核物理基础知识
核物理学重点知识总结(期末复习必备)

核物理学重点知识总结(期末复习必备)
核物理学重点知识总结(期末复必备)
1. 核物理基础知识
- 核物理的定义:研究原子核内部结构、核反应以及与核有关
的现象和性质的学科。
- 原子核的组成:由质子和中子组成,质子带正电,中子无电荷。
- 质子数(原子序数):表示原子核中质子的数量,决定了元
素的化学性质。
- 质子数与中子数的关系:同位素是指质子数相同、中子数不
同的原子核。
2. 核反应与放射性
- 核反应定义:原子核发生的转变,包括衰变和核碰撞产生新核。
- 放射性定义:原子核不稳定,通过放射射线(α、β、γ射线)变为稳定核的过程。
- 放射性衰变:α衰变、β衰变和γ衰变。
3. 核能与核能应用
- 核能的释放:核反应过程中,原子核质量的变化引发能量的
释放。
- 核能的应用:核电站、核武器、核医学、核技术等领域。
- 核电站工作原理:核反应堆中的核裂变产生的能量转换为热能,再通过蒸汽发电机转换为电能。
4. 核裂变与核聚变
- 核裂变:重核(如铀)被中子轰击后裂变成两个或更多轻核
的过程,释放大量能量。
- 核聚变:两个轻核融合成一个较重的核的过程,释放更大的
能量。
- 核裂变与核聚变的区别:核裂变需要中子的引发,核聚变则
需要高温和高密度条件。
5. 核辐射与辐射防护
- 核辐射:核反应释放的射线,包括α射线、β射线、γ射线等。
- 辐射防护:采取合理的防护措施,减少人体暴露在核辐射下
的危害。
以上是对核物理学的一些重点知识进行的总结。
在期末复习中,希望这些内容能对你有所帮助!。
核物理学基础知识

核物理学基础知识核物理学是研究原子核的结构、性质和相互作用的一门学科。
它是现代物理学的重要组成部分,对于人类的科学和技术发展起着重要的推动作用。
本文将介绍核物理学的基础知识,包括原子核的构成、放射性衰变、核反应以及核能的应用等。
一、原子核的构成原子核由质子和中子组成。
质子带正电,中子不带电。
它们都凝聚在原子核的中心,构成了原子核的主要部分。
质子和中子的质量几乎相等,都比电子要重得多。
二、放射性衰变放射性衰变是指某些不稳定核在放出粒子或电磁辐射的过程中逐渐转变成稳定核的过程。
放射性衰变有几种常见的类型,包括α衰变、β衰变和γ衰变。
α衰变是指放射性核放出一个α粒子,其实质是两个质子和两个中子的组合。
通过α衰变,原子核的质量数减少4,原子序数减少2。
这种衰变常见于重元素的放射性同位素。
β衰变分为β-衰变和β+衰变。
β-衰变是指过量中子转变成质子和电子,并放出一种称为β-粒子的高速电子。
β+衰变则是过量质子转变成中子和正电子,并放出一种称为β+粒子的高速正电子。
γ衰变是指核在电子能级跃迁中释放出γ射线。
γ射线是一种高能量的电磁辐射,它不带电,可以穿透物质。
三、核反应核反应是指两个或多个核粒子发生相互作用,产生新的核粒子的过程。
核反应可以是自发的也可以是人为引发的。
核反应的两个重要特点是核能量变化和质量守恒。
核能量变化是指核反应中,核粒子之间发生相互作用,能量可以转化为其他形式。
核能的变化常常伴随着放出或吸收高能粒子或电磁辐射。
质量守恒是指核反应中,参与反应的核粒子的质量总和在反应前后保持不变。
质量守恒的实质是通过质能关系,将能量转化为质量或质量转化为能量。
四、核能的应用核能的应用广泛存在于生活中。
核能可以用于发电、医学诊断和治疗、食品辐照等领域。
核能发电是目前最为常见的核能应用。
通过核裂变或核聚变反应,将核能转化为热能,再通过蒸汽转动涡轮发电机,产生电能。
核医学利用放射性同位素来进行诊断和治疗。
例如,放射性同位素碘-131常用于甲状腺癌的治疗,放射性同位素技术可以精确地定位肿瘤细胞并进行切除。
《核物理基础知识》课件

3
核安全保障的国际合作
国际社会通过国际组织和法律法规来促进核安全保障的国际合作。
4
核安全保障的重要性
核安全保障对防止核事故和核武器扩散具有重要意义。
核武器与核不扩散
核武器的概念及种类
核武器是指利用核能释放的巨大能量进行杀伤 和破坏的武器,包括原子弹和氢弹等。
核不扩散问题的背景
核不扩散问题是指阻止更多国家拥有核武器, 以维护全球核安全的问题。
3 核子的结合能
核子的结合能指的是原子核内核子相互结合 所释放的能量。
4 核能的转化
核能可以通过核反应或核衰变转化为其他形 式的能量。
核裂变与核聚变
1
核裂变的定义及特点
核裂变是指重核被撞击或吸收中子后分
核裂变的过程
2
裂为两个或更多的轻核的过程。
核裂变过程涉及核反应,一般会释放出
巨大的能量。
3
核聚变的定义及特点
放射性衰变的特点
放射性衰变是指放射性核素在一定时间内衰变 为其他元素的过程,释放出辐射。
放射性的应用
放射性元素在医学、能源和科学研究等领域有 广泛的应用。
核反应堆与核能的利用
核反应堆的结 构和原理
核反应堆是一个能够 维持核链式反应的装 置,可以通过核裂变 产生大量热能。
核能的利用
核能可以被用于发电、 航天技术、农业和医 学等领域,为人类创 造了巨大的福利。
核聚变是指两个轻核结合形成一个更重
核聚变的过程
4
的核的过程。
核聚变在太阳和恒星中发生,释放出巨 大的能量。
放射性核素的性质与应用
放射性核素的定义及分类
放射性核素是指具有放射性的原子核,可以分 为α射线、β射线和γ射线。
核物理基础知识

核基础知识:一、电磁辐射(Electromagnetic Radiation)电磁辐射:带净电荷的粒子被加速时,所发出的辐射称为电磁辐射(又称为电磁波)。
电磁辐射:能量以电磁波形式从辐射源发射到空间的现象。
电磁频谱中射频部分是指:频率约由3千赫(KHZ)至300吉赫(GHZ)的辐射。
包括形形色色的电磁辐射,从极低频的电磁辐射至极高频的电磁辐射。
两者之间还有无线电波、微波、红外线、可见光和紫外光等。
电磁辐射有近区场和远区场之分,它是按一个波长的距离来划分的。
近区场的电磁场强度远大于远区场,因此是监测和防护的重点。
电磁污染:分为天然电磁辐射和人为电磁辐射两种。
大自然引起的如雷、电一类的电磁辐射属于天然电磁辐射类,而人为电磁辐射污染则主要包括脉冲放电、工频交变磁场、微波、射频电磁辐射等。
电磁辐射危害人体的机理,电磁辐射危害人体的机理主要是热效应、非热效应和累积效应等。
1、热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。
2、非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体也会遭受损伤。
3、累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前,再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态,危及生命。
电磁辐射作用:(1)医学应用:微波理疗活血,治疗肿瘤等(2)传递信息:通信、广播、电视等(3)目标探测:雷达、导航、遥感等(4)感应加热:电磁炉、高频淬火、高频熔炼、高频焊接、高频切割等(5)介质加热:微波炉、微波干燥机、塑料热合机等(6)军事应用:电子战、电磁武器等《电磁辐射防护规定》具体标准如下:职业照射:在每天8小时工作期间内,任意连续6分钟按全身平均的比吸收率(SAR)小于0.1W/kg。
公众照射:在一天24小时内,任意连续6分钟按全身平均的比吸收率(SAR)应小于0.02W/kg。
第1章-核物理基础

第一章核物理基础说起来,每年物理师上岗证考试前三章的基础内容都是重点复习内容,尽管在日常工作中应用不多,但作为一个物理师,顾名思义,与“物理”是有着紧密关系的,这就少不了一个物理师对物理学知识必须了解一些基本的东东。
总的来说,前三章内容以记忆为主,另加一些理解!前三章的概念比较多,类似的、相同性质的,比较分析会对理解记忆有帮助,注意区分那些不同点!原子结构原子结构这部分内容较少,知识点也较明确。
相对容易掌握。
1、原子结构的数量级10(-10),原子和原子核的数量级关系:10000倍;2、每个电子的电量约为1.6×10(-19);3、核素:具有确定质子数和中子数的原子的整体;4、同位素:原子序数相同而质量数不同的核素,在元素周期表中处于同一位置;5、轨道电子数:每个壳层最多容纳2n(2)个电子,各壳层的顺序依次为K、L、M、N、O、P、Q;每个次壳层最多容纳2(2l+1)个电子;《肿瘤放射物理学》第二页表1-1:电子的壳层结构是要多加记忆的。
原子、原子核能级1、电子在原子核库仑场中所具有的势能主要由主量子数n和轨道量子数l决定,并随n和l 的增大而提高;2、基态的定义3、由于高原子序数的原子核比低原子序数的原子核对电子的吸引力大,因此对于同一个能级,当所属原子的原子序数增大时,他的能量更低;4、能量值得大小等于壳层能级能量的绝对值,这些能量程为相应壳层的结合能;5、特征辐射、特征X线、俄歇电子6、当核获得能量,可以从基态跃迁到某个激发态。
当它再跃迁回基态时,以r射线形式辐射能量,能量值等于跃迁能级之差。
原子、原子核的质量1、1u=1/12C(12,6)原子质量------描述方法不好输入,凑合着看吧。
2、N A=6.02×10(23)3、1u=1/NA=1.66×10(-27)kg质量:中子>质子>>电子质量和能量的关系1、E=mC(2)2、电子静止能量:0.51MeV质子静止能量:938.3MeV中子静止能量:939.6MeV3、运动的物体质量随运动速度的变化关系式。
初三原子核物理知识点

初三原子核物理知识点原子核物理是物理学中研究原子核结构和性质的一个分支。
对于初三学生来说,以下是一些基础的原子核物理知识点:1. 原子结构:原子由原子核和环绕其周围的电子组成。
原子核位于原子的中心,占据原子体积的极小部分,但质量却占据了原子总质量的绝大部分。
2. 原子核组成:原子核由质子和中子组成。
质子带正电,中子不带电。
原子核的总电荷数等于质子数,也就是原子序数。
3. 同位素:具有相同质子数但不同中子数的原子称为同位素。
同位素具有相同的化学性质,但可能具有不同的核稳定性。
4. 放射性衰变:不稳定的原子核会通过放射性衰变释放能量,转变为更稳定的原子核。
放射性衰变有几种类型,包括α衰变(释放α粒子,即氦核)、β衰变(释放电子或正电子)和γ衰变(释放高能光子)。
5. 半衰期:半衰期是放射性物质衰变到其原始量的一半所需的时间。
不同放射性同位素的半衰期不同,从几微秒到数亿年不等。
6. 核力:核力是一种短程力,它在原子核内部作用,使质子和中子紧密结合在一起。
核力是强相互作用的一种表现形式。
7. 结合能:结合能是指将原子核中的核子(质子和中子)分离所需的能量。
结合能与原子核的稳定性有关,结合能越大,原子核越稳定。
8. 核裂变:核裂变是指重核在吸收一个中子后分裂成两个或更多中等质量的核的过程。
这个过程会释放大量的能量,是核电站和原子弹的能量来源。
9. 核聚变:核聚变是指轻核在高温高压下结合成更重的核的过程。
核聚变同样会释放大量的能量,是太阳和其他恒星的能量来源,也是未来清洁能源的一种潜在途径。
10. 核反应:核反应是指原子核在与其他粒子相互作用时发生的转变。
核反应可以是自发的,也可以是诱发的,并且可以伴随着能量的释放或吸收。
这些知识点为初三学生提供了原子核物理的基础框架,有助于理解原子核的性质以及它们在自然界和科技应用中的作用。
原子核物理学的基础和应用

原子核物理学的基础和应用原子核物理学是研究原子核的性质和行为的学科。
它包括了许多重要的基础概念,如核力、核结构、核衰变等等。
同时,原子核物理学也在医学、工业和能源等多个领域上有着广泛的应用。
本文将探讨原子核物理学的基础知识和其在应用上的意义。
核力核力是一种作用在原子核内部的非常强大的力量。
它使得原子核内的质子和中子互相吸引,并维持原子核的结构稳定。
核力的存在,使得原子核的密度非常高,远远大于常见的物质,如水或铁等。
这也是原子核所具有的高能量和强辐射的原因。
核力有两种主要的作用机制:短程作用和长程作用。
短程作用是指核力只在极短的距离内才能产生作用,因此通常只能维持附近的几个核子间的相互作用。
相比之下,长程作用的范围要广得多,可以连接到整个原子核。
这种力的强度是非常密切地与核子间的距离有关系的,也就是说离子核子越近,核力就越强。
核结构原子核的结构和组成是原子核物理学的另一个重要研究方向。
原子核的核子(质子和中子)排列方式是不同的,产生了许多特殊的质量数和原子核的稳定性规则。
其中最著名的是壳层模型,即核子的数量为8、20、28、50、82、126时,原子核处于特别稳定的状态。
除了核子数量外,核子的能级分布也是重要的研究对象。
这些能级可以类比于电子在原子中的能级,其中每个能级与一个特定的角动量量子数关联。
研究这些能级和角动量对原子核性质的影响是原子核物理学重要的一个方向。
核衰变核衰变是原子核中一种核子或核子组合转变为更稳定的状态的现象,它也是核能的基础来源。
核衰变可以分为三种类型:阿尔法衰变、贝塔衰变和伽玛衰变。
阿尔法衰变是指一个原子核内部的一个质子和中子结合起来形成一个氦原子核并释放出带有特征性质的粒子。
这种衰变释放出一个大量的能量,在一些重要的核反应过程中也发挥着重要的作用。
贝塔衰变是指一个原子核中一个中性子转化成一个质子或反过来,同时释放出一个高速电子或正电子。
它是一种比阿尔法衰变更常见的衰变形式,也是核电站和医疗放射性处理中重要的过程。
核物理基础知识

核物理基础知识
1.原子核结构:
-原子核位于原子的核心位置,由质子和中子组成,质子带有正电荷,中子不带电。
-质子数(Z)决定了元素的种类,而原子核中的质子数加上中子数即为原子的质量数(A)。
2.核力与稳定性:
-质子和中子在原子核内部由于强相互作用力(核力)紧密地结合在一起,对抗质子之间的电磁斥力,使得原子核保持稳定。
-当质子与中子的比例失衡或者总数量过大时,原子核可能会变得不稳定,发生放射性衰变。
3.放射性衰变:
-放射性衰变包括阿尔法衰变(α衰变)、贝塔衰变(β衰变,分为β⁻衰变和β⁺衰变)和伽马衰变(γ衰变)。
-阿尔法衰变是指原子核发射出一个氦-4核(α粒子,即两个质子和两个中子)。
-贝塔衰变涉及到中子转变为质子或质子转变为中子,同时释放电子(β⁻衰变)或正电子(β⁺衰变)及相应的反中微子。
-伽马衰变则是原子核从高能级向低能级跃迁时发射出高能光子(γ射线)。
4.质量亏损与结合能:
-当原子核形成时,其总质量通常小于构成它的单独质子和中子的质量之和,这个差值体现为质量亏损,对应的能量遵循爱因斯坦的质能方程E=mc²释放出来,成为结合能。
5.核反应:
-核反应包括核聚变(轻元素在高温高压下合并成更重元素的过程,如太阳内部发生的氢聚变)和核裂变(重元素被中子击中后分裂成两个较小原子核的过程,如铀-235的链式反应应用于核能发电和核武器制造)。
6.射线与物质相互作用:
-放射性射线包括α、β、γ射线以及中子等,在与物质相互作用时表现出不同的穿透性和生物效应,这方面的研究对于辐射防护至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核基础知识:一、电磁辐射(Electromagnetic Radiation)电磁辐射:带净电荷的粒子被加速时,所发出的辐射称为电磁辐射(又称为电磁波)。
电磁辐射:能量以电磁波形式从辐射源发射到空间的现象。
电磁频谱中射频部分是指:频率约由3千赫(KHZ)至300吉赫(GHZ)的辐射。
包括形形色色的电磁辐射,从极低频的电磁辐射至极高频的电磁辐射。
两者之间还有无线电波、微波、红外线、可见光和紫外光等。
电磁辐射有近区场和远区场之分,它是按一个波长的距离来划分的。
近区场的电磁场强度远大于远区场,因此是监测和防护的重点。
电磁污染:分为天然电磁辐射和人为电磁辐射两种。
大自然引起的如雷、电一类的电磁辐射属于天然电磁辐射类,而人为电磁辐射污染则主要包括脉冲放电、工频交变磁场、微波、射频电磁辐射等。
电磁辐射危害人体的机理,电磁辐射危害人体的机理主要是热效应、非热效应和累积效应等。
1、热效应:人体70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到体内器官的正常工作。
2、非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁场的干扰,处于平衡状态的微弱电磁场即将遭到破坏,人体也会遭受损伤。
3、累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前,再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态,危及生命。
电磁辐射作用:(1)医学应用:微波理疗活血,治疗肿瘤等(2)传递信息:通信、广播、电视等(3)目标探测:雷达、导航、遥感等(4)感应加热:电磁炉、高频淬火、高频熔炼、高频焊接、高频切割等(5)介质加热:微波炉、微波干燥机、塑料热合机等(6)军事应用:电子战、电磁武器等《电磁辐射防护规定》具体标准如下:职业照射:在每天8小时工作期间内,任意连续6分钟按全身平均的比吸收率(SAR)小于0.1W/kg。
公众照射:在一天24小时内,任意连续6分钟按全身平均的比吸收率(SAR)应小于0.02W/kg。
二、电离辐射(放射性辐射)电离辐射:一切能引起物质电离的辐射总称。
其种类很多,高速带电粒子有α粒子、β粒子、质子,中子,各种粒子束,宇宙射线,等等。
不带电粒子有种子以及X射线、γ射线。
电离辐射中的γ射线,X射线,本质是能量非常高的电磁波,有很强的致电离能力。
而我们通常说的电磁波一般情况下没有致电离能力或致电离能力非常弱。
α射线:是一种带电粒子流,由于带电,它所到之处很容易引起电离。
α射线有很强的电离本领,这种性质既可利用。
也带来一定破坏处,对人体内组织破坏能力较大。
由于其质量较大,穿透能力差,在空气中的射程只有及厘米,只要一张纸或健康的皮肤就能挡住。
β射线:也是一种高速带电粒子,其电离本领比α射线小得多,但穿透本领比α射线大,但与X、γ射线比β射线的射程短,很容易被铝箔、有机玻璃等材料吸收。
X射线、γ射线:二者性质大致相同,是不带电波长短的电磁波,因此把他们统称为光子。
两者的穿透力极强,要特别注意意外照射防护。
电离辐射各种射线有四个共同特点:a.有一定的穿透能力;b.人的五官不能感知,只有专门的仪器才能探测到;c.照射到某些特殊物质上能发出可见的荧光;d.透过物质时能产生电离作用。
电离辐射的来源:放射性核素(包括天然的和人工生产的)、核反应装置,如反应堆、对撞机、加速器、核聚变装置等等、用于医学诊断和治疗的X 射线机。
辐射对人的危害:高能电磁辐射毫无疑问,将对人造成危害;而粒子辐射的情况要复杂一些;阿尔法辐射和贝塔辐射本身都非常弱,穿透力很差,一般不能直接对人体造成危害,但可以产生电离辐射;但快中子毫无疑问将对人造成非常大的威胁。
电离辐射产生的二次辐射本身也并不很强,但容易形成带若放射性的空气,被人吸入后产生较大威胁,关键是电离辐射往往在放射源关闭后仍能存在一定时间,且容易被忽视。
三、X射线(或γ射线)等电磁辐射与物质相互作用及带电粒子与物质的作用机制X射线和γ射线:都是一定能量范围的电磁辐射,又称光子。
光子静止质量为0,不带任何电荷。
X射线和γ射线的唯一区别是起源不同。
从原子来说,X射线来源于核外电子的跃迁,而γ射线来源于原子核本身高激发态(或基态)的跃迁或粒子的湮灭辐射。
辐射可以分为带电粒子辐射和非带电粒子辐射。
其中带电粒子通过物质时,在物质原子中的电子和原子核发生碰撞进行能量的传递和交换:其中一种主要的作用是带电粒子直接使原子电离或激发。
而非带电粒子则通过次级效应产生次带电粒子使原子电离或激发。
能够直接或间接引起介质原子电离或激发的核辐射通常叫做电离辐射。
带电粒子与物质的相互作用:(1)带电粒子能量损失方式之一—电离损失;(2)带电粒子能量损失方式之二—辐射损失;另外,正电子除以上两类损失外,还会产生正电子湮灭辐射。
快速运动的正电子通过物质除了发生与电子相同的效应外,还会产生0.511Mev的γ湮灭辐射,在防护上还要注意γ射线的防护。
γ射线与物质相互作用有以下几种基本的次级效应:①光电效应:当γ光子通过物质时,与物质原子中束缚电子发生作用,光子把全部能量转移给某个束缚电子,使之发射出去,这种过程叫光电效应;发生光电效应后,原子内层轨道形成空轨道,外层轨道电子很快填充到空轨道,从而释放出特征X射线或俄歇电子。
光电效应发生的几率与入射光子的能量以及介质原子序数有关, 当光子的能量等于或略高于轨道电子的结合能时,发生光电效应的概率最大,光电效应发生的几率随原子序数的增高明显增大。
②康普顿效应:入射γ光子同原子中外层电子发生碰撞,入射光子仅有一部分能量转移给电子,使它脱离原子成为反冲电子;而光子能量减少,变成新光子,叫做散射光子,运动方向发生变化,这一过程称为康普顿效应;康普顿效应发生的几率与光子的能量和介质的密度有关,当g 光子的能量为500~1000keV时,康普顿效应比较明显;介质的密度越高,康普顿效应越明显。
③电子对效应:当一定能量的γ光子进入物质时,γ光子在原子核库仑场作用下会转变为一对正负电子,这一现象称做电子对效应;电子对生成的几率大约与原子序数的平方成正比。
④γ射线的吸收。
γ射线通过物质时,由于光电效应、康普顿效应和电子对生成而损失能量,并逐渐被物质吸收。
物质对γ光子阻挡能力用半值厚度(half value layer)表示,半值厚度即使γ光子活度减弱一半所需要的物质厚度。
半值厚度与入射光子能量和介质密度有关,入射光子能量越低,介质密度越大则半值厚度越小,即物质对射线的阻挡作用越强。
故g射线常用密度大的物质进行防护。
电离作用:当带电粒子(α、ß粒子)通过物质时,和物质原子的核外电子发生静电作用,使电子脱离原子轨道形成一个带负电荷的自由电子,失去核外电子的原子带有正电荷,与自由电子形成一离子对。
这一过程称为电离(ionization) 带电粒子电离能力的大小可用带电粒子在单位路径上形成离子对的数目表示,称为电离密度(ionization density)或比电离。
电离密度与带电粒子的电量、速度以及物质密度有关,带电粒子的电量越大,其与物质原子核外电子发生静电作用越强,电离密度越大;带电粒子的速度越慢,其与核外电子作用的时间越长,电离密度越大。
激发作用:当带电粒子(α、ß粒子)通过物质时,和物质原子的核外电子发生静电作用,使核外电子获得能量,由能量较低的轨道跃迁到能量较高的轨道,使整个原子处于能量较高的激发态,称为激发(excitation)。
激发的原子不稳定,退激后可释放出光子或热量。
散射作用:带电粒子与物质的原子核碰撞而改变运动方向和/或能量的过程称为散射(scattering)。
仅运动方向改变而能量不变者称为弹性散射。
运动方向和能量都发生变化者称为非弹性散射。
散射作用强弱与带电粒子的质量有关,带电粒子的质量越大,散射作用越弱,α粒子散射一般不明显,ß粒子散射较为明显。
韧致辐射:带电粒子受到物质原子核电场的作用,运动方向和速度都发生变化,能量减低,多余的能量以X射线的形式辐射出来,称为韧致辐射(bremsstrahlung)。
韧致辐射实际上是一种非弹性散射。
韧致辐射释放的能量与介质的原子序数的平方成正比,与带电粒子的质量成反比,并且随带电粒子的能量增大而增大。
α粒子质量大,一般能量较低,韧致辐射作用非常小,可以忽略。
ß粒子的韧致辐射在空气和水中很小,但在原子序数较大介质中不可忽略,因此,在放射防护中,屏蔽ß射线应使用原子序数较小的物质,例如塑料、有机玻璃、铝等。
湮灭辐射:ß+衰变产生的正电子可在介质中运行一定距离,能量耗尽时和物质中的自由电子结合,两个电子的静止质量(相当于1022keV的能量)转化为两个方向相反、能量各为511keV的g光子而自身消失,叫做湮灭辐射(annihilation radiation)。
吸收作用:带电粒子通过物质时,与物质相互作用, 能量不断损失,当射线能量耗尽后,带电粒子就停留在物质中,射线则不再存在,称为吸收(absorption)。
射线被吸收前在物质中所行经的路程称为射程(range)。
射线的射程与射线的种类、射线能量、介质密度有关, ß射线比α射线射程长。
射线能量越高射程越长,介质密度越大射程越短,对射线吸收作用越强。
四、原子核基础知识原子核物理:是研究原子核(atomic nucleus)的特性、结构及其相互转变的学科。
原子核的核子之间存在着很强的引力,称为核力,核力使原子核中的核子结合在一起,同时,原子核中又存在质子间的静电排斥力等不稳定因素,原子的稳定性由核子之间的核力产生的稳定效应和质子之间的静电排斥力等不稳定效应的相对大小决定,与核子数目及质子与中子的比例有关。
核素:质子数、中子数均相同,并处于同一能量状态的原子,称为一种核素(nuclide)。
核素用表示,X为元素符号、Z为质子数、A为质量数,质量数即质子数与中子数(N)之和。
常简写为AX,如果核素处于激发态,则在右上角加m。
稳定核素:原子核稳定,不会自发衰变的核素称为稳定核素。
放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素,称为放射性核素(radionuclide)。
同位素(isotope):质子数相同,但中子数不同的核素,它们在元素周期表中占据相同的位置。
同质异能素(isomer):具有相同的质子数和中子数,处于不同核能态的核素互称为同质异能素。
基态的原子和激发态的原子。
核衰变(nuclear decay):放射性核素由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种核素的过程。
核衰变方式:α衰变:释放出a射线的衰变方式称为a衰变(a decay)。