导数的概念试题含答案
导数测试题(人教A版理)(含答案)

导数(人教A 版理)测试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数21ln 2y x x =-的单调递减区间为 A .(1,1]- B .(0,1] C .[1,)+∞ D .(0,)+∞2.函数()f x 的定义域为R ,(1)2f -=,对任意x ∈R ,()2f x '>,则()24f x x >+的解集为 A .(1,1)- B .(1,)-+∞ C .(,1)-∞- D .(,)-∞+∞3.设函数()e x f x x =,则A .1x =为()f x 的极大值点B .1x =为()f x 的极小值点C .1x =-为()f x 的极大值点D .1x =-为()f x 的极小值点4.已知函数33y x x c =-+的图象与x 轴恰有两个公共点,则c =A .2-或2B .9-或3C .1-或1D .3-或15.设函数2()ln f x x x=+,则A .12x =为()f x 的极大值点 B .12x =为()f x 的极小值点 C .2x =为()f x 的极大值点 D .2x =为()f x 的极小值点6. 如图所示,在边长为1的正方形O ABC 中任取一 点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .177.设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图象如图所示,则下列结论中一定成立的是A .函数()f x 有极大值(2)f 和极小值(1)fB .函数()f x 有极大值(2)f -和极小值(1)fC .函数()f x 有极大值(2)f 和极小值(2)f -D .函数()f x 有极大值(2)f -和极小值(2)f8.已知函数()y f x =的图象在点(1,(1))f 处的切线方程是210x y -+=,则(1)2(1)f f '+=A .12B .1C .132D .29.设点P 在曲线e x y =上,点Q 在曲线11y x=-上,则||PQ 的最小值为A 1)-B 1)-C D10.设定义在R 上的函数()f x 是最小正周期为2π的偶函数,()f x '是()f x 的导数,当[0,]x π∈时,0()1f x <<;当(0,)x π∈且2x π≠时,()02x f x π⎛⎫'-> ⎪⎝⎭.则函数()sin y f x x =-在[2,2]ππ-上的零点个数为A .2B .4C .5D .811.设函数1()f x x=,2()g x x bx =-+,若()y f x =的图象与()y g x =的图象有且只有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是A .120x x +>,120y y +>B .120x x +>,120y y +<C .120x x +<,120y y +>D .120x x +>,120y y +<12.已知ln ()ln 1xf x x x=-+,()f x 在0x x =处取最大值,以下各式正确的序号为 ①00()f x x <;②00()f x x =;③00()f x x >;④01()2f x <;⑤01()2f x >. A .①④ B .②④ C .②⑤ D .③⑤二、填空题:本大题共4小题,每小题5分,共20分.13.曲线(3ln 1)y x x =+在点(1,1)处的切线方程为 .14.计算定积分121(sin )d x x x -+=⎰ .15.定义:曲线C 上的点到直线l 的距离的最小值称为曲线C 到直线l 的距离.已知曲线21:C y x a =+到直线:l y x =的距离等于曲线222:(4)2C x y ++=到直线:l y x =的距离,则实数a = .16.已知[0,)x ∈+∞,给出下列四个不等式: ①2e 1x x x ≤++211124x x ≤-+;③21cos 12x x ≥-;④21ln(1)8x x x +≥-.其中,能够恒成立的不等式的序号是 .(写出你认为满足题意的所有不等式的序号)三、解答题:本大题共6小题,共70分. 17.求函数()e 2x f x ax =--的单调区间.18.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求,a b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.19.设函数1()e (0)e x xf x a b a a =++>. (1)求()f x 在[0,)+∞内的最小值;(2)设曲线()y f x =在点(2,(2))f 处的切线方程为32y x =,求,a b 的值.20.已知,a b 是实数,1和1-是函数32()f x x ax bx =++的两个极值点.(1)求a 和b 的值;(2)设函数()g x 的导数()()2g x f x '=+,求()g x 的极值点.21.已知0a >,b ∈R ,函数3()42f x ax bx a b =--+.(1)证明:当01x ≤≤时,①函数()f x 的最大值为|2|a b a -+;②()|2|0f x a b a +-+≥. (2)若1()1f x -≤≤对[0,1]x ∈恒成立,求a b +的取值范围.22.已知函数ln ()e xx kf x +=(k 为常数),曲线()y f x =在点(1,(1))f 处的切线与轴x 平行. (1)求k 的值;(2)求()f x 的单调区间;(3)设()()g x xf x '=,其中()f x '为()f x 的导函数,证明:对任意0x >,2()1e g x -<+.导数(人教A 版理)测试题答案1. B2. B3. C4. B5.D6. C7. D8. D9.解:函数e x y =的反函数为ln y x =,考查函数ln y x =与图象11y x=-的公共点情况,即 考查方程1ln 1x x =-的解的个数,即考查函数1()ln 1h x x x=+-的零点个数. 1()ln 1h x x x =+-,22111()x h x x x x-'=-=,当01x <<时,()0h x '<,()h x 递减;当1x >时,()0h x '>,()h x 递增.故0x >时,()(1)0h x h ≥=,即1ln 1x x≥-,仅当1x =时,取等号.因此||PQ 最小值就是函数e x y =及其反函数ln y x =图象上两点距离最小值,易知此时(0,1)P ,(1,0)Q ,故||PQ .答案:选C10.解:函数311()e (1)0e (1)21x xb f x x ax b a x bbx x a x b a -≥++-+≥<<-+=<+. 答案:选B11.解:设32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只需(0)0F =或203F b ⎛⎫= ⎪⎝⎭.因为(0)1F =,故必有203F b ⎛⎫= ⎪⎝⎭,由此得b 不妨设12x x <,则223x b =所以1()()(F x x x x =-,比较系数得1x -,故1x =120x x +,由此知12121212110x x y y x x x x ++=+=<. 答案:B12.解:22111ln ln 1()[(ln )(1)](1)11(1)(1)x x x f x x x x x x x ++''=⋅-=--=-++++,由题意知0()0f x '=,即00ln 10x x ++=,00ln (1)x x =-+. 故00000000000ln ln (1)()ln 111x x x x x f x x x x x x -+=-===+++. 令函数()l n 1(0)g x x x x =++>,则1()10g x x'=+>,故函数()g x 为增函数,而011331l n l n e 0()22222g g x ⎛⎫⎛⎫=+>-=>= ⎪⎪⎝⎭⎝⎭,即01()2g g x ⎛⎫> ⎪⎝⎭,故012x <,所以01()2f x <.答案:B二、填空题:本大题共4小题,每小题5分,共20分. 13. 43y x =-.14.解:∵321cos sin 3x x x x '⎛⎫-=+ ⎪⎝⎭,∴11231112(sin )d cos 33x x x x x --⎛⎫+=-= ⎪⎝⎭⎰.215.曲线2C 是圆心为(0,4)-,半径r 的圆,圆心到直线:l y x =的距离1d ,所以曲线2C 到直线l 的距离为1d r -设曲线1C 上的点00(,)x y 到直线:l y x =的距离最短为d ,则过00(,)x y 的切线平行于直线y x =.已知函数2y x a =+,则00|21x x y x ='==,即012x =,014y a =+,点00(,)x y 到直线:l y x =的距离111||||a a d ⎛⎫-+- ⎪,由题意1||a -74a =-或94a =.当74a =-时,直线l 与曲线1C 相交,不合题意,故舍去.答案:49. 16.解: 对①,在区间[0,)+∞上,函数e x y =和21y x x =++的增长速度不在同一个“档次”上,随着x 的增大,e x y =的增长速度越来越快,会超过并会远远大于21y x x =++的增长速度,故不等式2e 1x x x ≤++不能恒成立.对②:令t 1t ≥,21x t =-.于是,原不等式对[0,)x ∈+∞是否恒成立534740t t t ⇔-+-≥对[1,)t ∈+∞是否恒成立.记53()4740,[1,)f t t t t t =-+-≥∈+∞,则42()51275(1)(1),[1,)f t t t t t t t t ⎛'=-+=+-∈+∞ ⎝,易知()f t 在⎛ ⎝内递减.当t ⎛∈ ⎝时,()(1)0f t f <=,故不等式534740t t t -+-≥对[1,)t ∈+∞不恒成立,从而排除选项B. 对③:记21()cos 1,[0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-≥在[0,)+∞上恒成立,故()f x 在[0,)+∞上递增,所以()(0)0f x f ≥=,即当[0,)x ∈+∞时,不等式21cos 12x x ≥-+恒成立.对④:取4x =,则左边2ln5lne 2=<==右边,此时21ln(1)8x x x +<-,从而排除选项D. 答案:选填③17.解:(1)()f x 的定义域为(,)-∞+∞,()e x f x a '=-. 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞上单调递增.若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>.所以,()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.故()f x 的递减区间为(,ln )a -∞,递增区间为(ln ,)a +∞. 18.解:(1)因为3()f x ax bx c =++,故2()3f x ax b '=+. 由于()f x 在2x =处取得极值16c -,故有(2)0,(2)16,f f c '=⎧⎨=-⎩即120,8216,a b a b c c +=⎧⎨++=-⎩解得1,12.a b =⎧⎨=-⎩(2)由(1)知3()12f x x x c =-+,2()3123(2)(2)f x x x x '=-=+-.当(,2)x ∈-∞-时,()0f x '>,故()f x 在(,2)-∞-上为增函数;当(2,2)x ∈-时,()0f x '<,故()f x 在(2,2)-上为减函数;当(2,)x ∈+∞时,()0f x '>,故()f x 在(2,)+∞上为增函数.由此可知()f x 在2x =-处取得极大值(2)16f c -=+,()f x 在2x =处取得极小值(2)16f c =-. 由题设条件知1628c +=,解得12c =.此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-+=-, 因此()f x 在[3,3]-上的最小值为(2)4f =-. 19.解:(1)1()e e x xf x a a '=-,当ln x a <-时,()0f x '<,()f x 在(,ln )a -∞-上递减;当ln x a >-时,()0f x '>,()f x 在(ln ,)a -+∞①若01a <<,ln 0a ->,()f x 在(0,ln )a -上递减,在(ln ,)a -+∞上递增,从而()f x 在[0,)+∞上的最小值为(ln )2f a b -=+; ②若1a ≥,ln 0a -≤,()f x 在(0,ln )a -上递增,从而()f x 在[0,)+∞上的最小值为1(0)f a b a=++.(2)依题意2213(2)e e 2f a a '=-=,解得2e 2a =或21e 2a =-(舍去), 所以2e a =,代入原函数可得1232b ++=,即12b =,故2e a =,12b =. 20.解:(1)由题设知2()32f x x ax b '=++,且(1)320f a b '-=-+=,(1)320f a b '=++=,解得0a =,3b =-.(2)由(1)知3()3f x x x =-.因为2()2(1)(2)f x x x +=-+,所以()0g x '=的根为121x x ==,32x =-,于是函数()g x 的极值点只可能是1或2-.当2x <-时,()0g x '<;当21x -<<时,()0g x '>,故2-是()g x 的极值点. 当21x -<<或1x >时,()0g x '>,故1不是()g x 的极值点. 所以的极值点为2-.21.解:(1)①22()122126b f x ax b a x a ⎛⎫'=-=-⎪⎝⎭.当0b ≤时,有()0f x '≥,此时()f x 在[0,)+∞上单调递增; 当0b >时,()12f x a x x ⎛'= ⎝,此时()f x在⎡⎢⎢⎣上单调递减,在⎫⎪⎪⎭上单调递增. 所以当01x ≤≤时,max 3,2,()max{(0),(1)}max{,3}|2|,2a b b a f x f f a b a b a b a a b b a-≤⎧==-+-==-+⎨-+>⎩.②由于01x ≤≤,故当2b a ≤时,333()|2|()34224222(221)f x a b a f x a b ax bx a ax ax a a x x +-+=+-=-+≥-+=-+. 当2b a >时,3333()|2|()42(1)244(1)244(1)22(221)f x a b a f x a b ax b x a ax a x a ax a x a a x x +-+=-+=+-->+-->+--=-+. 设3()221,01g x x x x =-+≤≤,则2()626g x x x x ⎛'=-= ⎝⎭⎝⎭,于是()g x ',()g x 随x 的变化情况如下:所以,min ()10g x g ==.所以当01x ≤≤时,32210x x -+>.故3()|2|2(221)f x a b a a x x +-+≥-+. (2)由①知,当01x ≤≤时,m ax ()|2|f x a b a =-+,所以|2|1a b a -+≤.若|2|1a b a -+≤,则由②知()(|2|)1f x a b a ≥--+≥-.所以1()1f x -≤≤对任意01x ≤≤恒成立的充要条件是|2|1,0,a b a a -+≤⎧⎨>⎩即20,31,0a b a b a -≥⎧⎪-≤⎨⎪>⎩或20,1,0.a b b a a -<⎧⎪-≤⎨⎪>⎩(*)在直角坐标系aOb 中,(*)所表示的平面区域为如图所示的阴影部分,其中不包括线段BC . 做一组平行直线()a b t t +=∈R ,得13a b -<+≤,所以a b +的取值范围是(1,3]-.22.解:(1)由ln ()e xx k f x +=,得1ln (),(0,)e xkx x xf x x x --'=∈+∞. 因为曲线()y f x =在(1,(1))f 处的切线与x 轴平行,(2)由(1)得1ln (),(0,)e x x xf x x x --'=∈+∞, 当(0,1)x ∈时,10x ->,ln 0x ->,()0f x '>;当(1,)x ∈+∞时,10x -<,ln 0x x -<,()0f x '<. 所以()f x 的单调增区间是(0,1),单调递减区间是(1,)+∞. (3)证明:因为2()()()g x x x f x '=+,所以1()(1ln ),(0,)e xx g x x x x x +=--∈+∞. 因此,对任意0x >,2()1e g x -<+等价于2e 1ln (1e )1xx x x x ---<++. 令()1ln ,(0,)h x x x x x =--∈+∞,则2()ln 2(ln ln e ),(0,)h x x x x -'=--=--∈+∞.因此,当2(0,e )x -∈时,()0h x '>,()h x 单调递增;当2(e ,)x -∈+∞时,()0h x '<,()h x 单调递减. 所以()h x 的最大值为22(e )1e h --=+,故21ln 1e x x x ---≤+.设()e (1)x x x ϕ=-+.因为0()e 1e e x x x ϕ'=-=-,所以当(0,)x ∈+∞时,()0x ϕ'>,()x ϕ单调递增,()(0)0x ϕϕ>=,故当(0,)x ∈+∞时,()e (1)0x x x ϕ=-+>,即e 11xx >+. 所以22e 1ln 1e (1e )1x x x x x ----≤+<++.因此对任意0x >,2()1e g x -<+.。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.2.曲线在横坐标为l的点处的切线为,则点P(3,2)到直线的距离为()A.B.C.D.【答案】A【解析】欲求点到直线的距离,需知点的坐标和直线的方程,由公式,计算可得.由于直线为已知曲线方程的切线,且已知切点,这样一般通过求导数得到切线的斜率,由点斜式得到直线方程.,,.【考点】(1)导数与切线的关系;(2)点到直线的距离.3.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】由曲线在点处的切线方程为得:,从而可得:,所以曲线在点处切线的斜率为4;故选B.【考点】函数导数的几何意义.4.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.5.曲线在点处的切线斜率为()A.B.C.D.【答案】A【解析】由,得到,把x=0代入得:,则曲线在点A(0,1)处的切线斜率为1.故选A.【考点】1.直线的斜率;2.导数的几何意义.6.已知函数f(x)=x2-4,设曲线y=f(x)在点(xn ,f(xn))处的切线与x轴的交点为(xn+1,0)(n∈N +),其中x n为正实数.(1)用xn 表示xn+1;(2)若x1=4,记an=lg,证明数列{an}成等比数列,并求数列{xn}的通项公式;(3)若x1=4,bn=xn-2,Tn是数列{bn}的前n项和,证明Tn<3.【答案】(1);(2);(3)详见解析.【解析】(1)由题设条件知曲线y=f(x)在点处的切线方程是.由此可知.所以.(2)由,知,同理.故.由此入手能够导出.(3)由题设知,所以,由此可知.解:(1)由题可得.所以曲线在点处的切线方程是:.即.令,得.即.显然,∴.(2)由,知,’同理.----6’故.-----7’从而,即.所以,数列成等比数列.---8’故.即.----9’从而,所以.----10’(3)由(Ⅱ)知,∴∴ ---11’当时,显然.-------12’当时,-----13’∴.综上,.【考点】1.数列递推式;2.等比关系的确定;3.数列的求和;4.不等式的证明.7.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.8.已知曲线:(1)试求曲线在点处的切线方程;(2)试求与直线平行的曲线C的切线方程.【答案】(1);(2)或.【解析】(1)先求出的值,再求函数的导函数,求得的值即为点斜率,代入点斜式方程,再化为一般式方程即可;(2)设切点为,利用导数的几何意义和相互平行的直线的斜率相等,即可得所求切线的斜率,再求出切点的坐标,代入点斜式方程,再化为一般式方程即可.(1)∵,∴,求导数得:,∴切线的斜率为,∴所求切线方程为,即:.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得:,代入曲线方程得:切点为或,∴所求切线方程为:或,即:或.【考点】1、导数的计算;2、导数的几何意义.9.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义10.过点恰可以作曲线的两条切线,则的值为;【答案】0或1或9【解析】设切点,则有所以或.因为过点恰可以作曲线的两条切线,,所以方程有不等于零的两个等根或包含零的两个不等根.由得或,此时方程的根非零.当方程有零根时,,此时方程还有另一根【考点】导数求切线11.若曲线在点处的切线方程为,则曲线在点处切线的方程为.【答案】【解析】曲线在点处切线的方程为:.【考点】导数的几何性质.12.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.13.在曲线处的切线方程为。
导数复习题(含答案)

因为 ,所以 ,即 ,
所以 化为 ,
当 时,不等式 等价于 ,即 ,解得 ;
当 时,不等式 等价于 ,即 ,解得 ;
综上,不等式 的解集为 .
点睛:本题考查了与函数有关的不等式的求解问题,其中解答中涉及到利用条件构造新函数和利用导数研究函数的单调性,以及根据单调性和奇偶性的关系对不等式进行转化,解答中一定要注意函数值为零是自变量的取值,这是题目的一个易错点,试题综合性强,属于中档试题.
A. B. C. D.
【答案】A
【解析】由题意得 ,令
,选A.
点睛:对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.
故答案为B。
11.已知函数 有两个零点,则 的取值范围是()
A. B. C. D.
【答案】D
【解析】函数 的定义域为 ,因为 ,当 时, ,则函数 在 上单调递增,不满足条件;当 时,令 ,得 ,所以 在 上单调递减,在 上单调递增,所以 为极小值点,要使 有两个零点,即要 ,即 ,则 的取值范围是 ,故选D.
6.函数 的图象是()
A. B.
C. D.
【答案】A
【解析】由函数 ,则 ,所以函数 为奇函数,
图象关于原点对称,
又 时, ,
所以当 时, 单调递增,当 时, 单调递减,
综上,函数的图象大致为选项A,故选A.
7.已知函数 是函数 的导函数, ,对任意实数都有 ,设 则不等式 的解集为()
高三数学导数的概念和几何意义试题答案及解析

高三数学导数的概念和几何意义试题答案及解析1.曲线f(x)=·e x-f(0)x+x2在点(1,f(1))处的切线方程为____________.【答案】y=ex-【解析】因为f′(x)=·e x-f(0)+x,故有即原函数表达式可化为f(x)=e x-x+x2,从而f(1)=e-,所以所求切线方程为y-=e(x-1),即y=ex-.2. [2014·辽宁模拟]曲线y=在点(1,-1)处的切线方程为()A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1【答案】D【解析】由题意得y=1+,所以y′=,所以所求曲线在点(1,-1)处的切线的斜率为-2,故由直线的点斜式方程得所求切线方程为y+1=-2(x-1),即y=-2x+1.3.已知函数的图象在点与点处的切线互相垂直,并交于点,则点的坐标可能是( )A.B.C.D.【答案】D【解析】由题,,,则过两点的切线斜率,,又切线互相垂直,所以,即.两条切线方程分别为,联立得,∵,∴,代入,解得,故选.【考点】导数求切线方程.4.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是( )A.B.C.D.【答案】B【解析】,即切线的斜率为,所以,因为,所以,即,所以的取值范围是,选B5.设函数的定义域是,其中常数.(1)若,求的过原点的切线方程.(2)当时,求最大实数,使不等式对恒成立.(3)证明当时,对任何,有.【答案】(1)切线方程为和.(2)的最大值是.(3)详见解析.【解析】(1)一般地,曲线在点处的切线方程为:.注意,此题是求过原点的切线,而不是求在原点处切线方程,而该曲线又过原点,故有原点为切点和原点不为切点两种情况.当原点不为切点时需把切点的坐标设出来.(2)令,则问题转化为对恒成立.注意到,所以如果在单调增,则必有对恒成立.下面就通过导数研究的单调性.(3)不等式可变形为:.为了证这个不等式,首先证;而证这个不等式可利用导数证明.故令,然后利用导数求在区间上范围即可.试题解析:(1).若切点为原点,由知切线方程为;若切点不是原点,设切点为,由于,故由切线过原点知,在内有唯一的根.又,故切线方程为.综上所述,所求切线有两条,方程分别为和.(2)令,则,,显然有,且的导函数为:.若,则,由知对恒成立,从而对恒有,即在单调增,从而对恒成立,从而在单调增,对恒成立.若,则,由知存在,使得对恒成立,即对恒成立,再由知存在,使得对恒成立,再由便知不能对恒成立.综上所述,所求的最大值是.(3)当时,令,则,故当时,恒有,即在单调递减,故,对恒成立.又,故,即对恒有:,在此不等式中依次取,得:,,,,,…………………………,将以上不等式相加得:,即.【考点】导数及其应用.6.已知函数(1)若,求曲线在处的切线方程;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围.【答案】(1)(2)详见解析(3)【解析】(1)已知函数的解析式,把切点的横坐标带入函数即可求出切点的纵坐标,对求导得到函数的导函数,把带入导函数即可求的切线的斜率,利用点斜式即可得到切线的方程.(2)对函数进行求导和求定义域,导函数喊参数,把分为两种情况进行讨论,首先时,结合的定义域即可得到导函数在定义域内恒大于0,进而得到原函数在定义域内单调递增,当时,求解导函数大于0和小于0的解集,得到原函数的单调递增和单调递减区间.(3)该问题为存在性问题与恒成立问题的结合,即要求,而的最大值可以利用二次函数的图像得到函数在区间上的最值,函数的最大值可以利用第二问的单调性求的,当时,函数单调递增,无最大值,故不符合题意,当时,函数在处前的最大值,带入不等式即可求的的取值范围.试题解析:(1)由已知, 1分,所以斜率, 2分又切点,所以切线方程为),即故曲线在处切线的切线方程为。
高二数学导数的概念和几何意义试题答案及解析

高二数学导数的概念和几何意义试题答案及解析1.我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对x求导数,得于是,运用此方法可以求得函数在(1,1)处的切线方程是 .【答案】【解析】:仿照题目给定的方法,所以,所以,所以,即:函数在处的切线的斜率为1,故切线方程为:,即,故答案为:.【考点】归纳推理.2.曲线y=e2x在点(0,1)处的切线方程为().A.y=x+1B.y=﹣2x+1C.y=2x﹣1D.y=2x+1【答案】D.【解析】,,则切线斜率,切线方程为,即.【考点】导数的几何意义.3.设函数的图像在点处切线的斜率为,则函数的部分图像为()【答案】B【解析】 =xcosx,所以k=g(t)=tcost,是奇函数,图像关于原点对称,所以排除A,C,在t>0时,cost的值是先正后负的连续变换,故选B.【考点】导数,函数图像.4.已知函数的导函数为,.求实数的取值范围。
【答案】或。
【解析】对函数求导,得=,代入,得,=<0,求解即可,注意高次不等式的解法.试题解析:由得=,所以得,=<0,解得或.【考点】导数,高次不等式.5.已知函数在上可导,且,则函数的解析式为()A.B.C.D.【答案】B【解析】由得,当时,有,进而得,所以,故选择B.【考点】导数的应用.6.曲线y=-在点M处的切线的斜率为()A.-B.C.-D.【答案】B【解析】因为==,所以曲线在M处的切线的斜率为=,故选B.考点:常见函数的导数,导数的运算法则,导数的几何意义7.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.8.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.9.已知抛物线,和抛物线相切且与直线平行的的直线方程为()A.B.C.D.【答案】D【解析】由题得,与直线平行,则斜率为2,可得切点为,所以直线方程为.【考点】导数的几何意义,直线方程.10.曲线在点处切线的斜率为()A.B.C.D.【答案】B【解析】,则在点(1,-)处切线的斜率为,所以倾斜角为45°.【考点】导数的几何意义.特殊角的三角函数值.11.函数在点处的切线的斜率为()A.B.C.D.【答案】B【解析】令,则,所以。
高等数学第二章导数试题及答案

第二章 导数一.导数与微分概念 1.导数的定义如果极限()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim 存在, 称此极限值为函数()x f 在0x 处的导数导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆, 则()()()000limx x x f x f x f x x --='→h x f h x f x f h )()(lim)(0000-+='→或hx f h x f x f h ---='→)()(lim )(0000我们也引进单侧导数概念。
右导数:()()()()()x x f x x f x x x f x f x f x x x ∆-∆+=--='++→∆→+000000lim lim 0左导数:()()()()()xx f x x f x x x f x f x f x x x ∆-∆+=--='--→∆→-000000lim lim 0则有()x f 在点0x 处可导()x f ⇔在点0x 处左、右导数皆存在且相等。
2.导数的几何意义与物理意义如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线()x f y =在点()()00,x f x 处的切线的斜率。
切线方程:()()()000x x x f x f y -'=-法线方程:()()()0001x x x f x f y -'-=-()()00≠'x f 3.函数的可导性与连续性之间的关系如果函数()x f y =在点0x 处可导,则()x f 在点0x 处一定连续,反之不然,即函数()x f y =在点0x 处连续,却不一定在点0x 处可导。
例如,()x x f y ==,在00=x 处连续,却不可导。
4.微分的定义设函数()x f y =在点0x 处有增量x ∆时,如果函数的增量()()00x f x x f y -∆+=∆有下面的表达式()()x x x A y ∆+∆=∆00()0→∆x其中()0x A 为与x ∆无关,()x ∆0是0→∆x 时比x ∆高阶的无穷小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念
一.选择题(共16小题)
1.(2013•河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为()
.
2
C D
3.(2011•烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()
C D
4.(2010•泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为()
.C D.
5.(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是(),
C D.
3
7.(2009•辽宁)曲线y=在点(1,﹣1)处的切线方程为()
8.(2009•江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()
或或D.
或7
3
10.(2012•海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有
11.(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()
12.(2010•沈阳模拟)如图一圆锥形容器,底面圆的直径等于圆锥母线长,水以每分钟9.3升的速度注入容器内,则注入水的高度在分钟时的瞬时变化率()(注:π≈3.1)
.分米/分钟
13.若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则等于()
15.设f(x)是可导函数,且=()
.
16.若f′(x0)=2,则等于()
.
二.填空题(共5小题)
17.(2013•江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=_________.18.(2009•湖北)已知函数f(x)=f′()cosx+sinx,则f()的值为_________.
19.已知函数y=x•2x,当f'(x)=0时,x=_________.
20.如果函数f(x)=cosx,那么=_________.
21.已知函数f(x)在R上可导,且f(x)=x3+2xf'(2),比较大小:f(﹣1)_________f(1)(填“>”“<”或“=”)
2013年10月panpan781104的高中数学组卷
参考答案与试题解析
一.选择题(共16小题)
1.(2013•河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为()
.
的一条切线的斜率为
﹣,解得
2
C D
3.(2011•烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()
C D
y=﹣
即切线斜率为﹣
4.(2010•泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为()
.C D.
x,即曲线在点处的切线方程是
坐标轴的交点是(,﹣,围成的三角形面积为,故选
5.(2010•辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()
C D.
,
=
3
7.(2009•辽宁)曲线y=在点(1,﹣1)处的切线方程为()
)=
8.(2009•江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于()
或或D.
或7
x
或
仅有一解,由时,切线方程为
3
10.(2012•海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有
>
,都有>
+x
11.(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()
表示(
表示(
12.(2010•沈阳模拟)如图一圆锥形容器,底面圆的直径等于圆锥母线长,水以每分钟9.3升的速度注入容器内,则注入水的高度在分钟时的瞬时变化率()(注:π≈3.1)
.分米/分钟
t=时的导数值,就是注入水的高度在
h9.3t=π•
=27t
,
=t=
=3
13.若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则等于()
15.设f(x)是可导函数,且=()
.
=2
=
16.若f′(x0)=2,则等于()
.
=
二.填空题(共5小题)
17.(2013•江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=2.+1
18.(2009•湖北)已知函数f(x)=f′()cosx+sinx,则f()的值为1.
等于
)的值代入到
)的值.
)
((sin+cos
(=
))cos+sin=﹣+
19.已知函数y=x•2x,当f'(x)=0时,x=﹣.
20.如果函数f(x)=cosx,那么=.
,再求出求解即可.
=
sin=
,
故答案为:
21.已知函数f(x)在R上可导,且f(x)=x3+2xf'(2),比较大小:f(﹣1)>f(1)(填“>”“<”或“=”)。