电气化铁道供电系统课程设计.
电气化铁路供电系统教材

谐波问题 整改措施:在牵引变电所增加滤波器 (单调谐滤波器、高通滤波器),存在 增加投资的问题。 限制:谐波电流问题一直是铁路部门 和电力部门之间争论的焦点问题。
负序电流问题 牵引供电系统的负荷为单相负荷,导致 从电力系统三相去用的电能不平衡,从而向 电力系统注入负序电流。 负序电流的危害:降低用户电能的利用 率,引起用户旋转电机转子表面温升过高。 整改措施:牵引供电系统采用换相方式 接入电力系统,采用新型供电方式。 限制:电力部门一直在对牵引供电系统 注入电力系统的负序电流进行限制。
2 牵引网 通常,将接触网、钢轨、回流线构成的线路称为牵引网。接触网 和钢轨是牵引网的主体。 接触网(图3-54)是架设在电气
化铁路上空,向电力机车供电的一种
特殊形式的输电线路,其质量和工作 状态直接影响电气化铁路的运输能力。 接触网根据其接触悬挂类型,可 以分为简单接触悬挂和链形接触悬挂 两类。
• 供电能力:满足在不同牵引工况下电能的输 送。关键点:牵引供电臂末端电压水平。 • 运行方式的灵活性:在确保供电的前提下, 为设备的检修、运行方式的调整等提供灵活 的操作方式。改变运行方式的动作迅速。 • 完备的确保一次系统运行可靠性的措施。
目前牵引供电系统面临的主要问题: • 谐波问题 • 负序电流问题 • 功率因数问题 • 机车过分相问题 • 接地问题 • 继电保护问题 • 弓网关系问题 • 绝缘配合问题 • 电磁兼容问题
功率因数问题 列车从牵引供电系统取用的电能会随着 列车牵引定数、路况(限坡、弯道)、运行 图、司机操作技术等因素的影响,因此改变 列车取用的有功功率和无功功率,导致功率 因素发生变化。 电力部门要求大工业用户的功率因数达 到0.9以上,高出部分奖励、低于该数值将罚 款。 整改措施:加功率因数补偿装置,困难 在于负荷波动导致功率因数大范围波动,难 以达到理想的补偿效果。
电气化铁道供电系统与设计-课程设计指导手册(自动化学院)

《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系2009-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
通过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能稳固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
通过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
通过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告班级:学号:姓名:指导教师:年月日一、题目某牵引变电所位于大型编组站内, 向两条复线电气化铁路干线的两个方向供电区段供电, 已知列车正常情况的计算容量为27000 kV A(三相变压器), 并以10kV电压给车站电力照明机务段等地区负荷供电, 容量计算为2700 kV A, 各电压侧馈出数目及负荷情况如下: 25kV回路(1路备): 两方向年货运量与供电距离分别为, , 。
10kV共4回路(2路备)。
二、供电电源由系统区域变电所以双回路110kV输送线供电。
本变电所位于电气化铁路的首端, 送电线距离30km, 主变压器为SCOTT接线。
三、题目分析及解决方案框架确定2.1.选题背景、负荷分析和原始数据在保证电气化铁道供电安全可靠的同时, 也要求供电设备最经济的利用, 因此选择合适容量的变压器是很有现实意义的。
本文在这方面对已有的计算公式进行了分析, 并提出了一个较为准确的变电所有效电流公式, 说明在某些情况下机组的选择必须进一步考虑实际的运行情况。
牵引变电所是电气化铁路牵引供电系统的核心部分, 它的主要任务是将电力系统输送来的三相高压电变化成适合电力机车使用的电能。
而电气主接线反映牵引变电所设施的主要电气设备以及这些设备的规格、型号、技术参数以及连接方式。
通过电气主接线可以了解牵引变电所设施的规模大小、设备情况。
由上述资料可知, 本牵引变电所担负着重要的牵引负荷供电任务(一级负荷), 馈线数目多、影响范围广, 应保证安全可靠的供电。
10KV地区负荷主要为编组站自动化驼峰、信号自动闭塞、照明及其它自动装置等, 应有足够的可靠性。
2.2.牵引变压器台数和容量的选择牵引变压器是牵引供电系统的重要设备, 其容量大小关系到能否完成国家交给的运输任务的问题。
从安全运行和经济方面来看, 容量过小会使牵引变压器长期过载, 将造成其寿命缩短, 甚至烧毁;反之, 容量过大将使牵引变压器长期不能满载运行, 从而造成其容量浪费, 损耗增加, 使运营成本增大。
电气化铁路供电系统设计

摘要本毕业设计介绍了电气化铁道供变电技术,以交流电气化铁道为重点,加强了对牵引供电系统的认识。
牵引供电系统又以牵引变电所为重点,介绍了供电系统一次设备和二次电气设备,对变电所一次电气设备的构成、类型、工作原理做了一定的介绍;对变电所的二次装置的构成、工作原理进行了比较详细的介绍。
本设计主要以电力牵引供变电系统为主,对其结构特点进行系统分析,包括主电路、控制电路、计量回路。
事故预告,报警回路;高低压电器等。
同时对电力牵引供变电系统供电方式的特点进行分析,对典型故障案例进行深入分析,提出解决方案,包括组织流程、安全、技术、处理措施。
本设计书还对接触网和牵引变电所倒闸部分进行了分析,更便于掌握牵引变电所的运行状态。
关键词:交流电气化设备供电系统供电方式结构特点ABSTRACTThe graduation design specification introduces electrified railway for substation technology, with ac electrified railway as the key point, to strengthen the understanding of the traction power supply system. Traction power supply system and focusing on traction substation, this paper introduces a power supply system and the secondary electrical equipment, equipment for substation once electrical equipment structure, type, principle of work done some introduction; The second device for substation structure, working principle are detailed introduced. This design is mainly for electric traction substation system is given priority to, on the structure characteristic of system analysis, including the main circuit and control circuit, measurement circuit. The accident forecast, alarm circuit, high and low voltage electric apparatus, etc. At the same time on the electric traction substation system for the power-supply modes, analyzes the characteristic of typical fault cases analysis, and proposes the solutions, including organizational processes, safety, technology, handling measures. This proponent of catenary and traction substation pour brake parts are analyzed, more facilitate master traction substation operation.Key words: Ac electrified equipment power supply system Power-supply modes Structure characteristics目录1 电力牵引供电系统概述 (1)1.1电力牵引特点 (1)1.2电力系统简介 (1)1.3牵引供变电系统的组成 (2)1.4牵引供电方式 (4)1.5接触网 (8)2 牵引变电所电气主接线 (11)2.1电气主接线概述 (11)2.2牵引变电所110kv侧的电气主接线 (11)3 牵引供电系统主要电气设备 (15)3.1电气设备的概述 (15)3.2牵引变压器 (15)3.2.1变压器的分类 (15)3.2.2油侵式电力变压器结构,构成部件的作用。
电气化铁道供电系统与设计课程设计指导手册自动化学院模板

电气化铁道供电系统与设计课程设计指导手册自动化学院《电气化铁道供电系统与设计》课程设计指导手册兰州交通大学自动化学院电气工程系-6-18电气化铁道供电系统与设计课程设计学院:自动化学院适用专业:电气工程及其自动化课程设计名称:电气化铁道供电系统课程设计课程代码:0508941学分数:1 学时数:16一、课程设计目的本课程设计是学生在学完《电气化铁道供电系统与设计》课程之后、进行的一个综合性的教学实践环节。
经过本课程设计一方面使学生获得综合运用学过的知识进行牵引变电所主接线设计和电气设备选型的基本能力,另一方面能巩固与扩大学生的电气综合设计知识,为毕业设计做准备,为后续课程的学习及今后从事科学研究、工程技术工作打下较坚实的基础。
经过本课程设计,学生能运用电气基础课程中的基本理论和实践知识,正确地解决牵引变电所的电气主接线设计等问题。
经过牵引变电所的电气主接线设计的训练,提高电气设计能力,学会使用相关的手册及图册资料:1、掌握牵引变压器容量计算的基本方法能够根据牵引负荷的大小正确计算牵引变压器的计算容量、校核容量和安装容量。
2、掌握牵引变电所110kV侧主接线设计的基本方法能够根据牵引变电所在牵引供电系统中的重要性,正确在电气主接线的四种接线形式中进行选择,做出110kV侧主接线的设计。
3、掌握牵引变压器型号选择的基本方法能够根据变压器的容量和牵引网向电力机车的供电方式正确选择牵引变压器的型号。
4、掌握牵引变电所馈线侧主接线设计的基本方法能够根据牵引变电所向接触网的供电方式,正确进行馈线数目、备用方式和接线形式的和设计。
5、掌握牵引变电所主接线中电气设备选型的基本方法能够正确对主接线中电气设备某两种,如:断路器,隔离开关,电流互感器,电压互感器,避雷器,自用电变压器,地方负荷用变压器等进行正确选型。
二、课程设计的要求学生要按照课程设计指导书的要求,根据题目所给原始参数进行设计。
本课程设计的基本步骤是:1、分析问题及解决方案框架确定2、牵引变压器容量计算正确进行牵引变压器的计算容量、校核容量和安装容量的计算。
电气化铁路供电系统的设计与实现

电气化铁路供电系统的设计与实现一、导言电气化铁路是现代交通运输的必需品,概念简单来说就是用电力作为牵引能源的铁路交通系统。
电气化铁路的供电系统是电气化铁路的重要组成部分,供电系统的设计与实现是电气化铁路建设的重要环节,本文将就此展开讨论。
二、供电系统的基本概念供电系统是支持电气化铁路正常运行的关键基础设施之一,它主要由供电站、电气化变电站、牵引变压器、接触网、集电装置、地线以及设备和通信控制系统等部分组成。
其中,供电站是供应电力给电气化铁路的核心部分,电气化变电站负责将高压输电线路的电压转换为低压直流电,牵引变压器用于将低压直流电转换为适合交流电驱动的电能,接触网则是供电系统的主要能量输出装置,集电装置用于对接触网所输出的电能进行集电,地线则是用于保证安全的配套设施。
三、供电系统的设计原则为了保证电气化铁路运行的安全性和运行效率,供电系统的设计必须符合一定的原则。
首先,供电系统必须满足稳定、可靠、高效、安全的电力供应要求。
其次,供电系统的设计需要考虑供电站覆盖面积、变电站的布局、接触网构造等因素,要在满足技术要求和经济需求的前提下进行合理布局和安排。
此外,供电系统的设计还需要考虑在地形条件不同的地方下如何解决供电站、变电站、接触网和车站等相互关联的问题。
四、供电系统的实现方法在实现供电系统的过程中,需要考虑到系统的可靠性、稳定性和灵活性等因素。
供电系统具体的实现方法根据不同的技术要求和经济条件进行选择。
一般情况下,供电系统的实现技术主要有以下几种:1. 直供直流电力系统(DC)该方法主要是通过直流电传输来实现电气化铁路的供电,其特点是输电损耗较小,系统结构简单,稳定性和可靠性高。
但由于操作难度较大,需要专业技术人员进行操作,因此使用范围相对较窄。
2. 交流电力系统(AC)该方法主要是通过交流电传输来实现电气化铁路的供电,其特点是输电噪音小,相对稳定,且操纵容易。
但对于电气化铁路的大规模使用来说,支持的电压和频率等参数需要与国家标准保持一致,造成的成本相对较高。
电气化铁道供电系统与设计课程设计报告

电气化铁道供电系统与设计课程设计报告电气化铁道供电系统与设计课程设计报告班级:电气***学号: **********姓名: **** **指导教师: ******2011 年 07 月 18 日目录1、题目 (1)2 题目分析及解决方案框架确定 (1)3 设计过程 (2)3.1 牵引变电所110kV侧主接线设计 (2)3.2 牵引变压器主接线设计 (3)3.3 牵引变电所馈线侧主接线设计 (4)3.3.1 55kV侧馈线的接线方式 (4)3.3.2动力变压器及其自用电变压器接线 (5)3.4 绘制电气主结线图 (6)3.5 牵引变压器容量计算 (6)3.6 牵引变压器类型选择 (8)3.7导线选择 (8)3.7.1 室外110kV进线侧母线的选择 (9)3.7.2 室外27.5kV进线侧母线的选择 (10)3.7.3 室外10kV馈线侧母线的选择 (10)3.8 开关设备的选择 (10)3.8.1 高压断路器的选择 (10)3.8.2 高压熔断器的选择 (12)3.8.3 隔离开关的选择 (13)3.9 仪用互感器的选择 (13)3.9.1电流互感器的选择 (13)3.9.2电压互感器的选择及作用 (14)4 小结 (14)参考文献 (15)附表1 钢芯铝绞线的物理参数及载流量 (16)附图1 牵引变电所电气主结线图 (17)AT供电方式下斯科特接线牵引变电所设计1、题目某牵引变电所戊采用AT供电方式向复线区段供电,牵引变压器类型为110/27.5kV,SCOTT接线,两供电臂电流归算到27.5kV侧电流如表1所示。
本次设计主要做了变电所AT供电方式下,从电源进线到向供电臂供电的所有接线设计和此种接线方式下变电所的容量计算。
2 题目分析及解决方案框架确定分析题目提供的资料可知,该牵引变电所要担负向区段安全可靠的供电任务,题目要求采用110/55kV、SCOTT接线牵引变压器,AT供电方式向复线区段供电的方式,此供电方式可减轻对邻近通信线路的干扰影响,大大降低牵引网中的电压损失,扩大牵引变电所间隔,减少牵引变电所的数目。
电气化铁道供电系统课程设计

电气化铁道供电系统与设计课程设计报告班级:学号:姓名指导教师:评语:1. 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。
表1 已知参数供电臂供电臂长度km端子平均电流A有效电流A 短路电流A 穿越电流A左臂21.9 β238 318 917 206右臂24.7 α184 266 1052 2172. 题目分析及解决方案框架确定在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。
这是为确保牵引变压器安全运行所必须的容量。
最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。
三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。
三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。
考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气化铁道供电系统与设计课程设计报告班级:学号:姓名指导教师:评语:1. 题目某牵引变电所丙采用直接供电方式向复线区段供电,牵引变压器类型为110/27.5kV,三相V-v接线,两供电臂电流归算到27.5kV侧电流如表1所示。
表1 已知参数供电臂供电臂长度km端子平均电流A有效电流A 短路电流A 穿越电流A左臂21.9 β238 318 917 206右臂24.7 α184 266 1052 2172. 题目分析及解决方案框架确定在设计过程中,先按给定的计算条件求出牵引变压器供应牵引负荷所必须的最小容量,然后按列车紧密运行时供电臂的有效电流与充分利用牵引变压器过负荷能力,求出所需要的容量,称为校核容量。
这是为确保牵引变压器安全运行所必须的容量。
最后计算容量和校核容量,再考虑其他因素(如备用方式等),然后按实际系列产品的规格选定牵引的台数和容量,称为安装容量或设计容量。
然后再变压器型号的基础之上,选取室外110kV侧母线,室外27.5kV侧母线以及室外10kV侧母线的型号。
三相V,v结线牵引变压器是近年新研制的产品,它是将两台容量相等或不相等的单相变压器器身安装于同一油箱内组成的。
三相V-v结线牵引变电所中装设两台V,v 结线牵引变压器,一台运行,一台固定备用。
三相V-v结线牵引变电所不但保持了单相V-v结线牵引变电所的牵引变压器容量得到充分利用,可供应牵引变电所自用电和地区三相负载,主接线较简单,设备较少,投资较省,对电力系统的负须影响比单线小,对接触网的供电可实现双边供电等优点,最可取的是,解决了单相V-v结线牵引变电所不便于采用固定备用及其自动投入的问题。
考虑到V-v接线中装有两台变压器的特点,在确定110kV侧主接线时我们采用桥形接线。
按照向复线区段供电的要求,其牵引侧母线的馈线数目较多,为了保障操作的灵活性和供电的可靠性,我们选用馈线断路器100%备用接线,这种接线也便于故障断路器的检修。
按照选取的变压器的容量以及110kV侧的和牵引侧的主接线,可以做出设计牵引变电所的电气主接线。
3.设计过程电气主接线一方面从电源系统接收电能,另一方面又通过馈电线路将电能分配出去。
电气主接线的电源回路和用电回路之间采用什么方式连接,以保证工作可靠.灵活是十分重要的问题。
牵引变电所(包括开闭所、分区所)的电气主结线是指由隔离开关、互感器、避雷器、断路器、主变压器、母线、电力电缆、移相电容器等高压一次电气设备,按工作要求顺序连接构成的接受和分配电能的牵引变电所内部的电气主电路。
安全可靠的要求是首要的。
运行检修时绝不允许发生人身事故和重大设备事故。
停电必然造成损失,尤其是牵引负荷和部分动力负荷(如地铁的动力、主要照明和信号电源等)为一级负荷,中断供电将直接造成运输阻塞,甚至造成人员生命伤亡、设备损坏。
在考虑主结线的可靠性时,应该辩证地看待以下几个问题:①可靠性的客观检验标准是运行实践。
主结线的故障率是它的各组成元件在运行中的故障率的总和,过多地增加主结线中的电气设备,会降低主结线的可靠性(增加了故障率);②可靠性并不是绝对的。
同样的主结线对二、三级负荷来说是可靠的,而对一级负荷来说就可能不够可靠,因此分析和估价主结线的可靠性时,不能脱离负荷等级和供电电源的具体条件;③主结线的可靠性是发展的。
随着电力系统的发展,技术的进步,主结线的可靠性也是会改变的。
经济性也是设计主结线的重要原则。
经济性主要涉及主变压器、地区变压器的设备与安装费用,以及配电装置的设备、安装费用,还有占地面积和土石方工程等。
可靠性与经济性二者之间,既有矛盾的一面,也有统一的一面。
如果过分强调可靠性,势必造成设备增多,投资增大,结线系统复杂,其结果可能造成操作复杂,易产生误操作,增大故障率,反而降低了主结线的可靠性;如果过分强调经济性,减少设备,简化结线,必然又会影响可靠性,造成事故和停电停产,反而不经济。
所以在处理这些矛盾时,应当首先满足可靠而后再求经济。
因此,确定主结线时应深入调查分析用电负荷的性质和大小、对供电电源的要求、自动化装置的采用、发展的远景等等,找出主要矛盾,才能设计出高质量的主结线。
牵引变电所的电气主结线分为三个部分来分别设计:110kV电源侧的电气主接线、牵引侧的主接线、三相V-v直接供电方式变压器接线。
3.1牵引变电所馈线侧主接线设计由于27.5kV 馈线断路器的跳闸次数较多,为了提高供电的可靠性,按馈线断路器备用方式不同,牵引变电所27.5kV 侧馈线的接线方式一般有下列三种:1)带旁路母线和旁路断路器的接线如图3所示。
一般每2至4条馈线设一旁路断路器。
通过旁路母线,旁路断路器可代替任一馈线断路器工作。
这种接线方式适用于每相牵引母线馈线数目较多的场合,以减少备用断路器的数量。
旁路母线a 母线b 母线图3 带有旁路母线和旁路断路器的接线2)馈线断路器50%备用的接线如图4所示。
这种接线每两条馈线设一台备用断路器,通过隔离开关的转换,备用断路器可代替其中任一台断路器工作。
当每相母线的馈出线数目较多时,一般很少采用此种法方法。
左臂上行左臂下行右臂上行右臂下行a母线b母线图4 馈线断路器50%备用3)馈线断路器100%备用的接线如图5所示。
这种接线当工作断路器需检修时,此种接线用于单线区段,牵引母线不同的场合。
即由备用断路器代替。
断路器的转换操作方便,供电可靠性高,但一次投资较大。
送左臂上行送左臂下行送右臂上行送右臂下行a母线b母线图5 馈线断路器100%备用由于牵引变压器类型为三相V-v,而且此牵引变电所向两个相邻区间的复线供电,为提高供电的可靠性,保障断路器转换的操作方便,牵引变电所27.5kV 侧馈线断路器采用100%备用的接线。
3.2牵引变电所110kV侧主接线设计根据实际运行要求,三相V-v牵引变电所装设两回电源进线和两台变压器,因有系统功率穿越,属通过式变电所。
因此选取结构比较简单且经济性能高的桥式接线[1]。
图1为内桥接线,特点是连接在靠近变压器侧,适用于线路长,线路故障高,而变压器不需要频繁操作的场合,这种接线形式可以很方便地切换或投入线路。
图2为外桥接线,与内桥形接线相比,外桥接线靠近线路侧,适合于输电距离较短,线路故障较少,而变压器需要经常操作的场合,这种接线方便于变压器的投入以及切除。
为了配合三相V-v牵引变电所在出现变压器故障时备用变压器的自动投入,选择采用外桥接线便于备用变压器的投入以及故障变压器的切除。
图1 内桥接线图2 外桥接线3.3 三相V-v 直供方式变压器接线为了克服单相V,V 结线方式在变电所内需设置第三台同样的单相牵引变压器作固定备用,使变电所主接线较复杂,倒闸操作或备用自投装置麻烦的缺点可采用两台三相V,V 结线牵引变压器,一台运行,另一台固定备用[2]。
当采用直接供电方式时,三相V ,v 变压器低压侧两个绕组接成正“V ”或反“V ” ,原边绕组接成固定的V 结线。
低压侧两次边绕组,各取一端联至27.5kV 的a 相和b 相母线上,它们的公共端接至接地网和钢轨。
其主接线如图6所示。
V V V V至钢轨或回流线至钢轨或回流线27.5kV图6 三相V-v 变压器直接供电方式主接线3.4 牵引变压器容量计算为了确定牵引变电所的变压器安装容量和台数,需要进行变压器容量计算。
变压器容量计算一般分为三个步骤:首先根据铁道部任务书中规定的年运量大小和行车组织的要求确定计算容量,这是为供应牵引负荷所必须的容量。
其次根据列车紧密运行时供电臂的有效电流和充分利用牵引变压器的过载能力,计算校核容量,这是为确保变压器安全运行所必须的容量。
最后,根据计算容量和校核容量,再考虑其他因素(如备用方式等),并按实际变压器系列产品的规格选定变压器的数量和容量称为安装容量。
牵引变压器是牵引供电系统的重要设备,其容量大小关系到能否完成国家交给的运输任务和运营成本。
从安全运行和经济方面来看,容量过小会使牵引变压器长期过载,将造成其寿命缩短,甚至烧损;容量过大将使牵引变压器长期不能满载运行,从而造成其容量浪费,损耗增加,使运营费用增大。
因此,在进行牵引变压器容量计算时,正确地确定计算条件,以便合理地选定牵引变压器的额定容量是十分重要的。
①三相V-v 接线牵引变压器绕组的有效电流三相V-v 结线变压器是由两台单相变压器安装于同一油箱内组成的,每台变压器供给所辖供电臂负荷。所以其绕组有效电流I ve 即为供电臂的有效电流,故I 1ve = I 1eI 2ve = I 2e式中,I 1e 、I 2e 分别为供电左β、右臂α的馈线有效电流;I 1ve 、I 2ve 分别为三相V-v 结线变压器绕组的有效电流。根据题意,I 1ve =318A,I 2ve =266A 。②计算三相V-v 接线牵引变压器的计算容量三相V-v 接线牵引变压器供两个供电臂时,其计算容量为S 1 = UI 1ve S 2 = UI 2veS 1 = UI 1ve = 27.5×318(kVA)=8745(kVA)S 2 = UI 2ve = 27.5×266(KVA)=7315(kVA)③计算三相V-v 接线牵引变压器的校核容量三相V-v 接线中两台牵引变压器的最大容量分别为S 1max = UI 1maxS 2max = UI 2maxS 1max = UI 1max =27.5×917(kVA)=25217.5(kVA)S 2max = UI 2max =27.5×1052(kVA)=28930(kVA)在最大容量的基础之上,再考虑牵引变压器的过负荷能力后所确定的容量,就可以得到校核容量,即S 校 = KS S max 2max 1 (1) (2 ) (7)(3) (4) (5) (6)式中,K 为牵引变压器过负荷倍数,取K =1.5,则可得S 校=(25217.5+28930)/1.5(kV A)=36098.34(kV A)④确定三相V-v 接线牵引变压器的安装容量及型号选择将三相V-v 接线的变压器的计算容量和校核容量进行比较,并结合采用固定备用方式和系列产品,选用三相V-v 变压器的安装容量为2×40000kV A 。通过查询附表1可选择SFY-40000/110型号的三相双绕组变压器。3.5 导线选择导电材料可以是铜或铝按最大长期工作电流选择母线截面要求根据导线允许温度查表获得的允许电流大于母线长期工作电流。
按经济电流密度选择母线截面,导线发热损耗随着导线截面积的增加而降低,同时,导线截面积的增加将导致导线的投资和维护费用增加,考虑上述两条件可获得导线的年运行费用,对应年运行费用最小值,就是导线的经济截面积。
导线截面的选择有两种方法:根据最大长期工作电流,根据 经济电流密度。