电压基准源选型

合集下载

电压基准的特性及选用解析

电压基准的特性及选用解析

电压基准的特性及选用摘要从实际应用角度,介绍了电压基准的种类及特点,主要技术参数,选用电压基准的方法和注意事项。

关键词齐纳基准带隙基准XFET基准初始精度温度系数一、电压基准及其应用领域电压基准可提供一个精度远比电压稳压器高的多的精确输出电压,作为某个电路系统中的参考比较电压,因而称其为基准。

电压基准在某些方面与电压稳压器类似,但二者的用途绝然不同。

电压稳压器除了向负载输出一个稳定电压外还要供给功率。

电压基准的主要用途是为系统或负载提供一个精确的参考电压,而其输出电流通常在几至几十个毫安。

电压基准的用途十分广泛,典型的应用常见于数据采集系统,用于为模数变换器或数模变换器提供一个基准参考电压。

另外,它还可用于各类开关或线性电压变换电路、仪器仪表电路和电池充电器中。

二、电压基准的主要参数1.初始精度(Initial Accuracy初始精度用于衡量一个电压基准输出电压的精确度或容限,即电压基准工作时其输出电压偏离其正常值的大小。

通常,初始精度采用百分数表示,它并非是一个电压单位,故需换算才能获得电压偏离值的大小。

例如,一个标称电压为2.5V的基准, 初始精度为±%,则其电压精度范围为:5.2~5.21x±±%.25.2V475V525.0025.2在厂商的数据手册中,初始电压精度通常是在不加载或在特定的负载电流条件下测量的。

对于电压基准而言,初始精度是一个最为重要的性能指标之一。

2.温度系数(Temperature Coefficient温度系数(简称TC用于衡量一个电压基准,其输出电压因受环境温度变化而偏离正常值的改变程度,它也是基准电压最重要的性能指标之一,通常用ppm/C表示(ppm 是英文part per million的缩写,1ppm表示百万分之一。

例如,一个基准标称电压为10V,温度系数为10ppm/C ,则环境温度每变化1C ,其输出电压改变10VX10X10- 6=100叮。

3.7、基准参考电压

3.7、基准参考电压

3.7基准参考电压源的选择大多数数字电路、混合信号和模拟电路需要使用电压基准源,因此了解基准源的工作原理、参数和选择方法,对於系统设计是一个很重要的。

本节比较了齐纳二极管、隐埋齐纳二极管和带隙电压基准三种电压基准源的优点和缺点,列出了使用时潜在的问题,介绍了它们的应用范围。

讨论了在设计系统时,选择电压基准源需要考虑的问题。

3.7.1基准源的类型基准源主要有齐纳二极管、隐埋齐纳二极管和带隙电压基准三种,它们都可以设计成两端并联式电路或者三端串联式电路。

齐纳二极管是工作在反向偏置的二极管,需要一个串联的限流电阻。

在要求高精度和低功耗的情况下,齐纳二极管通常是不适合的。

例如,BZX84C2V7LT1齐纳二极管的标称输出电压Vout是2.5V,有±8%的公差,各个器件之间的输出电压会在2.3V到2.7V的范围内变化。

理想的电压基准源应该是内阻为零,不论电流是流进去还是流出来,都应当保持输出电压恒定。

内阻为零的基准源是不存在的,然而内阻只有毫欧数量级的基准源是可以做得到的。

齐纳二极管的内阻较大,电流为5mA时内阻为100Ω,1mA时600Ω。

齐纳二极管在电压箝位电路中很有用,它们的箝位电压范围宽,从2V至200V,功率可以从几毫瓦到几瓦。

表1比较了这三种电压基准源的优点、缺点,列出了使用时潜在的问题。

表3.7.1. 三种电压基准源的比较注1:带隙半导体、直接带隙和间接带隙ZnO是一种直接带隙半导体材料,为什么说它是直接带隙的?直接带隙会导致它有什么样的特点?直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置。

电子要跃迁到导带上产生导电的电子和空穴(形成半满能带)只需要吸收能量。

间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。

形成半满能带不只需要吸收能量,还要改变动量。

间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。

电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。

如何为您的ADC选择最合适的基准电压源和放大器

如何为您的ADC选择最合适的基准电压源和放大器

【转载】如何为您的ADC选择最合适的基准电压源和放大器2007年11月02日星期五20:10如何为您的ADC选择最合适的基准电压源和放大器主题: 驱动精密ADC:如何为您的ADC选择最合适的基准电压源和放大器?在线问答:[问:callhxw] 如何评定一颗ADC非线性?丢码?[答:Jing] you can use ADC"s INL and DNL parameter to evaluate the non-linearity and you can also use ENOB parameter to check code loss. Thanks!Generally ENOB releated with ADC"s SNR [2006-2-28 10:32:08][问:吉星] 在差分输入时,不考虑直流,使用差分放大器和变压器哪个更好.[答:Mariah] Transformer is better for the better noise and distortion performance, especially in very high frequencies. [2006-2-28 10:32:14][问:Jane Yang] 请问应如何处理板级噪声对于高精度AD的影响?特别是输入部分的噪声?[答:Jing] This is a good question and it"s very difficult to answer. Generally, You should consider all the input noise derived from sensor/AMP/BUFFER. You can also use a LPF to reduce the input noise. Remember the BGP of AMP should be 100x of ADC"s throughput. Thanks! [2006-2-28 10:34:30][问:石林艳] AD变换的参考基准源很重要,对模拟供电电源和数字供电电源的要求也很高吗[答:Rui] 模拟供电电源,和数字供电电源相对基准源来说,精度要求相对较低,一般情况下用10uF的电容和0.1uF滤波即可。

基准电压芯片选型指南

基准电压芯片选型指南

基准电压芯⽚选型指南基准电压芯⽚选型指南LM236D-2-5:2.5V基准电压源400uA~10mA宽⼯作电流LM236DR-2-5:2.5V基准电压源400uA~10mA宽⼯作电流LM236LP-2-5:2.5V基准电压源400uA~10mA宽⼯作电流LM285D-1-2:微功耗电压基准. 10uA~20mA宽⼯作电流LM285D-2-5:微功耗电压基准. 10uA~20mA宽⼯作电流LM285LP-2-5:微功耗电压基准. 10uA~20mA宽⼯作电流LM336BD-2-5:2.5V基准电压源. 10uA~20mA宽⼯作电流LM336BLP-2-5:2.5V基准电压源LM385BD-1-2:1.2V精密电压基准. 15uA~20mA宽⼯作电流LM385BD-2-5:2.5V精密电压基准. 15uA~20mA宽⼯作电流LM385BLP-1-2:1.2V精密电压基准. 15uA~20mA宽⼯作电流LM385BLP-2-5:2.5V精密电压基准. 15uA~20mA宽⼯作电流LM385BPW-1-2:微功耗电压基准. 15uA~20mA宽⼯作电流LM385BPW-2-5:微功耗电压基准. 15uA~20mA宽⼯作电流LM385D-1-2:1.2V精密电压基准. 15uA~20mA宽⼯作电流LM385DR-1-2:1.2V精密电压基准. 15uA~20mA宽⼯作电流LM385DR-2-5:2.5V精密电压基准. 15uA~20mA宽⼯作电流LM385LP-2-5:2.5V精密电压基准. 15uA~20mA宽⼯作电流LM385PW-1-2:1.2V微功率基准电压源. 15uA~20mA宽⼯作电流LM385PW-2-5:2.5V微功率基准电压源. 15uA~20mA宽⼯作电流REF02AP:+5V精密电压基准REF02AU:+5V精密电压基准REF02BP:+5V精密电压基准REF02BU:+5V精密电压基准REF1004I-2.5:+2.5V精密电压基准REF102AP:10V精密电压基准REF102AU:10V精密电压基准REF102BP:10V精密电压基准REF200AU:双电流基准REF2912AIDBZT:1.2V电压基准REF2920AIDBZT:2V电压基准REF2925AIDBZT:2.5V电压基准REF2930AIDBZT:3V电压基准REF2933AIDBZT:3.3V电压基准REF3012AIDBZT:1.25V,50ppm/℃,50uASOT23-3封装电压基准REF3020AIDBZT:2.048V,50ppm/℃,50uASOT23-3封装电压基准REF3025AIDBZT:2.5V,50ppm/℃,50uASOT23-3封装电压基准REF3033AIDBZT:3.3V,50ppm/℃,50uASOT23-3封装电压基准REF3040AIDBZT:4.096V,50ppm/℃,50uASOT23-3封装电压基准REF3120AIDBZT:20ppM(最⼤)100uA,SOT23封装电压基准REF3133AIDBZT:20ppm/℃, 100uA, SOT23-3封装3.3V电压基准TL1431CD:精密可编程输出电压基准TL1431CPW:精密可编程输出电压基准LM336BLP-2-5:2.5V基准电压源LM385-1.2V:1.2V精密电压基准. 15uA~20mA宽⼯作电流Xicor公司电压基准X60003CIG3-50:Xicor 公司电压基准X60003DIG3-50:Xicor 公司电压基准X60008BIS8-25:Xicor 公司电压基准X60008BIS8-41:Xicor 公司电压基准X60008BIS8-50:Xicor 公司电压基准X60008CIS8-25:Xicor 公司电压基准X60008CIS8-41:Xicor 公司电压基准X60008CIS8-50:Xicor 公司电压基准X60008DIS8-25:Xicor 公司电压基准X60008DIS8-41:Xicor 公司电压基准X60008DIS8-50:Xicor 公司电压基准X60008EIS8-50:Xicor 公司电压基准Intersil公司电压基准电压基准(Intersil)ISL60002CIB825:Intersil 公司电压基准ISL60002CIH325:Intersil 公司电压基准ISL60002DIB825:Intersil 公司电压基准ISL60002DIH325:Intersil 公司电压基准X60003CIG3-50T1:Intersil 公司电压基准X60003DIG3-50T1:Intersil 公司电压基准Microchip 微芯电压基准电压基准:MCP1525-I/TT:2.5V电压基准MCP1525T-I/TT:2.5V电压基准MCP1541-I/TT:4.096V电压基准MCP1541T-I/TT:4.096V电压基准ON 安森美电压基准电压基准:LM285D-2.5G:2.5V电压基准LM285D-2.5R2G:2.5V电压基准LM285Z-2.5G:2.5V电压基准LM385BD-1.2G:1.2V电压基准LM385BD-2.5G:2.5V电压基准LM385BD-2.5R2G:2.5V电压基准LM385BZ-1.2G:1.2V电压基准LM385BZ-2.5G:2.5V电压基准LM385D-1.2G:1.2V电压基准LM385D-1.2R2G:1.2V电压基准LM385D-2.5G:1.2V电压基准MC1403BP1G:低电压参考源MC1403D:低电压参考源MC1403DG:低电压参考源MC1403P1:低电压参考源MC1403P1G:低电压参考源NCP100SNT1:精密电压基准NCP100SNT1G:精密电压基准NCV1009D:2.5V电压基准NCV1009DG:2.5V电压基准NCV1009DR2G:2.5V电压基准NCV1009ZG:2.5V电压基准TL431ACDG:可编程精密参考源TL431ACDR2G:可编程精密参考源TL431ACLPG:可编程精密参考源TL431AIDG:可编程精密参考源TL431AIDMR2G:可编程精密参考源TL431AIDR2G:可编程精密参考源TL431AILPG:可编程精密参考源TL431BCDG:可编程精密参考源TL431BCDMR2G:可编程精密参考源TL431BCLPG:可编程精密参考源TL431BIDG:可编程精密参考源TL431BIDMR2G:可编程精密参考源TL431BIDR2G:可编程精密参考源TL431BILPG:可编程精密参考源TL431BVDG:可编程精密参考源TL431BVDR2G:可编程精密参考源TL431BVLPG:可编程精密参考源TL431CDG:可编程精密参考源TL431CLPG:可编程精密参考源TL431CLPRAG:可编程精密参考源TL431CPG:可编程精密参考源TL431IDG:可编程精密参考源TL431ILPG:可编程精密参考源TLV431ALPG:低电压精密可调参考源TLV431ALPRAG:低电压精密可调参考源TLV431ALPRPG:低电压精密可调参考源TLV431ASN1T1G:低电压精密可调参考源TLV431ASNT1G:低电压精密可调参考源TLV431BLPG:低电压精密可调参考源TLV431BLPRAG:低电压精密可调参考源TLV431BSN1T1G:低电压精密可调参考源TLV431BSNT1G:低电压精密可调参考源Sipex 半导体公司Power电源管理器件电压基准- - 更多... SPX1004AN-1.2:1.2伏/2.5伏微功耗电压基准SPX1004N-2.5:2.5伏微功耗电压基准SPX1431S:精准可调分流调节器SPX2431AM:精准可调分流调节器SPX2431AM-L/TR:SPX2431AM-L/TRSPX2431M-L:SPX2431M-LSPX385AM-L-5-0:微功耗电压基准SPX385AN-1.2:SPX385AN-1.2SPX431AM5:精准可调分流调节器SPX431AN-L/TR:SPX431AN-L/TRSPX431BM1/TR:SPX431BM1/TRSPX431BM1-L/TR:SPX431BM1-L/TRSPX431CS:SPX431CSSPX431LCN-L/TR:SPX431LCN-L/TRSPX432AM/TR:1.24V精准可调分流调节器SPX432AM-L/TR:SPX432AM-L/TR。

基准电压源选择技巧

基准电压源选择技巧

基准电压源选择技巧基准电压源电路有许多方法可以设计基准电压源IC,而每种方法都有特定的优点和缺点。

基于齐纳二极管的基准电压源深埋齐纳型基准电压源是一种相对简单的设计。

齐纳(或雪崩)二极管具有可预测的反向电压,该电压具有相当好的温度稳定性和非常好的时间稳定性。

如果保持在较小温度范围内,这些二极管通常具有非常低的噪声和非常好的时间稳定性,因此其适用于基准电压变化小的应用。

与其他类型的基准电压源电路相比,这种稳定性可归因于少元件数量和小芯片面积,而且齐纳元件的构造很精巧。

然而,初始电压和温度漂移的变化相对较大,这很常见。

可以增加电路来补偿这些缺陷,或者提供一系列输出电压。

分流和串联基准电压源均使用齐纳二极管。

带隙基准电压源齐纳二极管虽然可用于制作高性能基准电压源,但缺乏灵活性。

具体而言,它需要7V以上的电源电压,而且提供的输出电压相对较少。

相比之下,带隙基准电压源可以产生各种各样的输出电压,电源裕量非常小(通常小于100mV)。

带隙基准电压源可设计用来提供非常精确的初始输出电压和很低的温度漂移,无需的耗时在应用中校准。

带隙操作基于双极结型晶体管的基本特性。

图1所示为一个基本带隙基准电压源。

可以看出,一对不匹配的双极结型晶体管的VBE具有与温度成正比的差异。

这种差异可用来产生一个电流,其随温度线性上升。

当通过电阻和晶体管驱动该电流时,如果其大小合适,晶体管的基极-发射极电压随温度的变化会抵消电阻两端的电压变化。

虽然这种抵消不是完全线性的,但可以通过附加电路进行补偿,使温度漂移非常低。

图1:设计带隙电路提供理论上为零的温度系数基本带隙基准电压源背后的数学原理很有意思,因为它将已知温度系数与独特的电阻率相结合,产生理论上温度漂移为零的基准电压。

图1显示了两个晶体管,经调整后,Q10的发射极面积为Q11的10倍,而Q12和Q13的集电极电流保持相等。

这就在两个晶体管的基极之间产生一个已知电压:其中,k为玻尔兹曼常数,单位为J/K(1.38×10-23),T为开氏温度(273+T(°C));q为电子电荷,单位为库仑(1.6x10-19)。

电压基准源选型

电压基准源选型

摘要:电压基准源简单、稳定的基准电压,作为电路设计的一个关键因素,电压基准源的选择需要考虑多方面的问题并作出折衷。

本文讨论了不同类型的电压基准源以及它们的关键特性和设计中需要考虑的问题,如精确度、受温度的影响程度、电流驱动能力、功率消耗、稳定性、噪声和成本。

几乎在所有先进的电子产品中都可以找到电压基准源,它们可能是独立的、也可能集成在具有更多功能的器件中。

例如:在数据转换器中,基准源提供了一个绝对电压,与输入电压进行比较以确定适当的数字输出。

在电压调节器中,基准源提供了一个已知的电压值,用它与输出作比较,得到一个用于调节输出电压的反馈。

在电压检测器中,基准源被当作一个设置触发点的门限。

要求什么样的指标取决于具体应用,本文讨论不同类型的电压基准源、它们的关键指标和设计过程中要综合考虑的问题。

为设计人员提供了选择最佳电压基准源的信息。

理想情况理想的电压基准源应该具有完美的初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。

实际应用中,设计人员必须在初始电压精度、电压温漂、迟滞以及供出/吸入电流的能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。

基准源的类型两种常见的基准源是齐纳和带隙基准源。

齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。

齐纳二极管和并联拓扑齐纳二极管优化工作在反偏击穿区域,因为击穿电压相对比较稳定,可以通过一定的反向电流驱动产生稳定的基准源。

齐纳基准源的最大好处是可以得到很宽的电压范围,2V到200V。

它们还具有很宽范围的功率,从几个毫瓦到几瓦。

齐纳二极管的主要缺点是精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。

例如:BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V之间变化,即精确度为±8%,这只适合低精度应用。

齐纳基准源的另一个问题是它的输出阻抗。

上例中器件的内部阻抗为5mA时100Ω和1mA时600Ω。

电压基准源

电压基准源

CMOS基准源
是什么?如何构造?应用?优缺点?
01.为了解决三极管出现的问题, 提出的仅使用MOS管构建的电压基 准源。 理论基础:用MOS管的迁移率和阈值电压存在的温度特性进行 正负温度补偿。 T B μ n (T ) μ n (T0 )( ) MOS管迁移率的温度特性可描述为: T0 MOS管阈值电压的温度特性可描述为:Vthn (T ) Vthn (T0 ) BV (T T 0 ) 其中 B μ n, B Vthn 分别是迁移率和阈值电压的温度指数。
具体的应用电路
图1、电压相加形四位R-2RT型电阻网络DAC
图2、并行比较型ADC
02
电压基准源如何构造
1、齐纳击穿 2、带隙温度补偿 3、其他
齐纳管式电压基准源
是什么?如何构造?应用?优缺点?
01. 利用pn结反向击穿的稳压特性 制作的稳压管
图3、理想情况下二极管的伏安特性曲线
齐纳管式电压基准源
图9、能隙基准源典型电路3
假设n 9。 ln 9 2.197, 则k 10.5。
能隙温度补偿基准源
是什么?如何构造?应用?优缺点?
04.优缺点
优点:1、温度系数低 2、原理相对简单 3、工作电压较低 缺点:1、使用了BJT,与主流CMOS工艺不兼容。 (失调问题) 2、器件面积较大。 3、对电流增益β的要求较高。 4、VBE 线性化模型不够精确。
03. 应用电路
限流电阻的选取:
Vref Iref
(Vin(max) Vref ) 50mA I LOAD (min)
RS
(Vin(min) Vref ) 100uA I LOAD (max)
图5、MAX6330器件典型应用

几种电压基准源的比较分析

几种电压基准源的比较分析

几种电压基准源的比较分析罗先才无锡华润矽科微电子有限公司摘要:电压基准根据参考源的不同可分为对正电源基准源、对负电源基准源、对地基准源和浮动基准源四种;根据电压的不同可分为1V低电源基准、1.25V基准、2.5V基准、高压基准和任意电压基准;根据使用的核心补偿器件不同又可分为传统带隙基准、耗尽增强型基准、齐纳二极管基准等几种结构。

在电路设计过程中,如何根据工艺条件和电路需要自由地选择合适的基准源电路,是电路得以快速设计成功的基石。

本文通过分析比较各种结构的实现原理、优缺点以及改进措施,使这一选择变得更加的清晰和简明。

关键词:带隙基准,齐纳二极管,耗尽型MOS场效应管,低电源带隙基准,浮动基准1引言在模拟或数模混合集成电路设计领域中,高性能电压基准源设计是关键技术之一,电压基准源为电路提供高精度基准电压或由其转化为高精度电流,为电路提供稳定而又精确的偏置。

由于工艺离散性的存在,如何选择合适的基准源结构,降低温度漂移,提高电路精度、保证批量制造IC时带隙基准电压源精度的一致性,是进一步改进基准电压源设计的重要课题。

因此需要在工艺条件有限的情况下,更多地从电路设计结构选择上着手,并在所选结构上加以改进以设计出满足要求的基准源电路。

2传统带隙基准2.1经典带隙结构及其改进传统带隙基准源是用一个正温漂得UT 和一个负温漂的UBE求和得到的一个零温漂的参考电压。

其基本原理如下左图所示,三极管发射结压降UBE在室温下的温度系数为-2.2mv/.C,而热电压UT(k.T/q)的温度系数为0.085mV/.C,如图中,将这两个参数求和得:UREF =KUT+UBE在室温条件下上式对温度T求微分,并使这一微分结果为零,即可解出K得理论设计值,最后使得输出电压UREF理论上在室温附件基本零温漂。

其图中的PNP通常是Nwell工艺中的寄生P+/NW/Psub三极管,设计出来的基准通常是相对GND的稳定电压。

在Pwell工艺中寄生三极管则是N+/PW/Nsub,下面的示意图正好上下颠倒过来即可,这样设计出来的基准也正好是相对电源的稳定电压。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:电压基准源简单、稳定的基准电压,作为电路设计的一个关键因素,电压基准源的选择需要考虑多方面的问题并作出折衷。

本文讨论了不同类型的电压基准源以及它们的关键特性和设计中需要考虑的问题,如精确度、受温度的影响程度、电流驱动能力、功率消耗、稳定性、噪声和成本。

几乎在所有先进的电子产品中都可以找到电压基准源,它们可能是独立的、也可能集成在具有更多功能的器件中。

例如:
在数据转换器中,基准源提供了一个绝对电压,与输入电压进行比较以确定适当的数字输出。

在电压调节器中,基准源提供了一个已知的电压值,用它与输出作比较,得到一个用于调节输出电压的反馈。

在电压检测器中,基准源被当作一个设置触发点的门限。

要求什么样的指标取决于具体应用,本文讨论不同类型的电压基准源、它们的关键指标和设计过程中要综合考虑的问题。

为设计人员提供了选择最佳电压基准源的信息。

理想情况
理想的电压基准源应该具有完美的初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。

实际应用中,设计人员必须在初始电压精度、电压温漂、迟滞以及供出/吸入电流的能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。

基准源的类型
两种常见的基准源是齐纳和带隙基准源。

齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。

齐纳二极管和并联拓扑
齐纳二极管优化工作在反偏击穿区域,因为击穿电压相对比较稳定,可以通过一定的反向电流驱动产生稳定的基准源。

齐纳基准源的最大好处是可以得到很宽的电压范围,2V到200V。

它们还具有很宽范围的功率,从几个毫瓦到几瓦。

齐纳二极管的主要缺点是精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。

例如:BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V之间变化,即精确度为±8%,这只适合低精度应用。

齐纳基准源的另一个问题是它的输出阻抗。

上例中器件的内部阻抗为5mA时100Ω和1mA时600Ω。

非零阻抗将导致基准电压随负载电流的变化而发生变化。

选择低输出阻抗的齐纳基准源将减小这一效应。

埋入型齐纳二极管是一种比常规齐纳二极管更稳定的特殊齐纳二极管,这是因为采用了植入硅表面以下的结构。

作为另一种选择,可以用有源电路仿真齐纳二极管。

这种电路可以显著改善传统齐纳器件的缺点。

MAX6330就是一个这样的电路。

负载电流在10 0µA至50mA范围变化时,具有1.5% (最大)的初始精度。

此类IC的典型应用如图1所示。

图1.
选择合适的并联电阻
所有的并联结构基准都需要一个与其串联的限流电阻。

可以按照下式选择电阻:
(VIN(max)-VSHUNT(min)) / (ISHUNT(max)+ ILOAD(min)) < RS < (VIN(min) -VSHUNT(max)) / (ISHUNT(min) + ILOAD(max))
其中:
VIN是输入电压
VSHUNT是调节后的电压
ILOAD是输出电流
ISHUNT是最小并联工作电流。

注意,无论是否加有负载,并联电路消耗的电流都是ILOAD(max) + ISHUNT。

选择合适的RS,相同的并联基准源可以用于10Vin或100Vin。

为RS的最大标称阻值对应于最小的电流消耗。

注意,要保证一个满足电阻误差容限最差时的安全余量。

利用下式,可确保电阻有足够的额定功率:
PR = IIN(VIN(max) - VSHUNT)
= I2INRS
= (VIN(max) - VSHUNT)2/RS
带隙基准源和串联模式拓扑。

相关文档
最新文档