电气化铁路供电系统

合集下载

电气化铁路供电系统教材

电气化铁路供电系统教材

谐波问题 整改措施:在牵引变电所增加滤波器 (单调谐滤波器、高通滤波器),存在 增加投资的问题。 限制:谐波电流问题一直是铁路部门 和电力部门之间争论的焦点问题。
负序电流问题 牵引供电系统的负荷为单相负荷,导致 从电力系统三相去用的电能不平衡,从而向 电力系统注入负序电流。 负序电流的危害:降低用户电能的利用 率,引起用户旋转电机转子表面温升过高。 整改措施:牵引供电系统采用换相方式 接入电力系统,采用新型供电方式。 限制:电力部门一直在对牵引供电系统 注入电力系统的负序电流进行限制。
2 牵引网 通常,将接触网、钢轨、回流线构成的线路称为牵引网。接触网 和钢轨是牵引网的主体。 接触网(图3-54)是架设在电气
化铁路上空,向电力机车供电的一种
特殊形式的输电线路,其质量和工作 状态直接影响电气化铁路的运输能力。 接触网根据其接触悬挂类型,可 以分为简单接触悬挂和链形接触悬挂 两类。
• 供电能力:满足在不同牵引工况下电能的输 送。关键点:牵引供电臂末端电压水平。 • 运行方式的灵活性:在确保供电的前提下, 为设备的检修、运行方式的调整等提供灵活 的操作方式。改变运行方式的动作迅速。 • 完备的确保一次系统运行可靠性的措施。
目前牵引供电系统面临的主要问题: • 谐波问题 • 负序电流问题 • 功率因数问题 • 机车过分相问题 • 接地问题 • 继电保护问题 • 弓网关系问题 • 绝缘配合问题 • 电磁兼容问题
功率因数问题 列车从牵引供电系统取用的电能会随着 列车牵引定数、路况(限坡、弯道)、运行 图、司机操作技术等因素的影响,因此改变 列车取用的有功功率和无功功率,导致功率 因素发生变化。 电力部门要求大工业用户的功率因数达 到0.9以上,高出部分奖励、低于该数值将罚 款。 整改措施:加功率因数补偿装置,困难 在于负荷波动导致功率因数大范围波动,难 以达到理想的补偿效果。

电气化铁道供电系统新技术的发展

电气化铁道供电系统新技术的发展

电气化铁道供电系统新技术的发展电气化铁道供电系统是现代铁路运输中至关重要的一环,它保障了列车的正常运行,成为现代化铁路运输的基础设施之一。

随着科技的不断进步和社会的发展,电气化铁道供电系统也在不断进行着新技术的研发和应用。

本文将围绕电气化铁道供电系统新技术的发展进行探讨,并分析其对铁路运输的影响和意义。

一、传统电气化铁道供电系统存在的问题传统的电气化铁道供电系统多采用单相交流供电的方式,存在着供电不稳定、能源浪费、运行成本高等问题。

一方面,由于单相交流供电的特性,当列车在运行过程中通过区间线路时,供电系统无法实现完全的隔离,容易出现电流波动等问题,影响列车的运行安全性;传统供电系统在能源利用方面存在不少问题,能源利用率低,存在大量的能源浪费现象;传统供电系统的运行成本也比较高,维护、管理费用居高不下。

二、新技术的应用为了解决传统电气化铁道供电系统存在的问题,国内外的研究人员和企业纷纷开展了新技术的研发和应用,取得了一系列的科研成果,并在实际的工程项目中进行了应用。

具体而言,新技术主要包括以下几个方面:1. 高压直流供电技术高压直流供电技术被认为是未来电气化铁道供电系统的发展趋势之一。

相对于传统的交流供电系统,高压直流供电系统具有输电损耗小、供电稳定等优点。

近年来,中国正大力发展高铁路网,为了满足其对电气化技术的需求,高压直流供电技术已经在诸多高铁项目中得到了广泛的应用,是国内外铁道领域的一个热门研究课题。

2. 智能化监测技术随着信息技术的不断进步,智能化监测技术在电气化铁道供电系统中的应用越来越广泛。

通过网络传感器等技术手段,可以实时监测供电系统的运行状态和故障情况,使得维护人员可以及时发现并处理问题,提高了供电系统的运行效率和安全性。

3. 新型供电设备除了高压直流供电技术和智能化监测技术外,新型的供电设备也在电气化铁道供电系统中得到了应用,如柔性直流输电技术、换流器技术等,这些新型设备不仅能够提高供电系统的稳定性和能源利用率,还能降低系统的运行成本。

电气化铁道主要供电方式

电气化铁道主要供电方式

电气化铁道主要供电方式
电气化铁道的主要供电方式通常有以下几种:
1.架空线供电(Overhead Line Electrification):这是最常见的
供电方式,也称为接触网供电。

在架空线供电系统中,铁道上方架设一条称为接触网的电线,电动列车通过集电装置与接触网接触,从而获取所需的电能。

接触网将高压直流(DC)或交流(AC)电源通过变电站供应到铁道上,以满足列车运行的电力需求。

2.第三轨供电(Third Rail Electrification):在第三轨供电系统
中,铁道旁边或中间安装一条额外的供电轨道,称为第三轨。

电动列车通过集电装置与第三轨接触,从而获得所需的电能。

第三轨通常使用直流供电,但也有一些使用交流供电的系统。

3.混合供电方式:某些铁路系统采用混合供电方式,同时使
用架空线和第三轨供电。

这种方式通常用于铁路线路的不同区段或分支线路,以适应不同的运行要求和设备技术。

不同地区和铁路系统可能采用不同的主要供电方式,其中选用的供电方式取决于多个因素,包括成本、技术要求、环境影响以及安全性等考虑。

另外,电气化铁道的供电方式也在不断发展和创新,例如可再生能源和蓄电池技术的引入,以提高能源效率和减少环境影响。

电气化铁路牵引供电系统设计

电气化铁路牵引供电系统设计

电气化铁路牵引供电系统设计随着科技的不断进步和社会的不断发展,交通运输也在不断地优化和完善。

其中,铁路交通作为安全、快捷、环保的一种交通方式越来越受到人们的重视。

电气化铁路的建设是铁路交通发展的重要组成部分。

电气化铁路牵引供电系统是电气化铁路运行的重要设施,其设计直接关系到铁路交通的安全和稳定性。

本文将从设计的基础需求、技术要求以及具体实现等方面分析电气化铁路牵引供电系统的设计。

一、基础需求电气化铁路牵引供电系统的设计需要满足以下基础需求:1.安全性:电气化铁路是一种高速运行的交通方式,因此对安全性要求极高。

供电系统需要具备一定的安全措施,如过载、电压等保护装置,确保列车在运行过程中不会因供电系统故障而发生问题。

2.稳定性:电气化铁路供电系统需要保持电压、电流等参数稳定,确保供电质量良好。

同时,还需要考虑到运行过程中温度、湿度等因素的影响,对供电系统进行综合考虑和设计,确保供电系统长期稳定运行。

3.高效性:电气化铁路是一种高效的交通方式,需要牵引供电系统具备一定的效率。

既要保证足够的供电能力,又要降低能耗,提高供电系统的效率。

4.兼容性:供电系统需要兼容不同类型的列车,以及各种不同的运行情况。

同时还需要兼容不同的铁路线路等。

二、技术要求电气化铁路牵引供电系统需要满足以下技术要求:1.电压等级:供电系统需要提供足够的电压和电流,同时还需要与不同的列车进行匹配。

供电系统的电压等级需要根据实际情况进行选择,以确保其能够满足实际需求。

2.配电系统:供电系统需要具备相应的配电系统,以保证能够有序地为列车供电。

同时还需要考虑到配电过程中的损耗等问题,尽可能降低能耗,提高效率。

3.牵引变流器:牵引变流器是电气化铁路配电系统的核心部分,需要具备稳定的输出电压和电流。

同时还需要具备过流、过压等保护机制,以保证列车在运行过程中的安全。

4.供电系统保护:供电系统需要具备过载、短路等保护机制,及时发现和排除故障,以保证供电系统的安全、稳定运行。

电气化铁路供电系统的设计与实现

电气化铁路供电系统的设计与实现

电气化铁路供电系统的设计与实现一、导言电气化铁路是现代交通运输的必需品,概念简单来说就是用电力作为牵引能源的铁路交通系统。

电气化铁路的供电系统是电气化铁路的重要组成部分,供电系统的设计与实现是电气化铁路建设的重要环节,本文将就此展开讨论。

二、供电系统的基本概念供电系统是支持电气化铁路正常运行的关键基础设施之一,它主要由供电站、电气化变电站、牵引变压器、接触网、集电装置、地线以及设备和通信控制系统等部分组成。

其中,供电站是供应电力给电气化铁路的核心部分,电气化变电站负责将高压输电线路的电压转换为低压直流电,牵引变压器用于将低压直流电转换为适合交流电驱动的电能,接触网则是供电系统的主要能量输出装置,集电装置用于对接触网所输出的电能进行集电,地线则是用于保证安全的配套设施。

三、供电系统的设计原则为了保证电气化铁路运行的安全性和运行效率,供电系统的设计必须符合一定的原则。

首先,供电系统必须满足稳定、可靠、高效、安全的电力供应要求。

其次,供电系统的设计需要考虑供电站覆盖面积、变电站的布局、接触网构造等因素,要在满足技术要求和经济需求的前提下进行合理布局和安排。

此外,供电系统的设计还需要考虑在地形条件不同的地方下如何解决供电站、变电站、接触网和车站等相互关联的问题。

四、供电系统的实现方法在实现供电系统的过程中,需要考虑到系统的可靠性、稳定性和灵活性等因素。

供电系统具体的实现方法根据不同的技术要求和经济条件进行选择。

一般情况下,供电系统的实现技术主要有以下几种:1. 直供直流电力系统(DC)该方法主要是通过直流电传输来实现电气化铁路的供电,其特点是输电损耗较小,系统结构简单,稳定性和可靠性高。

但由于操作难度较大,需要专业技术人员进行操作,因此使用范围相对较窄。

2. 交流电力系统(AC)该方法主要是通过交流电传输来实现电气化铁路的供电,其特点是输电噪音小,相对稳定,且操纵容易。

但对于电气化铁路的大规模使用来说,支持的电压和频率等参数需要与国家标准保持一致,造成的成本相对较高。

电气化铁路牵引供电系统简介

电气化铁路牵引供电系统简介
车行驶的铁道运输方式。
(1)注意与电传动内燃机车的区别; (2)电能具有不能大量储存的特点。
电气化铁道包括:电力机车(含电动车组) 沿线的供电设施
• 牵引供电系统(Traction Power Supply Systems) 向电力机车提供电能的沿线供电设施从电能的传输、
分配角度构成牵引供电系统。 牵引供电系统主要包括:牵引变电所 牵引网 专用高压供电线路
• 其他设施
负馈线(回流线),吸上线,BT,AT,正馈线,保护线,地线, 供电线
牵引供电系统的其他设施
• 分区所(Section Post, SP)
设于两变电所之间,把电气化铁道牵引网分成不同供电区段, 设有开关设备,根据运行需要可以连接同一供电臂的上、下行接触 网,或连接不同的供电臂以实现越区供电。
T R
结构简单,投资少,维护费用低; 一部分电流从大地回流,对邻近通信线干扰大。
(2)吸流变压器供电方式(BT方式)
吸流变压器 Booster Transformer
F T
Us
I
R
• 防干扰效果好; • 牵引网阻抗偏大; • 电力机车过BT时,易产生电弧; • 由于是串联系统,可靠性较低。
(3)带负馈线的直接供电方式
F T
Us
I
R
• 防干扰效果不如BT供电方式; • 牵引网阻抗界于直接供电方式和BT供电方式之间; • 目前应用比较广泛。
(4)自耦变压器供电方式(AT方式)
自耦变压器 Auto-transformer
T
Us
R
F
• 防干扰效果与BT方式相当 • 牵引网阻抗小,输送容量大,供电臂长(可达40~50km) • 结构复杂,投资大,维护费用高

铁路知识考试:电气化铁道供电系统(三)

铁路知识考试:电气化铁道供电系统(三)

铁路知识考试:电气化铁道供电系统(三)1、问答题电器散热的基本方式有哪些?正确答案:传导、对流与辐射。

2、问答题铁路车辆是由哪几部分组成的?正确答案:车体、车底架、走行部、车钩缓冲装置和制动装置五个部分组成。

3(江南博哥)、问答题牵引回路中的地中电流是如何分布的?正确答案:在交流牵引网中,接近轨道的地中电流密度大,远离轨道的地中电流密度小,大量地中电流不是沿轨道流回变电所,而经接地网流回。

4、问答题请简要说明负序电流对继电保护的影响。

正确答案:负序电流容易使电力系统中以负序分量起动的继电保护及自动装置误动作,从而增加保护的复杂性。

5、判断题我国电气化铁道牵引变电所由国家区域电网供电。

正确答案:对6、问答题全波整流与半波整流相比有何优点?正确答案:输出电压的脉动程度比半波小;由于两个半波的电流方向相反,数值相等,因而没有半波电路中的直流磁化问题;变压器的利用率高。

7、填空题变压器具有过负荷能力:是在保证变压器()寿命的前提下,可以带超过额定值的负荷运行一段时间.而不损害变压器的正常使用期限的能力。

正确答案:正常8、问答题电容的投入与退出有哪些规定?正确答案:电容器的投入与退出必须根据系统的无功分布以及电压情况来决定。

此外,当母线电压超过电容额定电压的1.1倍,电流超过额定电流的1.3倍时,根据厂家规定应将电容器退出运行。

9、问答题全密封式储油柜有何优点?正确答案:当环境温度和变压器负荷发生变化而使油箱内油体积发生胀缩时,可在连到油箱顶上储油柜内进行,而隔膜式储油柜利用隔膜将油和大气隔离,使油和空气不直接接触,防止油的氧化和吸收水份,提高了变压器油的绝缘性能,增加变压器的使用寿命。

10、问答题逆变电路是如何分类的?正确答案:分为有源逆变和无源逆变两种。

11、填空题我国电气化铁道牵引变电所由国家()电网供电。

正确答案:区域12、问答题请简述电气化铁道牵引供电系统的基本要求。

正确答案:电气化铁道供电系统基本要求是:(1)保证向电气化铁路安全、可靠、不间断地供电;(2)提高供电质量,保证必须的电压水平;(3)提高功率因数,减少电能损失,降低工程投资和运营费用;(4)尽量减少单相牵引负荷在电力系统中引起的负序电流、负序电压和高次谐波的影响;(5)尽量减小对邻近的通信线路的干扰影响。

电气化铁道供电系统

电气化铁道供电系统

、解答题1.请简述电气化铁路的优越性●重载、高速、运输能力大;●节约能源,综合利用能源;●经济效益高;●绿色环保,劳动条件好;●有利于铁路沿线实现电气化。

2.请简述电气化铁路存在的问题●造成电力网的负序电流和负序电压,产生高次谐波及功率因数低等;●一次投资大;●对通信线路有干扰;●接触网检修需要开“天窗”。

3.请简述电气化铁道牵引供电系统的基本要求电气化铁道供电系统基本要求是:(1)保证向电气化铁路安全、可靠、不间断地供电;(2)提高供电质量,保证必须的电压水平;(3)提高功率因数,减少电能损失,降低工程投资和运营费用;(4)尽量减少单相牵引负荷在电力系统中引起的负序电流、负序电压和高次谐波的影响; (5)尽量减小对邻近的通信线路的干扰影响。

1.牵引变电所一次侧(电源侧)的供电方式,可分为(一边)供电、两边供电和环形供电.2.牵引变电所一次侧(电源侧)的供电方式,可分为一边供电、(两边)供电和环形供电.3.牵引变电所一次侧(电源侧)的供电方式,可分为一边供电、两边供电和(环形)供电.4.电力牵引接牵引网供电电流的种类可分为:(直流)制、低频单相交流制和工频单相交流制。

5.电力牵引接牵引网供电电流的种类可分为:直流制、(低频)单相交流制和工频单相交流制。

6.电力牵引接牵引网供电电流的种类可分为:直流制、低频单相交流制和(工频)单相交流制。

7.电气化铁道牵引供电系统的高压进线供电方式中两边供电方式为:牵引变电所的电能由电力系统(电网)中(两个)方向的发电厂送电。

8.电气化铁道牵引供电系统的高压进线供电方式中(两边)供电方式为:牵引变电所的电能由电力系统(电网)中两个方向的发电厂送电。

9.电气化铁道牵引供电系统的高压(进线)供电方式中两边供电方式为:牵引变电所的电能由电力系统(电网)中两个方向的发电厂送电。

10.单相结线牵引变电所的优点之一是:(主接线)简单,故障少,设备少,占地面积小,投资省等。

11.单相结线牵引变电所的优点之一是:主接线简单,故障少,设备少,占地面积(小),投资省等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气化铁路供电系统
一、电气化铁路的供电及牵引供电的定义
电气化铁路的供电系统是由发电厂集中提供电能,经变电站,通过高压输电线(110kV)传输给牵引变电所,转变成电压27.5kV或55kV送到接触网上,供给沿线运行的电力机车。

所谓牵引供电是指电力系统从铁路牵引变电所开始,向牵引接触网的供电。

二、牵引供电设备应满足的要求
随着电气化铁路的快速发展,《技规》对牵引供电设备提出了更高的要求:
1.应保证不间断行车可靠供电,牵引供电设备能力应与线路运输能力匹配,并留有余地;
2.为了满足规定的列车重量、密度和速度的要求,接触网最高工作电压为27.5kV,瞬时最大值为29kV;最低工作电压为20kV,非正常情况下不得低于19kV;
3.牵引变电所需具备双电源、双回路受电;
4.双线电气化区段应具备反方向行车条件;
5.接触网的分段应检修方便和缩小故障停电范围,枢纽及较大区段站应设开闭所,枢纽及较大区段站的负荷开关和电动隔离开关应纳入远动控制。

三、接触网导线在最大弛度时距钢轨顶面应保持的高度
接触网导线在最大弛度,至钢轨顶面的高度不超过6500mm,在区间和中间站不少于5700mm(旧线改造不少于5330mm)。

在编组站、区段站和个别较大的中间站站场不少于6200mm,客运专线为5300~5500mm,站场与区间宜取一致。

四、电力线路与铁路交叉时应保持的高度
电力线路跨越非电力牵引区段铁路时,其导线最大弛度至钢轨顶面的距离:
1.500kV线路,不少于14000mm;
2.330kV线路,不少于9500mm;
3.220kV线路,不少于8500mm;
4.110kV及其以下线路,不少于7500mm。

五、电杆至线路中心的距离的规定
电力线路与铁路交叉或平行时,电杆内缘至线路中心的水平距离:
1.380V及其以下低压线路,新线不少于3000mm,既有线路不少于
2450mm,并逐步改造;
2.10(6)kV高压线路,不少于3000mm;
3.35kV及其以上的高压线路,不少于杆高加3000mm。

六、架空线路与接触网的垂直距离的规定
架空电线路(包括通讯线路)跨越接触网时,与接触网的垂直距离:110kV及其以下电线路,不少于3000mm;220kV电线路,不少于
4000mm;330kV电线路,不少于5000mm;500kV电线路,不少于6000mm。

以防止相互间的电磁干扰,保证接触网与架空电线路的安全。

为避免低压线路跨越高压线路,便于设备维修管理,10kV及其以下的电线路,尽量由地下穿过铁路。

七、接触网的组成部分
一般来说接触网是由以下三部分组成:
1.接触悬挂:包括接触网导线、吊弦、承力索以及中心锚结、补偿装置等。

电能就是通过接触悬挂中的接触导线供给电力机车变成牵引力;
2.支持装置:用以支持和固定接触悬挂。

其形式有腕臂形式,主要用在区间和道岔处;软横跨及硬横跨,多用在车站及站场内。

另外还有用于隧道内的各种不同的支持形式。

3.支柱与基础:用以承受接触悬挂和支持装置等的重量,并将其固定在规定的高度,而它本身不带电。

八、BT制供电方式及其主要特点
BT是英语的缩写,意思是吸流变压器。

BT制供电方式是指采用吸流变压器的供电方式。

其主要特点是:
1.牵引变电所供出的电压为27.5kV,比AT制供电方式电压低50%;
2.BT制变电所之间的距离为30~40km;
3.吸流变压器和回流线能减轻对通信的干扰;
4.为了串联吸流变压器,在断开接触线处设有特殊的吸流间隙。

九、AT制供电方式及其主要特点
AT是英语的缩写,意思是自耦变压器。

AT制供电方式是指在接触网供电的主要变电设备是自耦变压器。

其主要特点是:
1.牵引变电所供出的电压为55kV,比牵引电压高100%,因此适用于大容量负荷供电;
2.由于供电电压高,送电距离比其他方式要远,平均每一牵引变电所之间距离平均为80~90km;
3.AT制设有正馈线和保护线,并于接触导线同杆架设在接触支柱的两侧,这样可以减小对通信线路的干扰;
4.在接触网导线上不需要断开导线设置吸流间隙。

十、越区供电的定义及开闭所、分区亭在电气化铁路供电系统的作用
“越区供电”就是当某个牵引变电所发生故障或停电检修,该供电所承担的供电臂,通过分区亭的开关闭合,由相邻的牵引变电所供电。

开闭所设置在电力机务段、大的编组站等牵引网支线比较多的地方。

作用是将支线接触网(包括其他在接触网上用电的线路)与正线接触网分开,防止由于支线接触网故障而影响正线接触网供电,并可增加馈电线数目。

开闭所设在较长的供电臂中间时,其作用是缩短牵引网故障范围。

分区亭一般设在馈电臂末端,即在两个牵引变电所中间。

其作用是当需要改变牵引网的供电方式时,可以通过分区亭进行转换,将上、下行联接。

在必要时还可以通过隔离开关实现越区供电。

十一、分段绝缘器及其设置地方
分段绝缘器是接触网进行电分段时采用的一种绝缘设备。

正常情况,受电弓带电滑行通过。

当某一接触网分段发生故障或因施工停电时,打开分段绝缘器处的隔离开关将该部分接触网断电,而其他部分能正常供电。

如:两部分接触网系统分别供电时,当一部分接触网的电源发生问题不能供电,则可合上隔离开关,使其使用一个电源,从而提高了接触网运行的可靠性和灵活性。

分段绝缘器一般设在:
1.货物线及进行装卸作业的线路;
2.机车整备线或有备用水鹤的线路;
3.同一车站不同车场之间的分段;
4.上下行之间分区;
5.采用绝缘锚段关节有困难的车站正线及段管线等。

十二、隔离开关在电气化铁路牵引供电的主要用途及操作时应注意的事项
隔离开关主要设在侧线、货物线、整备线、机务段机车折返段等线路的接触网支线上。

他的主要用途是当需要接触网停电作业检修时,用它来实现与正线或到发线接触网线路的可靠隔离,以保证作业及检修人员的安全和运行部分的正常工作。

在操作隔离开关时应注意:
1.隔离开关开闭作业时,必须使用绝缘棒,有两人在场,一人操作一人监护。

操作人员、监护人员必须有供电段发给的隔离开关操作合格证;
2.操作前,操作人员必须穿戴规定的绝缘鞋和绝缘手套,使用前进行简略漏气试验,并确认开关及其传动装置正常,接地线良好,方准按规程操作;
3.操作要准确、迅速,一次开闭到底,中途不得停留和发生冲突。

操作过程中人体各部不得与支柱及其构件相接触。

当雷电来临和雷电时间,
禁止操作隔离开关;
4.当发现隔离开关及其传动装置状态不良时,车站值班员应立即要求电力调度派人检修,如危及人身、行车安全时,在修好之前不得进行操作,并严禁擅自攀登支柱自行维修;
5.绝缘鞋、绝缘手套和绝缘棒,要存放于阴凉干燥、不落灰尘的容器内,每六个月由各站、段送供电段检查并试验一次,每次使用后用干布擦净。

十三、保持接触网与轨面的规定距离的方法
为保持接触网与轨面的规定距离,在电气化铁路施工时,由施工单位在接触网支柱内缘或隧道边墙标出接触网设计的轨面标准线,开通前铁路供电段、工务段要共同复查确认,以后每年复测一次。

十四、铁路供电需满足的要求和供电设备的要求
铁路各车站都应有电力供应,原则上通过电力贯通线供电。

在电力贯通线为开通前时,附近又无地方电源或地方电源不能满足要求时,铁路应自备发电所或发电机组。

铁路变电所、配电所和电力线路,应保证对运输生产和职工生活全部负荷的供电。

为保证运输生产不间断供电,满足设备检修需要,铁路局应配备发电车、电力试验车。

铁路供电设备应做到:
1.一级负荷应有两个独立电源,保证不间断供电;二级负荷应有可靠的专用电源;
2.受电电压根据用电容量、可靠性和输电距离,可采用110、35(63)、10kV或380/220V;
3.用户受电端供电电压允许偏差为:
①35kV及其以上高压供电线路,电压正负偏差的绝对值之和不超过额定值的10%;
②10kV及其以下三相供电线路为额定值的±7%;
③220V单相供电的,为额定值的+7%~-10%;
④自动闭塞信号变压器二次端子,为额定值的±10%。

在电力系统非正常情况下,用户受电端的电压值允许偏差不超过额定值的±10%。

相关文档
最新文档