(完整版)八年级数学《直角三角形》知识点
湘教版八年级数学下册第一章《直角三角形》优课件

知识点回顾
直角三角形:有一个角是直角的三角形
一、直角三角形的性质:
1.直角三角形的两个锐角互余;
2.直角三角形斜边上的中线等于斜边的一半;
3.直角三角形中,30O角所对直角边是斜边的一半;
4.直角三角形两条直角边的平方和等于斜边的平方; (勾股定理)
熟记以下几组勾股数: 3、4、5; 5、12、13; 7、24、25;8、15、17
A
3
B
1
C
4
E
2
D
例4:如图:AD是△ABC中BC边上的高,E 为AC上一点,BE交AD于F,BF=AC, FD=CD,问BE,AC互相垂直么?请说明 理由
A
FE
B
DC
2.如图,所有的四边形都是正方形,所有的三角形 都是直角三角形,其中最大的正方形的边长为7cm,则 正方形A,B,C,D的面积之和为______4_9____cm2。
3、在Rt△ABC中,∠C=90º,∠A=30º,BC=2cm, 则AB=_____cm。
4、在△ABC中,∠A:∠B:∠C=1:2:3,CD⊥AB于D,
AB=a,则DB等于( )
a
a
a
(A) (B) (C) (D)以上结果都不对
2
3
4
想一想
5、下图中的三角形是直角三角形,其余是 正方形,求下列图中字母所表示的正方形的 面积.
二、直角三角形的判定:
1.定义:有一个角是直角的三角形是直角三角形
2. 有两个角是互余的三角形是直角三角形 3. 若三角形中,较小两边的平方和等于较大边的平方,
则这个三角形是直角三角形(勾股定理的逆定理)
三、直角三角形全等的判定:
八年级数学《三角形》知识点

21D CB AD CBAD CB A八年级数学《三角形》知识点⒈ 三角形的定义三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的“△”没有意义. ⒉ 三角形的分类 (1)按边分类 (2)按角分类:⒊ 三角形的主要线段的定义 (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线. =DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点;这个点叫做三角形的重心。
④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;这个点叫做三角形的内心。
④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段. 表示法:是△ABC 的BC 上的高线. ⊥BC 于D. 3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形等腰三角形不等边三角形 底边和腰不相等的等腰三角形 等边三角形 三角形 直角三角形斜三角形锐角三角形钝角三角形_ C_ B _ A③三角形三条高所在直线交于一点.这个点叫做三角形的垂心。
完整版)解直角三角形知识点总结

完整版)解直角三角形知识点总结解直角三角形直角三角形的性质:直角三角形有以下几个性质:1.直角三角形的两个锐角互余,即∠A+∠B=90°,因为∠C=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BD=AB/2=DC。
这是因为∠A=30°,∠C=90°,根据正弦定理得到BD=AB/2,根据余弦定理得到BD=DC。
3.直角三角形斜边上的中线等于斜边的一半,即CD=AB/2.这是因为D为AB的中点,且∠ACB=90°。
4.勾股定理:a²+b²=c²,其中c为斜边,a、b为直角边。
5.射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
这是因为CD⊥AB,根据相似三角形的性质得到CD²=AD×BD,同时根据勾股定理得到AC²=AD×AB,BC²=BD×AB,因此CD²=AC²-AD²=BC²-BD²。
锐角三角函数的概念:在直角三角形中,锐角A的正弦、余弦、正切、余切分别为sinA、cosA、XXX、cotA,它们的定义如下:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a。
锐角三角函数的取值范围是:-1≤sinα≤1,-1≤cosα≤1,tanα≥0,cotα≥0.锐角三角函数之间的关系:1.平方关系:sin²A+cos²A=1.2.倒数关系:tanA×tan(90°-A)=1.3.弦切关系:XXX,XXX。
4.互余关系:sinA=cos(90°-A),cosA=sin(90°-A),tanA=cot(90°-A),cotA=tan(90°-A)。
(完整版)初中三角形知识点总结

图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1) 三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180 。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边; 大边对大角。
4、三角形的面积三角形的面积=1x底X高2考点二、全等三角形1 、全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定三角形全等的判定定理:(1) 边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS)(2) 角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA)(3) 边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SS6)。
(4) 角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1) 平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2) 对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3) 旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换考点三、等腰三角形1 、等腰三角形的性质(1) 等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
(完整版)人教版-八年级上册-三角形的知识点及题型总结

三角形的知识点及题型总结一、三角形的认识定义:由不在同一条直线上的三条线段首尾按序相接所构成的图形。
分类:锐角三角形(三个角都是锐角的三角形)按角分类直角三角形(有一个角是直角的三角形)钝角三角形(有一个角是钝角的三角形)三边都不相等的三角形按边分类等腰三角形底边和腰不相等的等腰三角形等边三角形例题 1图1中共几个三角形。
例题 2以下说法正确的选项是()A.三角形分为等边三角形和三边不相等三角形B.等边三角形不是等腰三角形C.等腰三角形是等边三角形D.三角形分为锐角三角形、直角三角形、钝角三角形例题 3 已知a、b、c为△ABC的三边长,b、c知足(b-2)2+|c-3|=0,且 a 为方程 |x -4|=2 的解 .求△ ABC的周长,并判断△ ABC的形状 .二、与三角形相关的边三边的关系:三角形的两边和大于第三边,两边的差小于第三边。
例题 1以以下各组数据为边长,能够成三角形的是(),4,5,4,8,7,10,4,5例题 2已知三角形的两边边长分别为4、5,则该三角形周长L 的范围是()A.1<L<9B.9<L<14C.10<L<18D.没法确立课后练习:1、若三角形的两边长分别为5、8,则第三边可能是()B. 62、等腰三角形的两边长分别为6、13,则它的周长为。
3、等腰三角形的两边长分别为4、已知三角形的两边长为 2 和4、5,则第三边长为。
4,为了使其周长是最小的整数,则第三边的为。
5、若等腰三角形的周长为13cm,此中一边长为 3cm,则等腰三角形的底边为()D.7cm 或3cm6、依据以下已知条件,能独一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠ A=30°C.∠A=60°,∠ B=45°, AB=4D.∠C=90°, AB=68、用7 根火柴棒首尾按序相连摆成一个三角形,能摆成个不一样的三角形。
(完整版)部编版数学八年级上册三角形性质解释

(完整版)部编版数学八年级上册三角形性
质解释
引言
本文档将解释数学八年级上册中关于三角形性质的内容。
我们
将探讨三角形的定义、构造、角度性质以及边长关系等方面的知识。
三角形的定义
三角形是由三条线段所组成的闭合图形。
它有三个顶点、三条
边和三个内角。
三角形的内角之和总是180度。
三角形的构造
我们可以通过给定的条件来构造不同类型的三角形。
例如,如
果给定两边长度和夹角度数,我们可以通过边边角(SSA)的构造
原理来构造出一个三角形。
角度性质
三角形的内角有一些重要的性质。
以下是一些常见的角度性质:- 三角形的三个内角之和是180度;
- 直角三角形有一个内角是90度;
- 锐角三角形的三个内角都是锐角,即小于90度;
- 钝角三角形的三个内角中至少有一个是钝角,即大于90度。
边长关系
三角形的边长之间也存在一些特定的关系。
以下是一些常见的边长关系:
- 等边三角形的三条边都相等;
- 等腰三角形有两条边相等;
- 直角三角形中,斜边的平方等于两条直角边的平方和;
- 三角形两边之和大于第三边。
结论
三角形的性质涵盖了它的定义、构造、角度性质和边长关系。
通过充分理解和掌握这些性质,我们能更好地分析和解决与三角形有关的问题。
以上是数学八年级上册关于三角形性质的解释,希望对你的研究有帮助。
人教版八年级数学-三角形-知识点+考点+典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
八年级数学上册《直角三角形的性质》课件
通过测量直角三角形中的两个锐角,可以计算出 第三个角的大小,从而解决一些测量问题。
建筑设计中直角三角形应用
建筑设计
01
在建筑设计中,直角三角形常被用于计算建筑物的角度、高度
和距离等参数,以确保建筑物的稳定性和美观性。
结构工程
02
在结构工程中,直角三角形可以帮助工程师计算结构的支撑力
、承载力和稳定性等关键参数。
AA相似条件在直角三角形中应用
AA相似条件:如果两个三角形 中有两个角分别相等,则这两 个三角形相似。
在直角三角形中,由于一个角 是90度,因此只需要再证明一 个角相等即可判定两个直角三 角形相似。
常见的证明方法包括利用余角 相等、利用平行线的性质等。
利用三边比例关系判断相似
三边比例关系:如果两个三角形的三边长度成比例,则这两个三角形相似。
在直角三角形中,可以利用勾股定理和已知边长求出未知边长,进而判断三边是否 成比例。
需要注意的是,由于直角三角形的特殊性,有时候只需要证明两边成比例即可判定 相似。
实例分析与解题技巧
实例分析
通过具体题目分析,展示如何利 用AA相似条件和三边比例关系判 断直角三角形相似。
解题技巧
总结在解题过程中需要注意的问 题和技巧,如正确运用勾股定理 、灵活运用相似条件等。
勾股定理及其逆定理
勾股定理
勾股数
在直角三角形中,直角边的平方和等 于斜边的平方,即a² + b² = c²,其 中a、b为直角边,c为斜边。
满足勾股定理的三个正整数,称为勾 股数。例如,3、4、5是一组勾股数 ,因为3² + 4² = 5²。
勾股定理的逆定理
如果三角形的三边长a、b、c满足a² + b² = c²,那么这个三角形是直角三 角形,其中c为最长边。
湘教版数学八年级下册_《直角三角形的性质和判定》要点及典例分析
直角三角形的性质和判定
一、知识要点解析:
1.直角三角形的判定:
(1)定义:有一个角是直角的三角形是直角三角形.
(2)定理:有两个角互余的三角形是直角三角形.当然后面学了勾股定理后还可以运用勾股定理的逆定理进行判定.
注意:判定直角三角形要灵活运用定义和定理,根据具体题目具体分析.
2.直角三角形的性质:
(1)直角三角形的两个锐角互余。
(2)在直角三角形中,斜边上的中线等于斜边的一半.
二.典例分析
例1、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点. 如果M、N分别在线段AB、AC上移动,在移动过程中保持AN=BM,请证明△OMN是直角三角形.
分析:要证明△OMN是直角三角形,只要证明∠MON=900即可.
证明:连接OA。
AN=BM,OA=OB,∠OAC=∠B=45°
△OAN≌△OBM,得ON=OM,∠AON=∠BOM
又∠AOM+∠BOM=90°
所以∠AON+∠AOM=90°,即∠MON=90°.
所以△OMN是直角三角形.
专项练习:
1、若一个三角形三内角之比为1:2:3,则该三角形一定是( )
A、锐角三角形
B、直角三角形
C、钝角三角形
D、不能确定
2、已知直角三角形中30°角所对的直角边长是2cm,则斜边上的中线的长是()
A. 2 cm
B. 4 cm
C. 6 cm
D. 8 cm
参考答案:
1.B
2.A。
(完整版)第十八章三角形知识点总结
(完整版)第十八章三角形知识点总结一、基本概念三角形是由三条线段所围成的封闭图形,它是几何学中非常重要的一个概念。
在研究三角形知识时,需要掌握以下基本概念:1. 三边:三角形由三条线段组成,分别称为三边。
记作AB、BC、CA,也可以用小写字母a、b、c表示。
三边:三角形由三条线段组成,分别称为三边。
记作AB、BC、CA,也可以用小写字母a、b、c表示。
2. 三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。
三角形的顶点:三角形的一个角的顶点叫做该三角形的顶点,记作A。
3. 三个内角:三角形内部的角叫做三角形的内角。
记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。
三个内角:三角形内部的角叫做三角形的内角。
记作∠B、∠C、∠A,也可以用小写字母α、β、γ表示。
4. 三个外角:三角形内部每个内角的补角叫做该内角的外角。
记作∠∠B、∠∠C、∠∠A。
三个外角:三角形内部每个内角的补角叫做该内角的外角。
记作∠∠B、∠∠C、∠∠A。
二、三角形的分类根据三边的关系,三角形可以分为以下几种类型:1. 等边三角形:三条边的边长相等,记作ABC。
等边三角形的每个内角都是60°,每个外角都是120°。
等边三角形:三条边的边长相等,记作ABC。
等边三角形的每个内角都是60°,每个外角都是120°。
2. 等腰三角形:两条边的边长相等,记作ABC。
等腰三角形的底边上的两个角是等角。
等腰三角形:两条边的边长相等,记作ABC。
等腰三角形的底边上的两个角是等角。
3. 直角三角形:其中一个角是直角(90°),记作ABC。
直角三角形的斜边是其他两条边的最长边。
直角三角形:其中一个角是直角(90°),记作ABC。
直角三角形的斜边是其他两条边的最长边。
4. 锐角三角形:三个内角都是锐角(小于90°)的三角形。
锐角三角形:三个内角都是锐角(小于90°)的三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《直角三角形》知识点
一、直角三角形的性质
1、直角三角形的两个锐角互余
可表示如下:∠C=90°⇒∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30° 可表示如下: ⇒BC=2
1AB ∠C=90°
3、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下: ⇒CD=
2
1AB=BD=AD D 为AB 的中点
4、勾股定理
直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+
5、射影定理(了解)
在直角三角形中,斜边上的高线是两直角边在斜边上的
射影的比例中项,每条直角边是它们在斜边上的射影和斜边
的比例中项
∠ACB=90° BD AD CD •=2
⇒ CD ⊥AB 6、常用关系式
由三角形面积公式可得: AB •CD=AC •BC
二、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理
如果三角形的三边长a ,b ,c ,有关系222c b a =+,那么这个三角形是直角三角形。
三、解直角三角形
1、解直角三角形的概念
在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。
2、解直角三角形的理论依据
在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c
(1)三边之间的关系:222c b a =+(勾股定理)
(2)锐角之间的关系:∠A+∠B=90°
(3)边角之间的关系:
AB
AD AC •=2AB
BD BC •=2
练习:
一、选择题
1. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长为( )
A 、4 cm
B 、8 cm
C 、10 cm
D 、12 cm
2. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
3. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
A 、13
B 、8
C 、25
D 、64
4. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
A 、 钝角三角形
B 、 锐角三角形
C 、 直角三角形
D 、等腰三角形.
5、等腰三角形腰长为13,底边长为10,则它底边上的高为 ( )
A.12
B.7
C.5
D.6
6.已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
7.如图,MP ⊥NP ,MQ 为△MNP 的角平分线,MT =MP ,连接TQ ,则下列结论中不正
确的是( )
A 、TQ =PQ
B 、∠MQT =∠MQP
C 、∠QTN =90°
D 、∠NQT =∠MQT 8.在△ABC 中, ∠A: ∠B: ∠C=1:2:3,CD ⊥AB 于D,AB=a ,则DB 等于( ) A.2a B.3a C.4
a D.以上结果都不对 二、解答题
1、已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC. 求证: BE=DF
2.已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
3、已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°, 求BC ,CD 和DE 的长
N T Q P M A
B C D
E F 1 2 A B
C D。