数据挖掘于各领域之应用
数据挖掘的应用

数据挖掘的应用数据挖掘是一种通过发现、提取和分析大量数据中的潜在模式、关系和趋势来提取实用信息的技术。
它可以匡助企业和组织从海量数据中获取有价值的洞察,以支持决策和战略制定。
以下是数据挖掘在不同领域的应用。
1. 零售业在零售业中,数据挖掘被广泛应用于市场营销和销售预测。
通过分析顾客购买历史和偏好,零售商可以了解消费者的需求,并根据这些信息制定个性化的推荐和促销策略。
此外,数据挖掘还可以匡助预测销售趋势和需求,以优化库存管理和供应链。
例如,一家超市可以通过数据挖掘技术分析顾客购买历史和购物篮组合,发现某些商品之间的关联性。
这样,他们可以将这些商品放在相邻的货架上,以促进交叉销售。
2. 金融领域在金融领域,数据挖掘可以用于信用评分、风险管理和欺诈检测。
通过分析客户的个人信息、交易历史和行为模式,银行和金融机构可以评估客户的信用风险,并制定相应的授信策略。
此外,数据挖掘还可以匡助发现潜在的欺诈行为,以保护金融机构和客户的利益。
举个例子,一家银行可以使用数据挖掘技术分析客户的交易数据,以检测异常交易模式,如大额转账或者频繁的跨国交易,从而及时发现潜在的欺诈行为。
3. 医疗保健在医疗保健领域,数据挖掘可以用于疾病预测、诊断辅助和药物研发。
通过分析患者的病历、生理指标和基因数据,医生和研究人员可以发现疾病的风险因素和早期预警信号,并制定相应的治疗方案。
此外,数据挖掘还可以匡助医药公司发现新的药物靶点和疗效评估。
举个例子,研究人员可以使用数据挖掘技术分析大量的癌症患者数据,以发现不同基因变异与药物疗效的关联性,从而个性化治疗方案。
4. 物流和运输在物流和运输领域,数据挖掘可以用于路线优化、货物跟踪和运输效率提升。
通过分析历史运输数据和实时交通信息,物流公司可以找到最佳的路线和交通模式,以减少运输时间和成本。
此外,数据挖掘还可以匡助预测货物的交付时间和提供实时的货物跟踪服务。
举个例子,一家物流公司可以使用数据挖掘技术分析历史运输数据和交通流量数据,以确定最佳的配送路线和交通模式,从而提高物流效率和客户满意度。
数据挖掘的应用领域

数据挖掘的应用领域数据挖掘作为一种信息技术的应用工具,在今天的社会中扮演着日益重要的角色。
它可以帮助人们从大数据中发掘有价值的信息,并在各个领域中提供决策支持和业务优化。
本文将介绍数据挖掘的应用领域,并探讨其在不同领域中的具体应用。
一、金融领域1. 风险评估与控制:数据挖掘可以通过分析大量的市场数据和客户信息,准确预测金融市场的波动性,并帮助金融机构识别和控制风险。
例如,银行可以利用数据挖掘技术来评估客户的信用风险,以决定是否批准贷款申请。
2. 欺诈检测:数据挖掘可以帮助金融机构发现潜在的欺诈行为。
通过对客户的交易模式和行为进行分析,可以识别出异常的模式和不寻常的交易,从而防范欺诈风险。
3. 投资决策:数据挖掘技术可以分析股票市场的历史数据,挖掘出隐藏在数据中的规律和趋势,辅助投资者做出更明智的投资决策。
二、市场营销领域1. 客户细分与定位:数据挖掘可以通过分析客户的消费行为和偏好,将客户划分为不同的市场细分,并准确定位目标客户群体。
这有助于企业优化市场方案,提高市场营销效果。
2. 产品推荐与个性化营销:通过分析客户的购买历史和行为模式,数据挖掘可以预测客户的购买偏好,并根据个体的需求进行个性化产品推荐,提高客户满意度和忠诚度。
3. 市场趋势分析:通过挖掘市场数据和消费者行为数据,数据挖掘可以发现市场的趋势和潜在机会,帮助企业制定更具竞争力的市场策略。
三、医疗领域1. 疾病预测与诊断:数据挖掘可以分析患者的医疗记录和生化指标,发现潜在的疾病风险因素,并提供准确的诊断结果。
这有助于提前干预和治疗,提高疾病的预防和治疗效果。
2. 药物研发与创新:数据挖掘可以分析大量的医疗研究数据,寻找新的药物治疗方案和疗效预测模型。
3. 医疗资源调配:通过分析病例记录和病人流行病学资料,数据挖掘可以帮助医疗机构合理分配医疗资源,提高医疗服务的效率和质量。
四、交通领域1. 路况预测与优化:数据挖掘可以通过分析交通数据和历史记录,预测出未来的交通拥堵情况,并为交通管理部门提供优化交通规划和路况调控的决策依据。
数据挖掘技术在人工智能领域中的应用案例

数据挖掘技术在人工智能领域中的应用案例在信息时代,大数据的涌现成为人们生活中的常态。
而数据挖掘技术的出现,则为处理海量数据提供了有效的方法。
数据挖掘技术不仅能够揭示数据背后的规律,还能为人工智能领域的发展提供强有力的支持。
下面,本文将探讨数据挖掘技术在人工智能领域中的应用案例。
一、人脸识别技术随着科技的不断进步,人脸识别技术已经成为了许多领域中不可或缺的一部分。
数据挖掘技术在人脸识别技术中的应用,可以帮助我们更准确地识别人脸特征,从而实现更高水平的人脸识别精度。
通过大量人脸图像的数据挖掘,我们可以获取到不同人脸特征之间的共性和差异,进而构建更为精确的人脸识别算法。
以人脸识别支付为例,当用户在支付时,无需输入密码或扫描条码,只需要通过摄像头进行人脸识别即可完成付款。
数据挖掘技术通过分析用户在不同支付情境下的人脸特征,可以实现用户的识别和身份确认,从而提高支付的便捷性和安全性。
二、智能推荐系统智能推荐系统已经渗透到了我们生活的方方面面,比如电商推荐、音乐推荐等。
在智能推荐系统中,数据挖掘技术起到了至关重要的作用。
通过对用户历史行为数据、兴趣偏好等进行挖掘和分析,可以为用户提供个性化、准确的推荐结果。
以音乐推荐系统为例,数据挖掘技术可以通过挖掘用户对音乐的偏好和情感倾向,来推荐符合用户口味的歌曲。
通过分析用户历史播放记录、收藏列表等数据,可以发现用户的音乐喜好模式,并基于此模式进行推荐,从而提高用户的使用体验。
三、自然语言处理自然语言处理是人工智能领域的重要应用之一,而数据挖掘技术在自然语言处理中发挥了关键作用。
通过对语言文本的挖掘和分析,可以帮助计算机更好地理解、处理人类的自然语言。
以机器翻译为例,数据挖掘技术通过分析大量的双语语料库,挖掘出不同语言之间的翻译规律和语义关系,从而实现机器对文本的准确翻译。
通过数据挖掘技术的支持,机器翻译系统可以不断学习和优化,提高系统的翻译质量和准确性。
四、智能驾驶智能驾驶是人工智能领域的热点应用之一。
数据挖掘算法的分类及应用场景

数据挖掘算法的分类及应用场景随着当今互联网时代的到来和信息时代的发展,数据已经成为企业最重要的资产之一。
通过数据挖掘算法,企业可以更好地利用这些数据,从而推动业务发展及创造更大的商业价值。
本文将介绍数据挖掘算法的分类及其在不同的应用场景中的应用。
一、数据挖掘算法的分类数据挖掘算法包括了多种不同的技术和方法,可以根据不同的分类方式进行分组。
下面将根据其应用领域和算法技术两种角度来进行分类。
1.应用领域分类(1)金融领域金融领域是数据挖掘应用的主要领域之一,其主要目的是通过分析挖掘金融市场数据,预测未来市场趋势、制定有效的投资策略、控制风险等。
(2)市场营销领域市场营销领域主要侧重于市场和消费者行为的分析及预测,以更好地满足消费者需求并提高企业的市场竞争力。
(3)医疗领域医疗领域的数据挖掘应用主要包括对医疗数据进行分析和预测,帮助医生更准确地诊断病情、提高治疗效率、降低医疗风险。
(4)交通领域交通领域主要侧重于交通流量的预测和道路拥堵的控制,以提高城市的交通状况和改善居民的出行体验。
2.算法技术分类(1)分类算法分类算法是将数据集划分为不同类别或标签的算法,常用于数据挖掘、模式识别、图像和语音识别等领域。
常见的分类算法包括决策树、支持向量机(SVM)、朴素贝叶斯、逻辑回归等。
(2)聚类算法聚类算法是将数据集中的相似对象归为一类的算法,常用于数据挖掘、图像分析、模式识别等领域。
常见的聚类算法包括K-Means、层次聚类、DBSCAN等。
(3)关联规则算法关联规则算法是用于寻找数据集中各项之间关系的算法,常用于市场营销、购物推荐等领域。
常见的关联规则算法包括Apriori和FP-Growth。
(4)回归算法回归算法是通过寻找输入与输出变量之间函数关系来进行预测的算法,可以用于股票预测、房价预测等领域。
常见的回归算法包括线性回归、多项式回归、岭回归等。
二、应用场景及案例分析1.金融领域金融领域的数据挖掘应用包括金融预测、风险控制等方面。
数据挖掘的应用领域及方法

数据挖掘的应用领域及方法数据挖掘是从大量数据中提取有用信息和模式的过程,可以在各个领域中应用。
下面将介绍数据挖掘的应用领域及方法。
一、金融行业数据挖掘在金融领域的应用非常广泛。
首先,数据挖掘可以帮助金融机构发现欺诈行为,通过分析用户的交易数据和行为模式,识别异常交易和风险群体。
其次,数据挖掘可以用于信用评估,通过分析用户的贷款记录、消费行为等信息,判断其信用等级和还款能力。
此外,数据挖掘还可以用于市场预测和投资策略,通过分析市场数据和股票交易记录,预测股票走势和市场趋势。
二、电子商务数据挖掘在电子商务中的应用非常重要。
首先,数据挖掘可以用于个性化推荐,通过分析用户的购买记录和评价数据,为用户推荐符合其兴趣和偏好的商品。
其次,数据挖掘可以用于市场竞争分析,通过分析竞争对手的销售数据和用户行为数据,发现市场机会和优化营销策略。
此外,数据挖掘还可以用于用户分类和群体分析,通过分析用户的行为模式和社交网络数据,了解用户需求和行为习惯。
三、医疗健康数据挖掘在医疗健康领域的应用也非常广泛。
首先,数据挖掘可以用于疾病预测和诊断,通过分析患者的病历数据和医疗指标,建立数据模型来预测疾病的发展趋势和提供精准的诊断结果。
其次,数据挖掘可以用于药物研发和治疗方案优化,通过分析药物数据和临床试验数据,挖掘药物的作用机理和副作用,以及针对性的治疗方案。
此外,数据挖掘还可以用于健康管理和健康推荐,通过分析用户的健康数据和生活习惯,提供个性化的健康建议和管理方案。
四、交通运输数据挖掘在交通运输领域的应用也非常重要。
首先,数据挖掘可以用于交通流量预测和拥堵预警,通过分析交通数据和道路状态,预测交通拥堵的发生和路段的通行能力,提供交通状况的实时更新。
其次,数据挖掘可以用于路径规划和交通导航,通过分析交通网络数据和用户出行数据,为用户提供最优的路径规划和交通导航服务。
此外,数据挖掘还可以用于交通安全分析和事故预防,通过分析交通事故数据和驾驶行为数据,发现事故的潜在原因和高风险驾驶行为。
数据挖掘技术的应用

数据挖掘技术的应用随着信息时代的到来,数据量的急剧增长让我们的生活日益依赖于数据技术。
而数据挖掘技术作为其中的重要一环,受到了越来越广泛的关注。
那么,数据挖掘技术在实际应用领域中有哪些具体的应用呢?一、智能推荐如果你在购物网站上购买过商品,在接下来的几天里可能会不断地收到与你购买的商品相关的推荐信息。
其背后的技术就是数据挖掘。
通过分析用户的购买记录、浏览记录以及其他用户的购买习惯,数据挖掘可以精准地向用户推荐相关的商品。
这不仅可以提高购物网站的用户满意度,也可以为商家创造更多的销售机会。
二、舆情分析在当前社交媒体广泛应用的背景下,舆情分析成为了一个重要的研究领域。
数据挖掘技术可以对大规模的社交媒体数据进行挖掘和分析,识别出人们关注的话题、情绪等,并据此评估公众舆情。
通过对舆情的了解,相关部门可以更准确地判断社会热点、民意倾向、危机事件等,从而做出及时有效的应对措施。
三、金融风险控制金融风险控制是目前数据挖掘技术应用比较成熟的领域之一。
在银行、保险、证券等金融机构中,数据挖掘可以通过分析客户的历史信用记录、消费习惯、偏好等信息,评估其风险水平。
例如,在评估个人信用时,数据挖掘可以分析申请人的收入、职业、信用卡还款记录等多维度信息,排除风险较高的申请人,降低银行的逾期率和不良贷款率。
四、医疗领域医疗领域的数据挖掘应用主要集中在疾病预测和诊断辅助方面。
通过分析大量的病历、体检、医学影像等数据,数据挖掘可以帮助医生快速准确地预测患者可能出现的症状及可能的疾病,并为医生提供更多的参考信息,辅助其做出诊断和治疗方案。
此外,数据挖掘还可以在临床试验、新药开发等方面发挥重要的作用,帮助医学界提高治疗效果,降低医疗成本。
五、交通运输随着城市化的发展,交通拥堵问题愈发突出。
数据挖掘可以通过分析车流量、出行时段、路况等多维度数据,提供准确的交通预测和优化策略,从而降低交通拥堵,提高出行效率。
另外,数据挖掘还可以用于智能导航、车辆识别、车辆监控等方面,为交通运输提供更加智能化和安全的服务。
数据挖掘技术的应用领域分析

数据挖掘技术的应用领域分析数据挖掘技术是从大规模的、复杂的数据集中提取出有用的信息和模式的一种技术。
它涉及到数据处理、数据分析、机器学习、统计学等多个领域。
随着我们生活、工作、学习的各个方面都逐渐数字化,数据挖掘技术也变得越来越重要。
本文将探讨数据挖掘技术的应用领域,以及为何这些领域需要数据挖掘技术。
一、金融领域金融领域是数据挖掘技术最早应用的领域之一。
金融领域需要处理大量的交易数据、消费数据等等,这些数据是非常复杂的。
通过挖掘这些数据,金融机构可以发现更多的商业模式、风险和机会。
数据挖掘技术可以对金融交易行为进行分析,以便在商业决策、市场营销和防欺诈等方面提供支持。
二、医疗领域医疗领域需要处理大量的医疗数据,如病历记录、实验室测试、药物处方等等。
这些数据是非常复杂的,因为它们可以涉及到数百或数千个变量。
数据挖掘技术可以用于分析这些数据,以便医疗机构更好的理解病人的疾病,制定更好的治疗方案。
此外,数据挖掘技术还可以用于进行疾病研究,发现新型的疾病以及与特定基因型相关的疾病。
三、零售领域零售业需要处理大量销售数据,如销售记录、库存、营销和广告活动等等。
这些数据是非常复杂的,因为它们可以涉及到数百或数千个变量。
数据挖掘技术可以用于分析这些数据,以便零售商更好的理解消费者的购买行为,从而推出更好的商品和促销活动。
此外,数据挖掘技术还可以用于进行市场研究,发现新的市场性趋势和消费者偏好。
四、交通领域交通领域包括公路、铁路、航空和物流等方面。
数据挖掘技术可以用于分析交通数据以及其他有关交通的数据,例如天气、人群密度等。
通过分析这些数据,交通领域可以发现更好的交通体验、更好的货运和最佳的交通路线模式等。
五、电信领域电信领域,也就是通信、网络和互联网领域,在数据挖掘技术方面也有很多应用。
它需要处理大量的通信数据,如通话记录、短信、互联网流量等等。
通过分析这些数据,电信企业可以发现更好的推广渠道、更好的客户服务和更好的网络管理方法等。
数据挖掘在生活中的应用案例

数据挖掘在生活中的应用案例1. 背景数据挖掘是从大量数据中发现未知、有价值的信息的过程。
它通过应用统计学、机器学习和人工智能等技术,寻找数据背后的模式和关联性,为决策提供支持。
在生活中,数据挖掘已经广泛应用于各个领域,包括市场营销、医疗保健、金融服务等。
本文将介绍三个具有代表性和启发性的数据挖掘应用案例,分别是:电商推荐系统、疾病预测和信用评分模型。
2. 电商推荐系统背景随着电子商务的快速发展,用户面临了越来越多的选择。
为了提高用户体验和销售额,电商平台需要根据用户的兴趣和行为进行个性化推荐。
数据挖掘技术可以帮助平台根据用户历史行为和其他用户的行为模式进行商品推荐。
过程1.数据收集:电商平台收集用户浏览历史、购买记录、评价等多种信息。
2.数据预处理:对收集到的数据进行清洗、去重和归一化等处理,以便后续分析。
3.特征提取:根据用户的行为数据,提取用户的特征,如购买偏好、浏览频率等。
4.模型训练:使用机器学习算法,如协同过滤、关联规则挖掘等,构建推荐模型。
5.推荐生成:根据用户的特征和模型预测,生成个性化的推荐结果。
结果通过电商推荐系统,用户可以获得个性化的商品推荐,提高购物效率和满意度。
同时,电商平台也可以通过推荐系统增加销售额,并提高用户粘性。
3. 疾病预测背景疾病预测是医疗保健领域中的一个重要应用。
通过分析患者的病历数据和其他相关信息,可以帮助医生准确预测患者是否可能患上某种疾病,并采取相应措施进行治疗或干预。
过程1.数据收集:医院或诊所收集患者的基本信息、体检数据、家族病史等多种信息。
2.数据清洗和整合:对收集到的数据进行清洗、去除异常值和缺失值,并将不同来源的数据整合到一起。
3.特征选择:根据疾病预测的目标,选择与之相关的特征,如年龄、性别、血压等。
4.模型训练:使用机器学习算法,如逻辑回归、支持向量机等,根据历史病例数据构建预测模型。
5.预测结果:根据患者的特征和模型预测,给出患病概率或风险评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资料发掘与生物测定学也很有潜力,數據挖掘是 利用数学演算法,在庞大的资料库中寻找方式, 例如目前应用在掌纹、脸孔等图像辨识,或者是 语言辨识处理等方面。 塑料芯片也是一大突破,在IBM、朗讯、麻省理工、 剑桥大学、Penn State大学都在研发塑料或有机 物质芯片。 微光学技术,专家利用可反射光线的水晶、玻璃 等物质,让光纤传输资料的速度,不会因为通过 路由器、交换器时而降低速度。
经营成本营利分析 从时间、机构纬度研究经营成本升降、经营成本专案、经 营成本的结构水平、银行收入和利润综合分析。 利率风险与营利分析 从时间、机构纬度研究利率调换交易分析、远期利率合同 分析、金融贷款分析、期权交易分析。 汇率风险与防范分析 从时间、机构纬度研究即期、远期外汇买卖分析,套汇分 析,外汇投机分析,期货、期权交易分析。
數據挖掘于各领域之应用
谢邦昌 教授 辅仁大学统计信息系教授 中华數據挖掘协会 秘书长
STAT1001@.TW .TW 2004/12/26
你不能不知的十大创新 技术
资料来源: Technology Review杂志 (2002/1)
未来科技大预言
在生物科技上,如人脑与机器介面,可加 速发展生化义肢,学者认为这方面大有潜 力。 机器人将为人类处理更多复杂或重复性的 工作,现有研究人员发展出可设计、制造 机器人的机器人。 在信息科技上,数位权利管理愈来愈受重 视,以便保护知识财产,由全录公司Palo Alto研究中心创出的Content Guard公司, 利用加密技术保护知识财产。
医药方面
Pain Control
Problem: Detecting pain Subjective & no direct measurement Clinical:Visual Analogue Scale(VAS) Where will cause the pain? Endoscope Operating room:ESWL;Prostate Post Op. :PCA ICU Cancer pain
數據挖掘能为电子商务做什么?
通过數據挖掘,市场商人可以瞄准目标客 户,采用个人股票行市、最新信息、特殊 的市场推广活动或其他一些特殊的信息手 段,从而极大地减少广告预算和增加收入。 百货商场、超市和一些老字型大小的零售 店也在进行數據挖掘,以便猜测这些年来 顾客的消费习惯。
生物医学方面
背景
随着人类基因序列的解码,基因与各种疾 病间之关联性的研究正逐渐受到重视,而 相关之研究文献亦随之增多。 通过搜寻引擎等渠道,医学研究人员可以 快速取得所需之信息,但也同时面临了资 料过多的问题。
气象业务方面
背景
随着通信技术和电脑技术的发展,每天在气象 通信网上传输越来越庞大的气象资料,对这些 资料的存储、集成和应用的问题也就越来越突 出。 资料仓库是电脑应用发展的必然产物。经过长 期积累所形成的大量业务资料,是过去的真实 活动记录。如何利用这些资料并在此后的决策 中发挥效益,为决策分析和评估提供帮助,很 长时期内都困扰着资料库的发展。
Technology Review杂志公布改变未来的十项新兴趋势 机器与人脑的介面 塑料电晶体 數據挖掘(Data mining) 数字权利管理 生物测定学(Biometrics) 语言识别处理 微光学技术(Microphotonics) 解开程序码(Untangling code) 机器人设计 微应用流体学(Microfluidics)
本系统包含以下主题:
商业银行资本分析 按时间、机构纬度研究资本的构成、资本需要量和充足度。 资产与负债 从时间、机构纬度研究资产的构成、资产的总量和风险、 负债的构成和趋势、负债同业情况分析等。 表科目查询 本模组以财务报表和会计科目为基础,按照科目、时间、 机构、产品和客户的纬度,进行报表和科目的即时查询、 挖掘和分析。
摘要
综述數據挖掘和知识发现在天文学中兴起 的必然性及其近几年的发展状况、实现过 程和具体任务。 分析当前天文资料的复杂性,介绍天文学 中數據挖掘的科学要求。 系统地概括近年来天文学中數據挖掘和知 识发现领域研究的进展及其热点,并阐述 其所面临的挑战。
天文学中數據挖掘和知识发现的兴起将对 天文学的发展起到巨大的推动作用,同时 也在知识和技术等方面对天文学家提出新 的要求。 數據挖掘技术能否在虚拟天文台中成功应 用,是虚拟天文台充分配挥作用的关键所 在。
化学方面
近年来,随着化学资料的大量积累和资料库的普 遍使用,逐步认识到大量资料的利用是十分困难 且不充分的,更具价值的规律性的信息和知识反 而被隐蔽起来。因此,化学數據挖掘作为一种新 的信息技术开始出现于电脑化学中。 这一技术的关键是用软件来从大量的化学资料中 自动地发现新的不明显和有潜在应用价值的信息 和知识,因此它也常常与资料分析和知识发现 (Knowledge discovery)相紧密结合。
Data Warehouse之步骤
汇集资料数据 撷取、合并、删除、归类..等,成为一定格式, 再放入资料仓储内 存贮并管理data 将所有的资料再集中存入一个大的资料库里,可 依照不同的需求建立小的资料库,方便读取 分析读取所需信息 银行各部门可依据不同的主题存取工具,进行查 询并结合图形,OLAP等工具
电子商务方面
资料来源: 硅谷动力
數據挖掘对电子商务的重要性
专家预测在今后十年中,“數據挖掘"将是具有 革命性进展的举措之一,是提供“个性化网络" 的关键,即通过采集信息、识别有用结构并进行 即时分析,从而满足用户个性化选择。 无论这种技术复杂与否,近年来各公司都在进行 各种各样的數據挖掘研究,以期让那些近年来急 速堆积增长的原始资料,变得有意义。 电子商务现在是最新和最炙手可热的一个行业, 无论在哪都有历史资料,用这些资料可以得到用 眼睛无法看到的方式结论。
投资决策分析 主要回答:怎样投资?向何处投资?投资 多少?如何筹措资金?包括:投资效益分 析、投资可行性分析 综合经营指标分析与预警 从时间、机构纬度监测信 考核指标分析 用风险、流动风险、经营 风险、资金风险、国际收 银行健康综合评估 支,如果有异常情况自动 给予警告。 指标预警
资金管理分析 从时间、机构纬度研究资金流入、流出及管理现状。 资金来源成本估计 从时间、机构纬度研究资金来源成本估计、资金结构、资 金余缺、资金利用度、头寸匡算、资金运用及收益分析。 客户信贷分析 从时间、机构、科目、借款人性质、贷款形式、贷款期限、 贷款方式研究贷款结构、贷款流动,贷款发放与回收情况。
范例
商业银行首要关注于顾客关系的应用主题,即建立顾客信 息分析管理信息,从中收集顾客的基本资料、资产、负 债…等信息用以搭建一个良好的信息连接库。 美国第一银行运用 “ICARE"建立客户关系管理: I(Inquire) 向顾客询问并了解其需求 C(Communicate) 向顾客保证降很快满足其需求 A(Affirm) 使顾客确信有完成服务的工作与愿望 R(Recommend) 向顾客提出一系列的服务选择 E(Express) 使顾客银行接受单个客户的委托 顾客将可通过email 电话 网站信息等得到:金融服务、旅 游娱乐服务以及其他的综合信息服务,之后将会寄出邀请 函请顾客填写,银行将可了解顾客的需求,帮助其完成愿 望
银行踪面
Business Intelligent (BI)
BI For Bank是MDCL公司基于EOSS套件在银行领域 推出的一套完整的商业智慧解决方案。 它以先进的资料仓库(Data Warehousing)、联 机分析处理(OLAP)、數據挖掘(Data Mining) 技术为基础,结合顾客关系管理和电子商务的经 验,能够帮助企业全面提高科学管理水平和经营 决策能力,促进企业业务和利润的增长,提高市 场竞争力,迎接以客户为中心的经营方式的转变。
微应用流体学方面:科学家正试图利用物 理原则做实验,只利用极微量的水,加快 原本需要费时费金钱的实验。加州理工学 院的应用物理学家Stephen Quake,以微应 用流体学发展了一套DNA分析装置,比传统 的分析装置快。 Technology Review的编 辑指出,微应用流体学将为生物科技大有 帮助,就像当初电晶体提高了电子产品。
化学數據挖掘主要内容
ta reduction Feature detection Feature reduction Classifier and category detection Fraud detection Recognizing unusual patterns Novelty detection Construction of sample databases Knowledge discovery and rule detection from large databases
结论
对于过去,银行并未从企业的整体角度 实施顾客一体化管理,因此前后流程为实 践整合的状态,无法达到连接,将造成信 息重复、矛盾,甚至是过时,无法随时满 足应有的信息或服务,利用data mining的 技术,将可以解决如此的问题,更有效率 朝向以顾客为中心企业体系。
天文学方面
资料来源:张燕霞、赵永恒、崔辰川 中国科学院国 家天文台
數據挖掘(Data Mining)的功能
对资料进行厚缩,给出它的紧凑描述。數據挖 掘主要关心从资料泛化的角度来讨论资料总结。 建立一个分类函数或分类模型,该模型能把资 料库的资料项目映射到给定类别中的某一个。 把一组个体按照相似性归成若干类别。使属于 同一类别的个体之间的距离尽可能地 小,而 不同类别的个体间的距离尽可能地大。 按某一规则探讨这一规则下的资料关联性。