含答案

法拉第电磁感应定律习题知识点及练习题含答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00BSv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.如图所示,垂直于纸面的匀强磁场磁感应强度为B 。

法拉第电磁感应定律及答案

法拉第电磁感应定律及答案

法拉第电磁感应定律1、50匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场。

若线圈所围面积里磁通量随时间变化的规律如图所示,则在0到0.01秒内,线圈中感应电动势最大时刻为 O ,感应电动势为零的时刻为 D ,在0到D 时间内线圈中平均感应电动势为 0.4 。

2、如图两条平行且足够长的金属导轨置于磁感应强度为B 的匀强磁场中,B 的方向垂直导轨平面。

两导轨间距为L ,左端接一电阻R ,其余电阻不计。

长为2L 的导体棒ab 如图所示放置, 开始时ab 棒与导轨垂直,在ab 棒绕a 点紧贴导轨滑倒的过程中,通过R 的电荷量是 31/2BL 2/2R 。

3.如图所示,圆环a 和b 的半径之比R 1∶R 2=2∶1,且是粗细相同,用同样材料的导线构成,连接两环导线的电阻不计,匀强磁场的磁感应强度始终以恒定的变化率变化,那么,当只有a环置于磁场中与只有b 环置于磁场中的两种情况下,AB 两点的电势差之比为多少? 2:14、如图所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h =0.1m 的平行光滑的金属导轨MN 与PQ ,导轨的电阻忽略不计.在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻,导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交,交点为c 、d .当金属棒以速度v=4.0m/s 向左做匀速运动时,试求:(1)电阻R 中的电流强度大小和方向;0.4A(2)使金属棒做匀速运动的外力;0.02N(3)金属棒ab 两端点间的电势差.0.32V5、用相同导线绕制的边长为L 或2L (短边为L ,长边为2L )的四个闭合导体线框,以相同的速度分别匀速进入右侧匀强磁场,如图所示。

在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d 。

下列判断正确的是( B )A.U a < U b < U c < U dB.U a < U b < U d < U cC.U a = U b < U c = U d D .U b < U a < U d < U c6、固定在水平桌面上的金属框架cdef 处在竖直向下的匀强磁场中,金属棒ab 搁在框架上,可无摩擦地滑动.此时abcd 构成一个边长为L 的正方形,棒的电阻为r ,其余部分电阻不计,开始时磁感应强度为B0.(1)若从t =0时刻起,磁感应强度均匀增加,每秒增量为k ,同时保持棒静止,求棒中的感应电流,在图中标出感应电流的方向.Kl 2/R(2)在上述(1)的情况中,棒始终保持静止,当t =t 1时垂直于棒的水平拉力为多少?kl 3(B 0+kt 1)/R(3)若从t =0时刻起,磁感应强度逐渐减小,当棒以恒定速度v 向右做匀速运动时,可使棒中不产生感应电流,则磁感应强度怎样随时间变化?(写出B 与t 的关系式) LB 0/l+vt7、下列关于感应电动势大小的说法中,正确的是( D )A .线圈中磁通量变化越大,线圈中的感应电动势一定越大B .线圈中磁通量越大,感应电动势一定越大C .线圈放在磁感应强度越强的地方,感应电动势一定越大D .线圈中磁通量变化越快,感应电动势越8、如图中半径为r 的金属圆盘在垂直于盘面的匀强磁场B 中,绕O 轴以角速度ω沿逆时针方向匀速转动,则通过电阻R 的电流的大小和方向是(金属圆盘的电阻不计)( D)NN N N (a) (b) (c)(d)A .由c 到d ,I =Br 2ω/RB .由d 到c ,I =Br 2ω/RC .由c 到d ,I =Br 2ω/(2R )D .由d 到c ,I =Br 2ω/(2R ) 9、 一直升飞机停在南半球的地磁极上空。

2025届高中物理(人教版)一轮复习课时分层精练五十五:法拉第电磁感应定律 自感现象(含解析)

2025届高中物理(人教版)一轮复习课时分层精练五十五:法拉第电磁感应定律 自感现象(含解析)

课时分层精练(五十五) 法拉第电磁感应定律 自感现象基础落实练1.[2023·重庆卷]某小组设计了一种呼吸监测方案:在人身上缠绕弹性金属线圈,观察人呼吸时处于匀强磁场中的线圈面积变化产生的电压,了解人的呼吸状况.如图所示,线圈P 的匝数为N ,磁场的磁感应强度大小为B ,方向与线圈轴线的夹角为θ.若某次吸气时,在t 时间内每匝线圈面积增加了S ,则线圈P 在该时间内的平均感应电动势为( )A .NBS cos θtB .NBS sin θtC .BS sin θtD .BS cos θt2.(多选)以下哪些现象利用了电磁阻尼规律( )A .图甲中线圈能使上下振动的条形磁铁快速停下来B .图乙中无缺口的铝管比有缺口的铝管能更快使强磁铁匀速运动C .图丙中U 形磁铁可以使高速转动的铝盘迅速停下来D .图丁中转动把手时下面的闭合铜线框会随U 形磁铁同向转动3.[2024·四川成都高三校联考期中]水平放置的光滑平行导轨固定,导轨左侧接有定值电阻R ,导轨间存在垂直于导轨平面向上的匀强磁场,足够长的金属棒ab 置于导轨上且接触良好.如图甲,当金属棒ab 垂直于导轨以速度v 向右匀速运动时,金属棒ab 产生的感应电动势为E 1.如图乙,保持磁感应强度不变,当金属棒ab 倾斜放置,与导轨成θ=30°,仍以速度v 向右匀速运动时,金属棒ab 产生的感应电动势为E 2.不计导轨和金属棒ab 的电阻,则通过金属棒ab 的电流方向及E 1和E 2之比分别为( )A .a →b ,1∶1B .a →b ,1∶2C .b →a ,1∶1D .b →a ,2∶1 4.[2024·宁夏银川六盘山高级中学校考模拟预测]如图所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略,下列说法中正确的是( )A .闭合开关S 接通电路时,A 2始终比A 1亮B .闭合开关S 接通电路时,A 1先亮,A 2后亮,最后一样亮C .断开开关S 切断电路时,A 2先熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭5.如图甲所示,一长为L 的导体棒,绕水平圆轨道的圆心O 匀速顺时针转动,角速度为ω,电阻为r ,在圆轨道空间存在有界匀强磁场,磁感应强度大小为B .半径小于L2 的区域内磁场竖直向上,半径大于L2 的区域磁场竖直向下,俯视如图乙所示,导线一端Q 与圆心O 相连,另一端P 与圆轨道连接给电阻R 供电,其余电阻不计,则( )A .电阻R 两端的电压为BL 2ω4B .电阻R 中的电流方向向上C .电阻R 中的电流大小为BL 2ω4(R +r )D .导体棒的安培力做功的功率为06.[2024·全国高三专题练习]水平桌面上放置着两个用同一根均匀金属丝制成的单匝线圈1和线圈2,半径分别为2R 和R (俯视图如图1所示).竖直方向有匀强磁场,磁感应强度随时间变化的关系如图2所示.线圈中的感应电动势、电流强度、电功率分别用E 、I 、P 表示,不考虑两个线圈间的影响,下列关系正确的是( )A .E 1∶E 2=4∶1,I 1∶I 2=2∶1B .E 1∶E 2=4∶1,P 1∶P 2=2∶1C .E 1∶E 2=2∶1,P 1∶P 2=8∶1D .P 1∶P 2=4∶1,I 1∶I 2=1∶17.如图,一不可伸长的细绳的上端固定,下端系在边长为l =0.40 m 的正方形金属框的一个顶点上.金属框的一条对角线水平,其下方有方向垂直于金属框所在平面的匀强磁场.已知构成金属框的导线单位长度的阻值为λ=5.0×10-3 Ω/m ;在t =0到t =3.0 s 时间内,磁感应强度大小随时间t 的变化关系为B (t )=0.3-0.1t (SI).求:(1)t =2.0 s 时金属框所受安培力的大小(结果保留两位有效数字); (2)在t =0到t =2.0 s 时间内金属框产生的焦耳热.素养提升练8.(多选)[2024·湖南统考模拟预测]如图所示,水平放置的金属导轨由bade 和bcM 两部分组成,bcM 是以O 点为圆心、L 为半径的圆弧导轨,扇形bOc 内存在磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,金属杆OP 的P 端与圆弧bcM 接触良好,O 点与e 点有导线相连,金属杆OP 绕O 点以角速度ω在b 、M 之间做往返运动,已知导轨左侧接有阻值为R 的定值电阻,其余部分电阻不计,∠bOc =∠MOc =90°,下列说法正确的是( )A .金属杆OP 在磁场区域内沿顺时针方向转动时,P 点电势高于O 点电势B .金属杆OP 在磁场区域内转动时,其产生的感应电动势为BL 2ωC .金属杆OP 在磁场区域内转动时,回路中电流的瞬时值为BL 2ω2RD .回路中电流的有效值为2BL 2ω4R9.(多选)[2024·河南校联考二模]如图所示,间距为L 的两条平行光滑竖直金属导轨PQ 、MN (足够长),底部Q 、N 之间连接阻值为R 1的电阻,磁感应强度大小为B 1、范围足够大的匀强磁场与导轨平面垂直.质量为m 、阻值为R 2的金属棒ab 垂直放在导轨上,且棒的两端始终与导轨接触良好.导轨的上端点P 、M 分别与横截面积为S 的n 匝线圈的两端连接,线圈的轴线与磁感应强度大小均匀变化的匀强磁场B 2平行.开关K 闭合后,金属棒ab 恰能保持静止.已知重力加速度大小为g ,其余部分电阻均不计.则由此可知( )A .匀强磁场B 2的磁感应强度均匀减小B .流过电阻R 1的电流为mgR 1B 1LR 2C .匀强磁场B 2的磁感应强度的变化率为mgR 2nB 1LSD .断开K 之后,金属棒ab 下滑的最大速度为mg (R 1+R 2)B 21 L 21.解析:根据法拉第电磁感应定律得E -=N ΔΦΔt =NBS cos θt,A 正确.答案:A2.解析:题图甲中振动的条形磁铁使线圈中产生感应电流,感应电流对磁铁的相对运动有阻碍作用,能使振动的条形磁铁快速停下来,这是利用了电磁阻尼规律,故A 正确;题图乙中磁铁通过无缺口的铝管,在铝管中产生感应电流,感应电流对磁铁的相对运动有阻碍作用,能更快使强磁铁匀速运动,这是利用了电磁阻尼规律,故B 正确;题图丙中U 形磁铁可以在高速转动的铝盘中产生涡电流,涡电流对铝盘与磁铁间的相对运动有阻碍作用,能使铝盘迅速停下来,这是利用了电磁阻尼规律,故C 正确;题图丁中转动把手时下面的闭合铜线框随U 形磁铁同向转动,这是利用了电磁驱动规律,故D 错误.答案:ABC 3.解析:设导轨间的距离为L ,如图甲所示,金属棒ab 产生的感应电动势为E 1=BLv ,根据右手定则可知通过金属棒ab 的电流方向b →a ;如图乙所示,金属棒ab 产生的感应电动势为E 2=BLv ,根据右手定则可知通过金属棒ab 的电流方向b →a ;E 1和E 2之比为E 1∶E 2=1∶1,故选C.答案:C4.解析:闭合开关S 接通电路时,由于线圈的自感作用,A 1灯泡逐渐亮起来,A 2灯泡立即亮起来,稳定后,线圈电阻不计,相当于一根导线,两灯泡亮度相同,A 、B 错误;断开开关S 切断电路时,由于线圈的自感作用,线圈中的电流不能发生突变,其在新的回路中由原来的稳定值逐渐减小为零,即断开开关S 切断电路时,A 1和A 2都要过一会儿才同时熄灭,C 错误,D 正确.故选D.答案:D5.解析:半径小于L 2 的区域内E 1=B L 2 ·ωL 22 =BL 2ω8 ,半径大于L2的区域E 2=B L 2 ·ωL2+ωL 2 =3BL 2ω8 ,根据题意可知,两部分电动势相反,故总电动势E =E 2-E 1=BL 2ω4 ,根据右手定则可知圆心为负极,圆环为正极,电阻R 中的电流方向向下,电阻R 上的电压U =R R +r E =RBL 2ω4(R +r ) ,故A 、B 错误;电阻R 中的电流大小为I =E R +r =BL 2ω4(R +r ) ,故C 正确;回路有电流,则安培力不为零,故导体棒的安培力做功的功率不为零,故D 错误.故选C.答案:C6.解析:由题意可得,两线圈的长度之比为L 1L 2 =2π2R 2πR =21两线圈围成的面积之比为S 1S 2 =π(2R )2πR 2 =41由法拉第电磁感应定律E =n ΔΦΔt =n ΔBΔtS由图可知,线圈中的感应电动势之比为E 1E 2 =S 1S 2 =41由闭合电路的欧姆定律I =ER 总由电阻定律得R 总=ρLS两线圈的电阻之比为R 1R 2 =L 1L 2 =21可得,线圈中的电流强度之比为I 1I 2 =E 1E 2 ·R 2R 1 =41 ×12 =21线圈中的电功率之比为P 1P 2 =E 1E 2 ·I 1I 2 =41 ×21 =81故选A. 答案:A 7.解析:(1)对正方形金属框分析 由法拉第电磁感应定律得E =⎪⎪⎪⎪ΔΦΔt =⎪⎪⎪⎪ΔB ·S Δt =⎪⎪⎪⎪ΔB Δt ×l 22由B (t )=0.3-0.1t (SI ),知⎪⎪⎪⎪ΔB Δt =0.1 T/s I =ER,其中R =4lλ 当t =2.0 s 时,B =0.3-0.1×2.0(T )=0.1 T金属框所受安培力大小F =BIl ′,其中l ′=2 l 代入数据解得F ≈0.057 N.(2)根据焦耳定律有Q =I 2Rt R =4λl =8×10-3 Ω0~2.0 s 内金属框中的电流为I =ER=1 A代入数据解得Q =0.016 J. 答案:(1)0.057 N (2)0.016 J8.解析:金属杆OP 在磁场区域内沿顺时针方向转动时,由右手定则可知,P 点电势高于O 点电势, 故A 正确;金属杆OP 位于磁场区域时,其产生的电动势为E =BL v -=BL 0+Lω2 =12 BL 2ω,故B 错误;金属杆OP 位于磁场区域时,回路中电流的瞬时值为I 1=E R=BL 2ω2R,故C 正确;金属杆OP 运动一个周期T 时,只有一半时间在切割磁感线产生感应电流,根据有效值的定义有I 21 R ·T 2 +0=I 2效 RT ,解得回路中电流的有效值为I 效=I 12=2BL 2ω4R,故D 正确. 答案:ACD9.解析:根据题意可知,开关K 闭合后,金属棒ab 恰能保持静止,则金属棒ab 受竖直向上的安培力,大小等于金属棒的重力,保持不变,由左手定则可知,电流方向由a →b ,且大小不变,则线圈中电流方向为M →P ,由楞次定律可知,B 2的磁感应强度均匀增加,故A 错误;设流过金属棒的电流为I 1,由A 分析可知,B 1I 1L =mg ,解得I 1=mgB 1L,由并联电路的特点可得,流过电阻R 1的电流为I 2=I 1R 2R 1 =mgR 2B 1LR 1,由于线圈电阻不计,则金属棒ab两端电压等于线圈产生的感应电动势,则有n ΔΦΔt =n ΔB 2Δt S =I 1R 2=mgR 2B 1L ,解得ΔB 2Δt=mgR 2nB 1LS,故B 错误,C 正确;断开K 之后,当金属棒所受合力为零时,速度最大,设最大速度为v m ,则有E =B 1Lv m ,I m =ER 1+R 2 ,F A =B 1LI m =mg ,解得v m =mg (R 1+R 2)B 21 L 2,故D 正确.故选CD.答案:CD。

法拉第电磁感应定律参考答案

法拉第电磁感应定律参考答案1.[解析] (1)根据楞次定律可知,通过R 1的电流方向为由b 到a 。

根据法拉第电磁感应定律得线圈中的电动势为E =n ΔB πr 22Δt =n ·B 0πr 22t 0根据闭合电路欧姆定律得通过R 1的电流为I =E 3R =nB 0πr 223Rt 0。

(2)通过R 1的电荷量q =It 1=nB 0πr 22t 13Rt 0, R 1上产生的热量Q =I 2R 1t 1=2n 2B 20π2r 42t 19Rt 20。

2.解析:选B 磁感应强度的变化率ΔB Δt =2B -B Δt =B Δt,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔB Δt S ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误。

3.解析:选D 变化的磁场产生的感生电动势为E =ΔB Δtπr 2=k πr 2,小球在环上运动一周感生电场对其所做的功W =qE =qk πr 2,D 项正确,A 、B 、C 项错误。

4.解析:选C 由楞次定律可知,线圈中的感应电流方向为逆时针方向,选项A 错误;由法拉第电磁感应定律可知,产生的感应电动势为E =nS ΔB Δt=0.1 V ,电阻R 两端的电压不随时间变化,选项B 错误;回路中电流I =E R +r=0.02 A ,线圈电阻r 消耗的功率为P =I 2r =4×10-4 W ,选项C 正确;前4 s 内通过R 的电荷量为q =It =0.08 C ,选项D 错误5.解析:选AD 磁感应强度均匀变化,产生恒定电动势,电容器C 的电荷量大小始终没变,选项A 正确、B 错误;由于磁感应强度变化,MN 所受安培力的大小变化,MN 所受安培力的方向先向右后向左,选项C 错误、D 正确。

6.解析:选A 根据E =ΔB ΔtS ,所以B -t 线的斜率大小反映电动势大小,根据比较图线的斜率大小可看出E 1<E 2=E 3;根据楞次定律可判断,I 1沿逆时针方向,I 2沿顺时针方向,I 3沿顺时针方向。

电磁感应定律习题含答案

法拉第电磁感应定律练习题1.闭合电路的一部分导线ab处于匀强磁场中,图1中各情况下导线都在纸面内运动,那么下列判断中正确的是[ ] A.都会产生感应电流B.都不会产生感应电流C.甲、乙不会产生感应电流,丙、丁会产生感应电流D.甲、丙会产生感应电流,乙、丁不会产生感应电流1.关于感应电动势大小的下列说法中,正确的是[ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv的电动势[ ]A.以2v速率向+x轴方向运动B.以速率v垂直磁场方向运动4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向6.如图4所示,圆环a与圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中与b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ]A.4∶1B.1∶4C.2∶1D.1∶28.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量与电阻均相同的两根滑杆ab与cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab与cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab与cd均先做变加速运动,后作匀速运动D.ab与cd均先做交加速运动,后作匀加速运动9.如图6所示,RQRS为一正方形导线框,它以恒定速度向右进入以MN为边界的匀强磁场,磁场方向垂直线框平面,MN线与线框的边成45°角,E、F分别为PS与PQ的中点,关于线框中的感应电流[ ]A.当E点经过边界MN时,感应电流最大B.当P点经过边界MN时,感应电流最大C.当F点经过边界MN时,感应电流最大D.当Q点经过边界MN时,感应电流最大10.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。

法拉第电磁感应定律(练习)


如图所示,用两根相同的导线绕成匝数分别为n1和n2的 圆形闭合线圈A和B,两线圈平面与匀强磁场垂直。当磁 感应强度随时间均匀变化时,两线圈中的感应电流之比 IA∶IB为( B )
n1 A. n2
n2 B. n1
n 12 C. 2 n2
n 22 D. 2 n1
(多选)(2012· 四川高考)半径为a右端开小口的导体圆环和 长为2a的导体直杆,单位长度电阻均为R0。圆环水平固定 放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强 度为B。杆在圆环上以速度v平行于直径CD向右做匀速直 线运动,杆始终有两点与圆环良好接触,从圆环中心O开始, 杆的位置由θ确定,如图所示。则 ( AD ) A.θ=0时,杆产生的电动势为2Bav B.θ= 时,杆产生的电动势为 3Bav 2B2 av 3 C.θ=0时,杆受的安培力大小为 ( 2)R 0 3B2 av D.θ= 时,杆受的安培力大小为
如图所示,导线全部为裸导线,半径为r的圆内有垂直于 圆平面的匀强磁场,磁感应强度为B,一根长度大于2r的 导线MN以速率v在圆环上无摩擦地自左端匀速滑到右 端,电路的固定电阻为R,其余电阻不计,试求:
(1)MN从圆环左端滑到右端的过程 中,电阻R上的电流的平均值及通过 Bvr Br 2 I , q It 。 的电荷量。 2R R R (2)MN从圆环左端滑到右端的过程 中,电阻R上的电流的最大值。 E I m
R

2Brv 。 R
【解析】(1)从左端到右端磁通量变化量ΔΦ=Bπr2,平均 电动势 E Bvr ,因此平均电流为 I Bvr , 通过R的电量
t 2 2 Br q It 。 R R 2R
(2)导线运动到圆环的圆心处时,切割的有效长度最大,产生 的感应电动势最大。Em=B·2r·v,因此,I E m 2Brv 。 答案:(1) Bvr

高考物理法拉第电磁感应定律习题知识点及练习题含答案解析

高考物理法拉第电磁感应定律习题知识点及练习题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.研究小组同学在学习了电磁感应知识后,进行了如下的实验探究(如图所示):两个足够长的平行导轨(MNPQ 与M 1P 1Q 1)间距L =0.2m ,光滑倾斜轨道和粗糙水平轨道圆滑连接,水平部分长短可调节,倾斜轨道与水平面的夹角θ=37°.倾斜轨道内存在垂直斜面方向向上的匀强磁场,磁感应强度B =0.5T ,NN 1右侧没有磁场;竖直放置的光滑半圆轨道PQ 、P 1Q 1分别与水平轨道相切于P 、P 1,圆轨道半径r 1=0.lm ,且在最高点Q 、Q 1处安装了压力传感器.金属棒ab 质量m =0.0lkg ,电阻r =0.1Ω,运动中与导轨有良好接触,并且垂直于导轨;定值电阻R =0.4Ω,连接在MM 1间,其余电阻不计:金属棒与水平轨道间动摩擦因数μ=0.4.实验中他们惊奇地发现:当把NP 间的距离调至某一合适值d ,则只要金属棒从倾斜轨道上离地高h =0.95m 及以上任何地方由静止释放,金属棒ab 总能到达QQ 1处,且压力传感器的读数均为零.取g =l 0m /s 2,sin37°=0.6,cos37°=0.8.则:(1)金属棒从0.95m 高度以上滑下时,试定性描述金属棒在斜面上的运动情况,并求出它在斜面上运动的最大速度;(2)求从高度h =0.95m 处滑下后电阻R 上产生的热量; (3)求合适值d .【答案】(1)3m /s ;(2)0.04J ;(3)0.5m . 【解析】 【详解】(1)导体棒在斜面上由静止滑下时,受重力、支持力、安培力,当安培力增加到等于重力的下滑分量时,加速度减小为零,速度达到最大值;根据牛顿第二定律,有:A 0mgsin F θ-=安培力:A F BIL = BLvI R r=+ 联立解得:2222()sin 0.0110(0.40.1)0.63m /s 0.50.2mg R r v B L θ+⨯⨯+⨯===⨯(2)根据能量守恒定律,从高度h =0.95m 处滑下后回路中上产生的热量:22110.01100.950.0130.05J 22Q mgh mv ==⨯⨯-⨯⨯=-故电阻R 产生的热量为:0.40.050.04J 0.40.1R R Q Q R r ==⨯=++ (3)对从斜面最低点到圆轨道最高点过程,根据动能定理,有:()221111222mg r mgd mv mv μ--=-① 在圆轨道的最高点,重力等于向心力,有:211v mg m r =②联立①②解得:221535100.10.5m 220.410v gr d g μ--⨯⨯===⨯⨯2.如图所示,两根足够长、电阻不计的光滑平行金属导轨相距为L =1m ,导轨平面与水平面成θ=30︒角,上端连接 1.5R =Ω的电阻.质量为m =0.2kg 、阻值0.5r =Ω的金属棒ab 放在两导轨上,与导轨垂直并接触良好,距离导轨最上端d =4m ,整个装置处于匀强磁场中,磁场的方向垂直导轨平面向上.(1)若磁感应强度B=0.5T ,将金属棒释放,求金属棒匀速下滑时电阻R 两端的电压; (2)若磁感应强度的大小与时间成正比,在外力作用下ab 棒保持静止,当t =2s 时外力恰好为零.求ab 棒的热功率;(3)若磁感应强度随时间变化的规律是()0.05cos100B t T π=,在平行于导轨平面的外力F 作用下ab 棒保持静止,求此外力F 的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[基础巩固题组]1. (多选)粗细均匀的导线绕成匝数为n、半径为r的圆形闭合线圈、线圈放在磁场中,磁场的磁感应强度随时间均匀增大,线圈中产生的电流为I,下列说法正确的是()A、电流I与匝数n成正比B、电流I与线圈半径r成正比C、电流I与线圈面积S成正比D、电流I与导线横截面积S0成正比解析:选BD.由题给条件可知感应电动势为E=nπr2ΔBΔt,电阻为R=ρn2πrS0,电流I=ER,联立以上各式得I=S0r2ρ·ΔBΔt,则可知B、D项正确,A、C项错误、2、(多选)法拉第圆盘发电机的示意图如图所示、铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触、圆盘处于方向竖直向上的匀强磁场B 中、圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()A、若圆盘转动的角速度恒定,则电流大小恒定B、若从上向下看,圆盘顺时针转动,则电流沿a到b的方向流动C、若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D、若圆盘转动的角速度变为原来的2倍,则电流在R上的热功率也变为原来的2倍解析:选AB.由右手定则知,圆盘按如题图所示的方向转动时,感应电流沿a到b的方向流动,选项B正确;由感应电动势E=12Bl2ω知,角速度恒定,则感应电动势恒定,电流大小恒定,选项A正确;角速度大小变化,感应电动势大小变化,但感应电流方向不变,选项C错误;若ω变为原来的2倍,则感应电动势变为原来的2倍,电流变为原来的2倍,由P=I2R知,电流在R上的热功率变为原来的4倍,选项D错误、3、(多选)一导线弯成如图所示的闭合线圈,以速度v向左匀速进入磁感应强度为B的匀强磁场,磁场方向垂直纸面向外、线圈总电阻为R,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是()A、感应电流一直沿顺时针方向B、线圈受到的安培力先增大,后减小C、感应电动势的最大值E=Br vD、穿过线圈某个横截面的电荷量为B(r2+πr2)R解析:选AB.在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增大,根据楞次定律可知感应电流的方向一直沿顺时针方向,A正确;线圈切割磁感线的有效长度先变长后变短,感应电流先变大后变小,安培力也先变大后变小,B正确;线圈切割磁感线的有效长度最大值为2r,感应电动势最大值E=2Br v,C错误;穿过线圈某个横截面的电荷量为Q=ΔΦR=B⎝⎛⎭⎪⎫r2+π2r2R,D错误、4、如图所示,正方形线框的左半侧处在磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN恰与磁场边缘平齐、若第1次将线框从磁场中以恒定速度v1向右匀速拉出,第2次以线速度v2让线框绕轴MN匀速转过90°,为使两次操作过程中,线框产生的平均感应电动势相等,则()A、v1∶v2=2∶πB、v1∶v2=π∶2C、v1∶v2=1∶2D、v1∶v2=2∶1解析:选A.第1次将线框从磁场中以恒定速度v1向右匀速拉出,线框中的感应电动势恒定,有E 1=E 1=BL v 1.第2次以线速度v 2让线框绕轴MN 匀速转过90°,所需时间t =πr 2v 2=πL 4v 2,线框中的磁通量变化量ΔΦ=B ·L ·L 2=12BL 2,产生的平均电动势E 2=ΔΦt =2BL v 2π.由题意知E 1=E 2,可得v 1∶v 2=2∶π,A 正确、5、如图所示的电路,电源电动势为E ,线圈L 的电阻不计,以下判断正确的是( )A 、闭合S ,稳定后,电容器两端电压为EB 、闭合S ,稳定后,电容器的a 极板带正电C 、断开S 的瞬间,电容器的a 极板将带正电D 、断开S 的瞬间,电容器的a 极板将带负电解析:选C.由题意及自感现象规律可知,当开关S 闭合且电路稳定后,电容器与线圈L 并联,由于线圈的直流电阻不计,所以电容器两端电压为零,故A 、B 项错误;断开S 的瞬间,由自感规律可知,线圈中要产生感应电动势,感应电动势引起的感应电流的方向与原电流的方向一致,因而电容器的a 极板将带正电,故C 项正确、[综合应用题组]6、光滑曲面与竖直平面的交线是抛物线,如右图所示,抛物线的方程是y =x 2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y =a 的直线(图中的虚线所示),一个小金属块从抛物线上y =b (b >a )处以速度v 沿抛物线下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )A 、mgb B.12m v 2C、mg(b-a)D、mg(b-a)+12m v2解析:选 D.金属块在进出磁场过程中要产生感应电流,机械能要减少,上升的最大高度不断降低,最后刚好飞不出磁场,就往复运动永不停止,由能量守恒可得Q=ΔE=12m v2+mg(b-a)、7、如图所示,边长为2L的正方形虚线框内有垂直于纸面向里的匀强磁场,磁感应强度大小为B.一个边长为L、粗细均匀的正方形导线框abcd,其所在平面与磁场方向垂直,导线框的对角线与虚线框的对角线在一条直线上,导线框各边的电阻大小均为R.在导线框从图示位置开始以恒定速度沿对角线方向进入磁场,到整个导线框离开磁场区域的过程中,下列说法正确的是()A、导线框进入磁场区域时产生顺时针方向的感应电流B、导线框中有感应电流的时间为2LC、导线框的bd对角线有一半进入磁场时,整个导线框所受安培力大小为B2L2v 4RD、导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为2BL v 4解析:选 D.根据楞次定律知,感应电流的效果总是阻碍磁通量的变化,故由楞次定律判断出,导线框进入磁场区域时产生的感应电流的方向为逆时针方向,故选项A错误;导线框完全进入磁场后感应电流消失,导线框从开始进入磁场到完全进入经历的时间为2Lv,穿出的时间也为2Lv,导线框中有感应电流的时间为t=2Lv×2,故选项B错误;导线框的bd对角线有一半进入磁场时,导体的有效切割长度为2L2,感应电动势为2BL v2,由安培力公式可算出安培力为B2L2v8R,故选项C错误;导线框的bd对角线有一半进入磁场时,导线框a、c两点间的电压为电动势的一半,即2BL v4,故选项D正确、8、如图所示的电路中,A、B、C是三个完全相同的灯泡,L是一个自感系数较大的线圈,其直流电阻与灯泡电阻相同、下列说法正确的是()A、闭合开关S,A灯逐渐变亮B、电路接通稳定后,流过B灯的电流是流过C灯电流的3 2C、电路接通稳定后,断开开关S,C灯立即熄灭D、电路接通稳定后,断开开关S,A、B、C灯过一会儿才熄灭,且A灯亮度比B、C灯亮度高解析:选D.画出等效电路如图所示,闭合开关S,所有的灯都立即变亮,A错误;电路稳定后,线圈和灯泡A的并联电阻为R2,与B灯的串联电阻为3R2,C灯的电阻为R,根据并联电路分流与电阻成反比,故流过B灯的电流是流过C灯电流的2 3,B错误;断开开关S,线圈产生的感应电动势对三个灯泡供电,因此三个灯泡都过一会才熄灭,供电电路是B、C灯串联与A灯并联,因此A灯的亮度比B、C灯的亮度高,C错误,D正确、9、如图所示,PQQ2P2是由两个正方形导线方格PQQ1P1、P1Q1Q2P2构成的网络电路、方格每边长度l=10 cm.在x>0的半空间分布有随时间t均匀增加的匀强磁场,磁场方向垂直于xOy平面并指向纸内、今令网络电路PQQ2P2以恒定的速度v=5 cm/s 沿x轴正方向运动并进入磁场区域,在运动过程中方格的边PQ始终与y轴平行、若取PQ与y轴重合的时刻为t=0,在以后任一时刻t磁场的磁感应强度为B=B0+bt,式中t的单位为s,B0、b为已知恒量、当t=2.5 s时刻,方格PQQ1P1中的感应电动势是E1,方格P1Q1Q2P2中的感应电动势是E2.E1、E2的表达式正确的是()A 、E 1=B 0l vB 、E 1=bl 2C 、E 2=bl 24D 、E 2=(B 0+bt )l v解析:选B.经过2.5 s ,线框向右运动了12.5 cm ,此时右边的线框只有感生电动势,根据法拉第电磁感应定律得E 1=bl 2,B 正确,A 错误;此时左边的线框只有右边在磁场中,离磁场边界0.25l ,线框中既有动生电动势又有感生电动势,故电动势的大小E 2=(B 0+2.5b )l v +0.25bl 2,C 、D 错误、10、小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右臂挂有矩形线圈,两臂平衡、线圈的水平边长L =0.1 m ,竖直边长H =0.3 m ,匝数为n 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0 T ,方向垂直线圈平面向里、线圈中通有可在0~2.0 A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量、(重力加速度取g =10 m/s 2)(1)为使电磁天平的量程达到0.5 kg ,线圈的匝数n 1至少为多少?(2)进一步探究电磁感应现象,另选n 2=100匝、形状相同的线圈,总电阻R =10 Ω.不接外电流,两臂平衡、如图2所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1 m 、当挂盘中放质量为0.01 kg 的物体时,天平平衡,求此时磁感应强度的变化率ΔB Δt .解析:(1)线圈受到安培力F =n 1B 0IL天平平衡mg =n 1B 0IL代入数据得n 1=25匝(2)由电磁感应定律得E =n 2ΔΦΔt即E =n 2ΔB Δt Ld由欧姆定律得I ′=E R线圈受到安培力F ′=n 2B 0I ′L天平平衡m ′g =n 22B 0ΔB Δt ·dL 2R代入数据可得ΔB Δt=0.1 T/s 答案:(1)25匝 (2)0.1 T/s11、(1)如图甲所示,两根足够长的平行导轨,间距L =0.3 m ,在导轨间有垂直纸面向里的匀强磁场,磁感应强度B 1=0.5 T 、一根直金属杆MN 以v =2 m/s 的速度向右匀速运动,杆MN 始终与导轨垂直且接触良好、杆MN 的电阻r 1=1 Ω,导轨的电阻可忽略、求杆MN 中产生的感应电动势E 1.(2)如图乙所示,一个匝数n =100的圆形线圈,面积S 1=0.4 m 2,电阻r 2=1 Ω.在线圈中存在面积S 2=0.3 m 2垂直线圈平面(指向纸外)的匀强磁场区域,磁感应强度B 2随时间t 变化的关系如图丙所示、求圆形线圈中产生的感应电动势E 2.(3)有一个R =2 Ω的电阻,将其两端a 、b 分别与图甲中的导轨和图乙中的圆形线圈相连接,b 端接地、试判断以上两种情况中,哪种情况a 端的电势较高?求这种情况中a 端的电势φa .解析:(1)杆MN 做切割磁感线的运动,E 1=B 1L v产生的感应电动势E 1=0.3 V .(2)穿过圆形线圈的磁通量发生变化,E 2=n ΔB 2Δt S 2产生的感应电动势E 2=4.5 V .(3)当电阻R 与题图甲中的导轨相连接时,a 端的电势较高通过电阻R 的电流I =E 1R +r 1电阻R 两端的电势差φa -φb =IRa 端的电势φa =IR =0.2 V .答案:(1)0.3 V (2)4.5 V (3)与图甲中的导轨相连接a 端电势高 φa =0.2 V。

相关文档
最新文档