浅谈数据挖掘技术及其应用
数据挖掘的应用

数据挖掘的应用数据挖掘是一种通过发现、提取和分析大量数据中的潜在模式、关系和趋势来提取实用信息的技术。
它可以匡助企业和组织从海量数据中获取有价值的洞察,以支持决策和战略制定。
以下是数据挖掘在不同领域的应用。
1. 零售业在零售业中,数据挖掘被广泛应用于市场营销和销售预测。
通过分析顾客购买历史和偏好,零售商可以了解消费者的需求,并根据这些信息制定个性化的推荐和促销策略。
此外,数据挖掘还可以匡助预测销售趋势和需求,以优化库存管理和供应链。
例如,一家超市可以通过数据挖掘技术分析顾客购买历史和购物篮组合,发现某些商品之间的关联性。
这样,他们可以将这些商品放在相邻的货架上,以促进交叉销售。
2. 金融领域在金融领域,数据挖掘可以用于信用评分、风险管理和欺诈检测。
通过分析客户的个人信息、交易历史和行为模式,银行和金融机构可以评估客户的信用风险,并制定相应的授信策略。
此外,数据挖掘还可以匡助发现潜在的欺诈行为,以保护金融机构和客户的利益。
举个例子,一家银行可以使用数据挖掘技术分析客户的交易数据,以检测异常交易模式,如大额转账或者频繁的跨国交易,从而及时发现潜在的欺诈行为。
3. 医疗保健在医疗保健领域,数据挖掘可以用于疾病预测、诊断辅助和药物研发。
通过分析患者的病历、生理指标和基因数据,医生和研究人员可以发现疾病的风险因素和早期预警信号,并制定相应的治疗方案。
此外,数据挖掘还可以匡助医药公司发现新的药物靶点和疗效评估。
举个例子,研究人员可以使用数据挖掘技术分析大量的癌症患者数据,以发现不同基因变异与药物疗效的关联性,从而个性化治疗方案。
4. 物流和运输在物流和运输领域,数据挖掘可以用于路线优化、货物跟踪和运输效率提升。
通过分析历史运输数据和实时交通信息,物流公司可以找到最佳的路线和交通模式,以减少运输时间和成本。
此外,数据挖掘还可以匡助预测货物的交付时间和提供实时的货物跟踪服务。
举个例子,一家物流公司可以使用数据挖掘技术分析历史运输数据和交通流量数据,以确定最佳的配送路线和交通模式,从而提高物流效率和客户满意度。
数据挖掘技术的原理与应用

数据挖掘技术的原理与应用随着数字化、信息化进程不断加速,人们处在数据海洋中,每时每刻都在产生和创造数据。
数据对于企业、政府、个人而言,已成为获取价值和决策的重要基础。
而从数据中挖掘出潜在价值就需要运用数据挖掘技术。
一、数据挖掘技术的定义和分类数据挖掘技术指的是通过对大量数据的挖掘和分析,发现其中蕴藏的未知信息,从而得出有价值的知识和决策规则的一种技术。
按照研究范围和目的不同,数据挖掘技术可分为分类、分类预测、聚类、关联规则等多个领域。
分类指根据数据的特征,将其划分为不同的类别。
例如,对医院病人数据进行分类,将其分为住院患者和门诊患者。
分类预测指对一些新的数据进行预测和分析。
例如,根据过去的房价走势,预测未来房价会上涨还是下跌。
聚类则是根据数据的相似性,将其分成不同的群体。
例如,对消费者购物行为进行聚类,将其分成不同的消费群体。
最后,关联规则分析则是分析数据之间的关联和规律,例如,分析超市里的商品销售数据中,哪些商品经常同时被购买。
二、数据挖掘技术的原理和模型数据挖掘技术的核心在于挖掘和发现数据中的潜在关系和规律。
数据挖掘模型通常可以分为分类模型、聚类模型和关联规则模型等。
分类模型是指将数据样本划分到不同的类别中的模型。
分类模型通常需要进行训练,建立相应的模型,然后使用该模型来对新数据进行分类。
例如,可以使用决策树模型对鸢尾花进行分类。
聚类模型是指在不预先知道数据类别的情况下,通过自动聚类算法将数据样本分成不同的数据簇。
例如,对消费者的购物行为进行聚类,可以将其分为不同的消费群体。
关联规则模型则是指通过分析数据中不同数据项的组合出现的频率,发现蕴含在数据中的潜在关系和规律。
例如,在超市购物中,牛奶和面包往往同时被购买。
因此,超市可以通过发现这种关联规则,来优化商品陈列和销售策略。
三、数据挖掘技术的应用案例数据挖掘技术的应用十分广泛,在金融、医疗、市场营销等领域都有不同的应用案例。
1. 金融领域银行和信用卡公司可以使用数据挖掘技术帮助识别欺诈行为和评估风险。
大数据的挖掘和分析技术及应用

大数据的挖掘和分析技术及应用在当今信息化的时代,大数据已经成为各行各业得以发展的重要基石之一。
大数据挖掘和分析技术,作为大数据的核心应用技术之一,其在商业、医疗、金融、政府等领域的应用得到越来越广泛的认可和重视。
本文从大数据挖掘和分析技术的基础知识出发,深入探讨了其发展历程和现有应用情况,并简单预测了其未来发展趋势。
一、大数据挖掘技术的概述大数据挖掘技术是指从海量数据中获取有价值信息的一种技术手段。
通过对数据的获取、处理、分析和模型建立,可以发现并提取其中的关联规则、异常点、趋势、模式等等。
其核心思想在于对数据进行加工,挖掘出其中的潜在价值,为机构或企业提供参考依据。
二、大数据分析技术的概述大数据分析技术是指将大数据进行筛选、计算、分析和可视化等一系列操作,得到有用的洞察和结论的技术。
它是一种好的决策工具,可为企业的经营管理、市场营销、风险管理和人才管理等提供有力的支持。
分析技术充分利用互联网各种数据源,从而挖掘其中鲜为人知的结果或信息,进而发现有利的营销机遇或其他商业模式。
三、大数据挖掘和分析技术的历史和现状大数据挖掘和分析技术得以迅速发展,受益于近几年国内外IT技术和通信技术的迅速发展,尤其是云计算、移动互联网和人工智能等技术的诞生和发展。
同时,大数据汇聚与存储的技术、新型应用模式以及跨界创新产物的兴起,也为大数据挖掘和分析技术打下了坚实基础。
在商业领域,各大企业为提高数据的价值和利用,积极在数据挖掘和分析领域做出尝试。
在福特、可口可乐、波音、华为、京东等国内外著名企业,业务实践中已经成功应用了各种大数据挖掘和分析技术,如基于数据挖掘的消费理解、基于征信评分的风险预测、基于机器学习的推荐系统等。
四、大数据的挖掘和分析技术应用领域商业领域是大数据挖掘和分析技术最广泛的应用领域之一。
比如对于营销市场部门而言,通过挖掘客户消费行为和产品偏好等信息,制定出更为合适的产品营销策略。
对于金融来说,数据挖掘和分析可以帮助预测债务信用风险、最大化利润等。
数据挖掘的应用与发展前景

数据挖掘的应用与发展前景随着云计算、人工智能、大数据等新技术的快速发展,数据挖掘也成为了现代企业智能决策和互联网产品优化的有力工具。
数据挖掘是一种从大量数据中自动发现规律、提取信息和预测未来趋势的技术,可应用于产品推荐、舆情分析、金融风控、医疗诊断等多个领域。
一、数据挖掘的应用1. 产品推荐在电商领域,数据挖掘可以通过分析用户的购买历史、浏览记录和搜索关键词等信息,来预测用户的偏好和需求,进而实现个性化推荐。
如亚马逊、淘宝等知名电商平台都已经在实践中应用了这一技术,显著提升了客户订单量和购买率。
2. 舆情分析在媒体、政务、公共事业等领域,数据挖掘可以通过对网络舆情进行监测和分析,快速捕捉热点事件和社会心理变化,对政策制定和舆情引导起到重要作用。
如政府、媒体、企业等人士可以通过分析讨论热度、情感分析、话题追踪等指标,制定相应的预警和应对措施。
3. 金融风控在金融领域,数据挖掘可以通过分析个人或企业的信用历史、借贷记录、资产配置等信息,来预测借贷风险和还款能力。
如银行、证券、保险等金融机构已经将数据挖掘技术应用于用户信用评估、欺诈侦测、投资决策等方面,显著提高了金融服务的准确性和效率。
4. 医疗诊断在医疗领域,数据挖掘可以通过分析大量患者的病历、症状、疗效等信息,来辅助医生进行疾病诊断和治疗决策。
如借助人工智能和医疗大数据分析的手段,医生可通过患者的基因组学信息、生物信息学数据等内容,实现个性化诊疗方案,有效降低误诊率和治疗费用。
二、数据挖掘的发展前景数据挖掘的前景十分广阔,未来将会涌现出越来越多的应用场景和商业模式。
以下是几个预测:1. 智能化服务未来,人们的生活将会更加依赖从数据中提取的信息。
在消费领域,更加智能化的商品推荐、定价和售后服务将成为主流。
而在公共服务、教育、医疗等领域,人工智能和大数据技术将进一步升级,提供更加智能化的服务。
2. 自动化决策数据挖掘技术将成为各种自动化决策系统的核心,不仅可以支持企业内部的决策,还可以支撑城市规划、资源配置和公共安全等领域的决策。
计算机科学中的数据挖掘技术应用

计算机科学中的数据挖掘技术应用计算机科学作为现代科技的代表之一,早已成为办公、娱乐、交流等方方面面的支持者。
数据挖掘技术则是计算机科学的一个重要分支,其对于人们实现智能化决策、认知模式的建立等方面都有着不可替代的作用。
下文将就数据挖掘技术在计算机科学中的应用进行深入探讨。
1. 数据挖掘技术概述数据挖掘技术是指从海量、复杂、不规则的数据中,分析出有用信息、发现潜在关联、确定达到预期目标所需的数据模式和规律的技术。
计算机科学中的数据挖掘技术主要包括分类、聚类、关联规则等几种方法。
分类是指根据已知数据属性,将数据分为不同的类别,从而实现对数据的有效分析和处理。
经过分类处理后,用户可以更好地理解数据,同时也可以制定更好的决策方案。
聚类则是以相似性为基础,将同类数据分组,形成“簇”,从而更好地对数据进行处理。
聚类算法主要有K-Means、层次聚类等多种方法。
关联规则则是指根据数据集合中的已知规则,发掘未知的关联规律,从而生成新数据。
关联规则算法主要有Apriori、FP-Growth 等多种方法。
2. 在计算机科学中的应用数据挖掘技术在计算机科学中的应用范围非常广泛,包括财务管理、市场调研、医学、生命科学、环境保护、网站评估等方面。
2.1 财务管理在现代的企业管理中,对数据的分析和处理已经越来越受到重视。
众所周知,财务数据是企业发展中最为重要的数据之一。
计算机科学中的数据挖掘技术能够对企业的财务数据进行深入分析和处理,帮助企业更好地了解自身的经济状况,制定正确的决策方案。
2.2 市场调研市场调研是企业中非常重要的一个环节,它能够让企业更好地了解市场需求、竞争情况等信息。
计算机科学中的数据挖掘技术可以对市场调研数据进行深度挖掘,从中发掘出有用的信息,制定更切实可行的市场营销策略。
2.3 医学在医学领域中,利用计算机科学中的数据挖掘技术来进行疾病分析和治疗方案设计已经成为趋势。
例如,根据病人的医疗记录和检查数据,对病人进行分类,可以更加准确地进行诊断和治疗。
数据挖掘方法及其应用研究

数据挖掘方法及其应用研究数据挖掘是一种从大量数据中自动发掘出有用信息的技术,对于信息化时代的企业而言,数据挖掘技术的应用已经成为了提高业务水平和核心竞争力的必备手段。
本文将从数据挖掘的方法、应用以及研究方面进行探讨。
一、数据挖掘的方法数据挖掘的方法主要是基于数据分析和机器学习的,其中数据分析主要包括关联规则和分类预测等。
首先,关联规则挖掘是指在数据集中发掘出事物之间的关联性,比如“如果顾客购买了巧克力,那么他们很有可能也会购买口香糖”,而分类预测则是对数据进行分类,比如“根据用户的浏览记录,预测他们最可能会购买哪些商品”。
而机器学习是数据挖掘的核心技术,它是一种通过数据自我修正以提高性能的方法。
常见的机器学习方法包括决策树、神经网络以及聚类等。
决策树是一种用于分类和预测的树形结构,它将数据以节点的形式进行分类,直到数据达到叶节点,从而做出相应的决策;神经网络则是通过构建一种类比于人类大脑的模型来识别模式,进行分类或预测;而聚类则是在数据集中查找相似之处并将数据分组的方法。
二、数据挖掘的应用数据挖掘技术在各行各业的应用越来越广泛,比如在金融行业中常用于信用评估、欺诈检测以及风险管理等方面。
在零售业中,数据挖掘技术可以用于用户行为分析及商品推荐,以此提高销售额和用户忠诚度。
而在医疗领域,数据挖掘技术则可以用来提高早期预警、疾病诊断和药物研发等方面的能力。
此外,数据挖掘技术在交通、安全、舆情监测及人工智能等领域也发挥着越来越重要的作用。
三、数据挖掘的研究在数据挖掘的研究方面,目前有诸多的挑战。
首先,各类数据源的结构化程度参差不齐,挖掘数据的质量和有效性面临着较大的挑战。
其次,代表性和可扩展性是数据挖掘领域中的两大难点,它们影响着数据挖掘结果的可靠性和准确性。
另外,数据挖掘算法的集成和融合也是研究方向之一,通过多种算法的组合和协同来解决特定问题,进一步提高数据挖掘的效率和准确性。
最后,隐私保护和信息安全问题也是需要重点关注的研究方向,保障数据隐私的同时,也使得挖掘结果更加可靠。
数据挖掘技术与应用实例

数据挖掘技术与应用实例近年来,随着信息技术的快速发展,数据量呈现爆炸式增长。
如何从海量的数据中提取有价值的信息成为了一项重要的挑战。
数据挖掘技术应运而生,成为了解决这一问题的有效手段。
本文将介绍数据挖掘技术的基本原理以及应用实例。
一、数据挖掘技术的基本原理数据挖掘技术是一种通过分析大量数据,发现其中隐藏的模式和关联规律的方法。
它主要包括数据预处理、特征选择、模型构建和模型评估等步骤。
首先,数据预处理是数据挖掘的第一步,它包括数据清洗、数据集成、数据转换和数据规约等过程。
数据清洗是指处理数据中的噪声和异常值,确保数据的质量;数据集成是将多个数据源的数据合并成一个一致的数据集;数据转换是对数据进行格式转换,使其适合挖掘任务;数据规约是通过压缩数据集的大小,减少数据挖掘的计算开销。
其次,特征选择是从原始数据中选择出最具有代表性的特征,以提高模型的准确性和效率。
特征选择可以通过过滤、包装和嵌入等方法来实现。
过滤方法是根据特征的统计量进行排序,选择排名靠前的特征;包装方法是通过建立模型,选择对模型性能影响最大的特征;嵌入方法是将特征选择嵌入到模型的训练过程中。
然后,模型构建是根据已选取的特征,建立数据挖掘模型。
常用的数据挖掘模型包括分类模型、聚类模型、关联规则模型等。
分类模型用于预测离散型的目标变量,聚类模型用于将数据分为不同的类别,关联规则模型用于发现数据中的关联规律。
最后,模型评估是对构建的模型进行评估和选择。
常用的评估指标包括准确率、召回率、F1值等。
通过评估指标的比较,选择最优的模型。
二、数据挖掘技术的应用实例数据挖掘技术在各个领域都有广泛的应用。
下面将以电商领域为例,介绍数据挖掘技术的应用实例。
电商平台通过收集用户的浏览记录、购买记录等大量数据,可以运用数据挖掘技术来挖掘用户的购买偏好、行为模式等信息,从而提供个性化的推荐服务。
例如,通过分析用户的购买记录和评价,可以建立用户购买模型,预测用户的购买行为,从而为用户推荐感兴趣的商品。
数据挖掘技术的应用

数据挖掘技术的应用随着信息时代的到来,数据量的急剧增长让我们的生活日益依赖于数据技术。
而数据挖掘技术作为其中的重要一环,受到了越来越广泛的关注。
那么,数据挖掘技术在实际应用领域中有哪些具体的应用呢?一、智能推荐如果你在购物网站上购买过商品,在接下来的几天里可能会不断地收到与你购买的商品相关的推荐信息。
其背后的技术就是数据挖掘。
通过分析用户的购买记录、浏览记录以及其他用户的购买习惯,数据挖掘可以精准地向用户推荐相关的商品。
这不仅可以提高购物网站的用户满意度,也可以为商家创造更多的销售机会。
二、舆情分析在当前社交媒体广泛应用的背景下,舆情分析成为了一个重要的研究领域。
数据挖掘技术可以对大规模的社交媒体数据进行挖掘和分析,识别出人们关注的话题、情绪等,并据此评估公众舆情。
通过对舆情的了解,相关部门可以更准确地判断社会热点、民意倾向、危机事件等,从而做出及时有效的应对措施。
三、金融风险控制金融风险控制是目前数据挖掘技术应用比较成熟的领域之一。
在银行、保险、证券等金融机构中,数据挖掘可以通过分析客户的历史信用记录、消费习惯、偏好等信息,评估其风险水平。
例如,在评估个人信用时,数据挖掘可以分析申请人的收入、职业、信用卡还款记录等多维度信息,排除风险较高的申请人,降低银行的逾期率和不良贷款率。
四、医疗领域医疗领域的数据挖掘应用主要集中在疾病预测和诊断辅助方面。
通过分析大量的病历、体检、医学影像等数据,数据挖掘可以帮助医生快速准确地预测患者可能出现的症状及可能的疾病,并为医生提供更多的参考信息,辅助其做出诊断和治疗方案。
此外,数据挖掘还可以在临床试验、新药开发等方面发挥重要的作用,帮助医学界提高治疗效果,降低医疗成本。
五、交通运输随着城市化的发展,交通拥堵问题愈发突出。
数据挖掘可以通过分析车流量、出行时段、路况等多维度数据,提供准确的交通预测和优化策略,从而降低交通拥堵,提高出行效率。
另外,数据挖掘还可以用于智能导航、车辆识别、车辆监控等方面,为交通运输提供更加智能化和安全的服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1数据挖掘的起源2数据挖掘的定义3数据挖掘的过程3.1目标定义阶段3.2数据准备阶段3.3数据挖掘阶段3.4结果解释和评估阶段面对信息社会中数据和数据库的爆炸式增长,人们分析数据和从中提取有用信息的能力,远远不能满足实际需要。
但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,但它却无法发现这些数据中存在的关系和规则,更不能根据现有的数据预测未来的发展趋势。
这种现象产生的主要原因就是缺乏挖掘数据背后隐藏的知识的有力手段,从而导致“数据爆炸但知识贫乏”的现象。
数据挖掘就是为迎合这种要求而产生并迅速发展起来的,可用于开发信息资源的一种新的数据处理技术。
数据挖掘(DataMining),又称数据库中的知识发现(KnowledgeDiscoveryinDatabase,简称KDD),比较公认的定义是由U.M.Fayyad等人提出的:数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的数据集中,提取隐含在其中的、人们事先不知道的、但又是潜在的有用的信息和知识的过程,提取的知识表示为概念(Concepts)、规则(Rules)、规律(Regularities)、模式(Patterns)等形式。
数据挖掘是一种决策支持过程,分析各组织原有的数据,做出归纳的推理,从中挖掘出潜在的模式,为管理人员决策提供支持。
KDD的整个过程包括在指定的数据库中用数据挖掘算法提取模型,以及围绕数据挖掘所进行的预处理和结果表达等一系列的步骤,是一个需要经过反复的多次处理的过程。
整个知识发现过程是由若干挖掘步骤组成的,而数据挖掘仅是其中的一个主要步骤。
整个知识发现的主要步骤有以下几点。
要求定义出明确的数据挖掘目标。
目标定义是否适度将影响到数据挖掘的成败,因此往往需要具有数据挖掘经验的技术人员和具有应用领域知识的专家以及最终用户紧密协作,一方面明确实际工作中对数据挖掘的要求,另一方面通过对各种学习算法的对比进而确定可用的算法。
数据准备在整个数据挖掘过程中占的比例最大,通常达到60%左右。
这个阶段又可以进一步划分成三个子步骤:数据选择(DataSelection),数据预处理(DataProcessing)和数据变换(DataTransformation)。
数据选择主要指从已存在的数据库或数据仓库中提取相关数据,形成目标数据(TargetData)。
数据预处理对提取的数据进行处理,使之符合数据挖掘的要求。
数据变换的主要目的是精减数据维数,即从初始特征中找出真正有用的特征以减少数据挖掘时要考虑的特征或变量个数。
这一阶段进行实际的挖掘工作。
首先是算法规划,即决定采用何种类型的数据挖掘方法。
然后,针对该挖掘方法选择一种算法。
完成了上述的准备工作后,就可以运行数据挖掘算法模块了。
这个阶段是数据挖掘分析者和相关领域专家最关心的阶段,也可以称之为真正意义上的数据挖掘。
浅谈数据挖掘技术及其应用舒正渝1、2(1.西北师范大学数信学院计算机系,甘肃兰州730070;2.兰州理工中等专业学校,甘肃兰州730050)摘要:科技的进步,特别是信息产业的发展,把我们带入了一个崭新的信息时代。
数据库管理系统的应用领域涉及到了各行各业,但目前所能做到的只是对数据库中已有的数据进行存储、查询、统计等功能,通过这些数据获得的信息量仅占整个数据库信息量的一小部分,如何才能从中提取有价值的知识,进一步提高信息量利用率,因此需要新的技术来自动、智能和快速地分析海量的原始数据,以使数据得以充分利用,由此引发了一个新的研究方向:数据挖掘与知识发现的理论与技术研究。
数据挖掘技术在分析大量数据中具有明显优势,基于数据挖掘的分析技术在金融、保险、电信等有大量数据的行业已有着广泛的应用。
关键词:数据挖掘;知识发现Abstract:Key words:The progress of science and technology,especially the development of the information industry,brings us into a brand-new information age.The application of the data base management system has involved all trades and professions,but only the store,inquire and statistic function can be applied,account a little part of the whole database.How to improve the utilization ratio of the information has initiated a new research direction,the data mining and knowledge found theory and technique.The data mining has the advantage in analyzing a large number of data.The data mining analytical technology has been largely used finance,insurance,telecommunication industry,etc..Data mining;Knowledge discovery收稿日期:2010-01-15修回日期:2010-02-11作者简介:舒正渝(1974-),女,重庆籍,硕士研究生,研究方向为数据库、多媒体。
中国西部科技2010年02月(中旬)第09卷第05期第202期总38根据最终用户的决策目的对提取的信息进行分析,把最有价值的信息提取出来。
对于数据挖掘阶段发现的模式还要经过用户或机器的评估,对于存在冗余或无关的模式要将其删除;对于不能满足用户要求的模式,则需要退回到上一阶段。
另外,数据挖掘面对的最终用户是人,因此要对发现的模式进行可视化,或者把结果转换为用户易懂的其他方式。
目前研究主要从以下几个方面开展:(1)针对不同的数据挖掘任务开发专用的数据挖掘系统。
一个功能很强的数据挖掘系统要能够处理各种类型的数据是不现实的,应当根据特定类型数据的挖掘任务构造专用的数据挖掘系统,如关系数据库挖掘,空间数据库挖掘等。
(2)高效率的挖掘算法。
数据挖掘算法必须是高效的,即算法的运行时间必须是可预测的和可接受的,带有指数甚至是中阶多项式的算法,没有实际使用价值。
(3)提高数据挖掘结果的有效性、确定性和可表达性。
对已发现的知识应能准确地描述数据库中的内容,并能用于实际领域。
对有缺陷的数据应当根据不确定性度量,以近似规律或定量规则形式表示出来。
还应能很好地处理和抑制噪声数据和不希望的数据。
(4)数据挖掘结果的可视化。
数据挖掘任务由非领域专家指定,所以希望最后发现的知识用用户理解的方式表达出来。
(5)多抽象层上的交互式数据挖掘。
交互式数据挖掘允许用户交互地精炼数据挖掘需求,动态改变数据焦点,逐步深化数据挖掘过程,从不同角度不同抽象层次上灵活地观察数据和挖掘结果。
(6)多源数据挖掘。
计算机网络把许多数据源联接在一起,形成巨大的分布式异构数据库。
不同来源数据的格式和语义不统一,数据挖掘系统应当能够帮助用户揭示异构数据库的高级数据规律。
今后特别重视把数据挖掘技术与Internet技术及Web技术紧密结合起来,开发出基于Internet和Web的数据挖掘软件工具。
(7)数据挖掘的安全性和保密性。
加强数据的安全性和保密性,防止侵犯别人隐私和泄漏敏感信息。
(8)实现与现有数据库系统或数据仓库的无缝集成,进一步扩大数据挖掘工具的应用范围和提高现有数据的利用率。
随着数据挖掘研究的不断深入,数据挖掘技术已逐渐成熟,它的应用也越来越广泛。
从政府管理决策、商业经营、科学研究、司法、交通、传媒等各个领域,数据挖掘技术都有用武之地。
在科学研究中,需要分析各种大量的实验或观测数据,传统的数据分析工具难以应付,因此对功能强大的智能化自动分析工具要求迫切,这种需求推动了数据挖掘技术在科学研究领域的应用发展。
例如,加州理工学院喷气推进实验室开发的SKICAT帮助天文学家发现了16个新的类星体。
生物医学领域,科学家利用数据挖掘中的序列模式分析和相似检索技术分析DNA数据,完成异构、分布式基因数据库的语义集成和DNA序列间相似检索和比较,利用关联分析识别同时出现的基因序列,利用路径分析发现疾病不同阶段的致病基因。
市场营销是数据挖掘技术应用最早也是最重要的领域。
在该行业的应用可分为两类:数据库市场营销和货篮分析。
前者可以通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向他们推销商品;后者可通过分析市场销售数据,以识别顾客的购买行为模式。
目前,在零售业、信用卡业、电信业、保险业中得到了很好的应用,提高了商家对客户的了解程度,发现那些优秀的顾客特征,预测有价值的顾客。
数据挖掘还可以协助进行风险评估、财务计划及资产评价、资源计划和竞争策略选择等。
分析银行或保险客户的要求和信誉,识别欺诈行为,如恶性透支等。
这方面应用非常成功的系统有:FALCON系统和FATS系统。
FALCON是HNC公司开发的信用卡欺诈估测系统,它已被相当数量的零售银行用于探测可疑的信用卡交易。
FATS是一个用于识别与洗钱有关的金融交易的系统,它使用的是一般的政府数据表单。
主要用于零部件的故障诊断、资源优化和生产过程分析等制造过程,发现影响生产率的因素,通过发现出某些不正常的数据分布,暴露制造和装配操作过程中变化情况和各种因素,从而协助质量工程师很快地注意到问题发生范围和采取改正措施。
目前这方面的研究主要有两个方面:研制新的更好的索引系统、利用已有索引系统或搜索引擎开发高层次的搜索或发现系统。
相比之下,后者的研究更为活跃。
学校教育管理中也存在大量的可挖掘数据信息,如相关专业课开设的先后关系、教学效果评价等方面,都可以应用到数据挖掘技术,但目前在国内这一应用领域仍以理论研究为主。
总之,数据挖掘可广泛应用于科学研究、商业、银行、金融、制造业、互联网络、教育等各领域,为我们的生活带来了越来越多的改变。
4数据挖掘的研究方向5数据挖掘的应用领域5.1科学研究5.2市场营销5.3风险分析和欺诈甄别5.4制造业5.5Internet的应用5.6学校教育参考文献:[1]JiaweiHan.DataMining:ConceptsandTechniques[M].机械工业出版社,2004.[2]刘同明等.数据挖掘技术及其应用[J].北京:国防工业出版社,2001,(9).[3]康晓东.基于数据仓库的数据挖掘技术[J].北京:机械工业出版社,2004,(1):131~175.[4]李雄飞,李军.数据挖掘与知识发现[M].北京:高等教育出版社,2003,(11).[5]陈安.数据挖掘技术及应用[M].北京:科学出版社,2006.[6]Pang-NingTanMichaelSteinbachVipinKumar.IntroductiontoDataMining[M].北京:人民邮电出版社,2006,5.39开发应用。