有理数概念课件
合集下载
有理数的概念ppt课件

3,543.60,27是正数.
情境引入
在巴黎奥运会,网球女子单打金牌赛中,中国选手郑钦文
2比0战胜克罗地亚选手维基奇,为中国网球夺得首枚奥运会女
单金牌。
这些数你熟悉吗?你
会对它们进行分类吗?
2是正数;
0既不是正数也不是负数.
情境引入
在巴黎奥运会举重男子61公斤级决赛中,中国队选手李发
彬最终总成绩310公斤(抓举143公斤,挺举167公斤)夺冠,卫
人教版数学七年级上册
第一章 有理数
1.2 有理数及其大小比较
1.2.1 有理数的概念
−5℃
25℃
情境引入
在巴黎奥运会跳水男子3米板决赛中,来自潮汕的中国选手
谢思埸以总分543.60分夺得金牌,成功卫冕,帮助中国跳水队
实现该项目的三连冠,这也是中国代表团的第27枚金牌.
这些数你熟悉吗?你
会对它们进行分类吗?
正数
0
(2)非负数包括________和_______;
负数
0
(3)非正数包括________和_______;
自然数
正整数
(4)非负整数包括________和_______,又称为________;
0
正分数
整数
(5)非负分数包括________和_______;
整数
负分数
(6)非正分数包括________和_______.
课堂小结
有 关 概 念
可以写成分数形式的数称为有理数.
正整数
有
理
有理数的分类
数
有
理
数
整数 0
负整数
正分数
分数
北师大版(2024)七年级上册2.1.1 认识有理数 课件(共26张PPT)

解:(1)沿顺时针方向转了12圈记作-12圈; (2)-0.03g表示乒乓球的质量低于标准质量0.03g; (3)每袋大米的标准质量应为10kg,但实际每袋大米可能有50g的误 差,即每袋大米的净含量最多是10kg+50g,最少是10kg-50g
跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?
跟踪训练
中国是最早采用正负数表示相反意义的量,并进行 负数运算的国家.若零上 10 ℃ 记作 +10 ℃ ,则零下 10 ℃ 可记作( C )
第二章 有理数及其运算
1 认识有理数 第1课时 认识有理数
学习目标 新课引入 获取新知 例题讲解 课堂练习 课堂小结 课后作业
学习目标
1.能理解正、负数的概念,会判断一个数是正数还是负数.
(重点) 2.会用正、负数表示具有相反意义的量.(重点)
3.有理数的分类及其分类的标准.(难点)
情境引入
上帝创造了整数,所有其余的数都是人造的 ——法国数学家克罗内克
思考:你认为0应该放在什么地方? 0既不是正数,也不是负数
负数与对应的正数在数量上相等, 表示的意义相反。
跟踪训练
读出下列各数,并把它们填在相应的圈里:
-11,1 ,+73,-2.7, 3 ,4.8, 7 .
6
4
12
正数
1 6
,+73,4.8, 172
负数
-11,-2.7, 3
4
例题讲解
例1(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺 时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,如果一个乒乓球的质量高于标准质量 0.02g记作+0.02g,那么-0.03g表示什么? (3)某大米包装袋上标注着“净含量:10kg±50g”,这里的“10kg±50g” 表示什么?
1.2.1有理数的概念课件人教版(2024)数学七年级上册

··
·· ··
-4,0,-18 -4,0,-0.7,-18
1. 下列各数中,属于正有理数的是( B ) A. 0 B. C. -2 D. -3.5
2. 既是负数又是整数的是( A ) A. -1 B. - C. -1.5 D. +6
3. 关于“0”的说法,正确的是( B ) A. 是整数,也是正数 B. 是整数,但不是正数 C. 不是整数,是正数 D. 是整数,但不是有理数
4. 【人教七上P8练习T1改编】所有正有理数组成正有理数集合,所 有负有理数组成负有理数集合,所有负整数组成负整数集合,把下面的
有理数填入它们属于的集合内: ··
··:{ 负整数集合:{ -8 …}.
…};
··
5
2
3
1
2
·· ··
-1,0,36,-506 ··
1. 【人教七上 P8练习 T2改编】指出下列各数中的正有理数、负有理 数、整数:
··
··
有理数的分类(带“非”字) 2. (1)正数和0统称为非负数;负数和0统称为非正数. (2)正整数和0统称为非负整数;负整数和0统称为非正整数. (3)正有理数和0统称为非负有理数;负有理数和0统称为非正有 理数.
有理数的概念
8,+1 -9
有理数的概念及分类 (1)回忆我们的学习历程,我们学过的数有:
整数
分数
不可以
可以写成分数形式的数称为有理数.其中,可以写成正分数
形式的数为正有理数,可以写成负分数形式的数为负有理数.有理数的
分类如图所示.
正整数
负整数 负分数
例1 【人教七上 P7例1变式】指出下列各数中的正有理数、负有理 数,并分别指出其中的正整数、负整数:
有理数ppt课件

03
有理数的混合运算
顺序法则
总结词
在进行有理数的混合运算时,应遵循运算的顺序法则,即先进行乘除运算,再进 行加减运算。
详细描述
在数学中,有理数的混合运算需要遵循一定的顺序,即先进行乘除运算,再进行 加减运算。这是由于乘除运算是全域性的,而加减运算不是。因此,在进行混合 运算时,必须先完成乘除运算,然后再进行加减运算。
有理数的性质
总结词
有理数具有封闭性、有序性、可数性等性质。
详细描述
有理数具有封闭性,即有理数的四则运算结果仍为有理数。有理数具有有序性 ,可以比较大小和排列。有理数还具有可数性,即有理数集与自然数集之间存 在一一对应关系。
有理数在数学中的地位
总结词
有理数是数学中基本且重要的概念之一,是解决实际问题的重要 工具。
04
有理数的应用
在日常生活中的应用
80%
购物时找零钱
在购物时,我们经常使用到有理 数,如找零钱,计算折扣等。
100%
测量和计算
在日常生活中,我们经常需要进 行测量和计算,如长度、重量、 时间等,这些都需要用到有理数 。
80%
金融计算
在金融领域,如股票交易、保险 计算等,都需要用到有理数进行 计算。
有理数可以用于描述几何图形的长度、面积和体 积等属性。
有理数在数学中的未来发展
数学教育改革
01
随着数学教育的发展,有理数作为基础数学知识,将在数学教
育中得到更加广泛的重视和应用。
数学与其他学科的交叉
02
有理数作为数学的基础概念,将进一步与其他学科进行交叉融
合,促进跨学科的发展。
数学研究的新领域
03
随着数学研究的不断深入,有理数理论将进一步发展,并应用
有理数ppt课件

03
有理数的混合运算
运算顺序
先算乘方或开方,再 算乘除,最后算加减 。
同一级运算按从左到 右的顺序进行。
如果有括号,先算括 号里面的,再算括号 外面的。
运算律
加法交换律:a+b=b+a
分配律:a(b+c)=ab+ac 乘法结合律:(ab)c=a(bc)
加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba
几何应用
有理数在几何学中常被用于描述 长度、面积和体积等几何量。
借助有理数的运算,可以方便地 求解几何量之间的关系,如计算 两点之间的距离、三角形或四面
体的面积和体积等。
有理数在几何作图中的应用也十 分广泛,如绘制直线、圆、椭圆 等图形时,有理数可以提供重要
的数学依据。
实际应用
有理数在实际生活中有着广泛的应用 ,如物理学中的力学、热学、电磁学 等都离不开有理数的运算。
有理数ppt课件
目录
• 有理数的定义 • 有理数的运算 • 有理数的混合运算 • 有理数的应用 • 有理数的扩展知识
01
有理数的定义
整数
整数的分类
整数可以分为正整数、负整数和 零。
整数的性质
整数具有封闭性、可数性等性质。
整数的运算
整数可以进行加、减、乘、除等运 算。
分数
01
02
03
分数的定义
在信息科学领域,有理数被用于计算 机编码、信息压缩、加密和纠错等技 术中。
在金融领域,有理数被用于计算利息 、汇率、投资回报等经济指标。
在统计学中,有理数被用于描述数据 分布特征、进行假设检验和回归分析 等。
05
1.2.1 有理数的概念 课件 2024—2025学年人教版数学七年级上册

引入负数后,我们对数的认识就扩大到了有理数范围.
典例剖析
例 下列各数:
- 7 ,1.01001001 ,1 , 8 ,0 ,- ,-2.626626662( 每两个2之间多一个6)
4
33
3
0.12 ,10% ,0.3 其中有理数的个数是( D )
A.8
B.5
C.6
D.7
解 循题环秘小方数:,因能此化它成不分是数有形理式数的。数-都2.是6有26理6数26。6162, -(3
把满足一定条 件的所有数放 在一起,就组 成了一个集合
⋯}.
⋯}.
练一练
1.将下面一组数填入相应的集合圈内: -60%,-8,+2.1,-809,-212,89.9,0,4.
-60%,-2
···
1 2
,--·88··,09,0··.·4,
负有理数集合 整数集合
-8,
-809,
4,
0,··· ···
3 4 52
还有其他分类方法吗?
思考:整数是否能写
正整数:1,5
整
数 负整数:-1,-3 0
成分数的形式?
正整数、0和负整数统称为整数
正分数:13
,1
3 4
,+20%,0.5
分
数
负分数:-
1 5
,-
5 2
正分数、负分数统称为分数
思考:探究小数和分数的关系
问题:目前我们所学的小数有哪几类?
有限小数 小 数 无限小数
3. (教材课本例题) 指出下列各数中的正有理数、负有理数,
并分别指出其中的正整数、负整数: 13,4.3,-38,8.5%,-30,-12%, 19,-7.5,20,-60,1.2ሶ
典例剖析
例 下列各数:
- 7 ,1.01001001 ,1 , 8 ,0 ,- ,-2.626626662( 每两个2之间多一个6)
4
33
3
0.12 ,10% ,0.3 其中有理数的个数是( D )
A.8
B.5
C.6
D.7
解 循题环秘小方数:,因能此化它成不分是数有形理式数的。数-都2.是6有26理6数26。6162, -(3
把满足一定条 件的所有数放 在一起,就组 成了一个集合
⋯}.
⋯}.
练一练
1.将下面一组数填入相应的集合圈内: -60%,-8,+2.1,-809,-212,89.9,0,4.
-60%,-2
···
1 2
,--·88··,09,0··.·4,
负有理数集合 整数集合
-8,
-809,
4,
0,··· ···
3 4 52
还有其他分类方法吗?
思考:整数是否能写
正整数:1,5
整
数 负整数:-1,-3 0
成分数的形式?
正整数、0和负整数统称为整数
正分数:13
,1
3 4
,+20%,0.5
分
数
负分数:-
1 5
,-
5 2
正分数、负分数统称为分数
思考:探究小数和分数的关系
问题:目前我们所学的小数有哪几类?
有限小数 小 数 无限小数
3. (教材课本例题) 指出下列各数中的正有理数、负有理数,
并分别指出其中的正整数、负整数: 13,4.3,-38,8.5%,-30,-12%, 19,-7.5,20,-60,1.2ሶ
1.2.1有理数的概念 课件-人教版(2024)数学七年级上册

知2-练
•
-8,+5,0.06,-5.15,0,-0.3,-5%,π,1. 5.
整数集合:{
-8,+5,0,
⋯}.
非正有理数集合:
•
{ -8,-5.15,0,-0.3,-5%,
⋯}.
有理数集合:
•
{-8,+5,0.06,-5.15,0,-0.3,-5%,1.5,
⋯}.
有理数的概念
按形式分
可化为分数
1.2 有理数及其大小比较
1.2.1 有理数的概念
知1-讲
知识点 1 有理数的相关概念
1. 整数:正整数、0、负整数统称为整数,如:-3,-2,
• • •
•
• • •
0,1,2,3,… .
知1-讲
2. 分数:正分数、负分数统称为分数,如3 ,0 .3,-1.2
• • •
• • •
•
5 ,- ,0.2,…
非负数
正数和0
奇数
1,3,5,⋯和-1,-3,-5,⋯
知1-讲
名称
特征
负有理数
负整数和负分数
非负有理数
0、正整数、正分数
负整数
1. 符号为负;2. 整数
非正整数
负整数和0
负分数
1. 符号为负;2. 分数或有限小数或无限循环小数
非正数
负数和0
偶数
2,4,6,⋯和-2,-4,-6,⋯
知1-讲
特别解读
形式的数
有理数
分类
按性质分
集合思想
( C )
A. 1个
14 ,0 ,0.5 中,表示正有理数的有
B. 2 个
C. 3 个
《有理数与无理数》课件

有理数与无理数的联系
实数之间的关系
有理数和无理数共同构成了实数的集 合,即实数是有理数和无理数的统称 。
极限思想
在数学分析中,有理数可以通过极限 思想“逼近”无理数,即对于任意给 定的无理数,总存在一个有理数序列 ,该序列的极限等于该无理数。
有理数与无理数在实际中的应用
物理测量
在物理测量中,许多量如长度、 时间等都是以有理数的形式表示 的,但在某些精确计算中可能需
无理数的运算
加法运算
无理数的加法运算与有 理数的加法运算类似, 遵循交换律和结合律。
减法运算
无理数的减法可以通过 加法运算进行转化,例 如 a - b = a + (-b)。
乘法运算
无理数的乘法运算具有 封闭性,即两个无理数 的乘积仍然是无理数。
除法运算
无理数的除法运算可以 通过乘法运算进行转化
,例如 a / b = a * (1/b),其中 b ≠ 0。
习题的解答和解析
选择题:正确的是() 无理数都是无限小数(√)
有理数都是有限小数(×)
习题的解答和解析
无限小数都是无理数(×) 有限小数都是有理数(√) 填空题:答案见解析。
THANKS
感谢观看
05
CATALOGUE
习题与解答
有理数与无理数的相关习题
判断题
所有的无理数都是无限不循环小数。()
选择题
下列说法正确的是()
有理数与无理数的相关习题
无限小数都是无理数 有理数都是有限小数
有限小数都是有理数
有理数与无理数的相关习题
有理数
${3.14, - frac{22}{7}, 0, - sqrt[3]{8},frac{22}{7},pi}$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北行 使为正.则汽车向北行使75千米,记做 +75
( )千米,规定向南行使为正.汽车向北行使
100千米,记-1做0(0 )千米.
(3)如果向银行存入50元记为50元,那么 -30.50元表示(从银行取出30.5元 )
(4)规定增加的百分比为正,增加25%记做(25%) -12%表示( 减少12%).
正整数 整数 分数 正数 负数 有理数
2003
4
3
-4.9
0
-12
有理数是否还有其它的分类方法?
有理数
(按符号)
正有理数 正整数
0
正分数
负有理数 负整数
负分数
正有理数和零又称为非负有理数
课堂小结
正数:如:123 0.5 这样的大于的0数叫做正数
负数:如:-60、-1.5 这样的小于0数叫做负数
正整数、0、负整数 统称为整数 正分数、负分数 统称为分数 整数定义中又增加了 负整数 分数定义中又增加了 负分数
定义: 整数和分数统称为有理数
三 .有理数分类
整数 正0 整数}自然数
1.有理数
(根据定义分类)
分数
负整数 正分数 负分数
正整数
2. 有理数
(按符号分类)
正有理数 正分数
0 负有理数
某一天我国三个城市的 最低气温如下:
北京-10℃
想一想?
上海5℃
广州15℃
1. -10℃,5℃,15℃这几个量分别表示什么?
2.你还在哪些地方见到过用带"-"号的数表示的量?
3.你能说出几对具有相反意义的量吗?
一。用正数与负数
注意:1.必须是同类量。如 节约3吨汽油与浪费1吨水就
表示相反意义的量
用心理解!
为了表示具有相反意义的量, 我们把一种意
义 来的 表量 示规 ,例则定如如月为::球正12、规 表,1定 面用23温 白以、度 天前15零 的学这上 气过样为 温的的正 可数数,高(叫零做除正外数). 达123C,记做123C,
正数前面可(以或放+1上23正C号,“读+做”正来表示(常省略不 写)把.另一1零种2下与3之C2)3意3;义C夜相, 记晚反做气的温-量23可规3低定C至为负,用以前学
过的数((零读除做外负)2前33面C放)上负号 “-” 来表示,如 -233、-60、 2 、-1.5等, 这样的数叫做负数.
3
(1)规定海平面以上的海拔高度为正,新疆乌
鲁木齐市高于海平面 918米,记做海拔( +918)
米,吐鲁番盆地最低点低于海平面 155米,记
做海拔( -15)5米。
(2)汽车在南北走向的高速公路上行驶,规定向
负整数
负分数
例2下列给出的各数,哪些是正数?哪些是负数? 哪些是整数?哪些是分数?哪些是有理数?
-8.4 22 17
6
0.33 0
解: 22
17 0.33
6
3 -9
5
是正数;
-8.4
3 5
-9
是负数;
22 0 -9 是整数;
-8.4
17 0.33
6
3 5
是分数;
上面所给的数都是有理数。
2.判断表中个数分别是什么数,在相应 的空格内打"√"
0是正数吗,是负数吗?
零既不是正数,也不是负数。 它是正数与负数的分界的。
-1、-2、-3、-4 ......,称为负整数;
1 2
、
2
3、1
3 4
、4.5……,称为负分数;
( - 4.5 也是分数)
相应地,1、2、3、4、……,称为正整数;
1 、2 23
、3 4
、 4.5 ……,称为正分数.
二。正数,负数的概念
正数:大于0的数
负数:正数前面加上负号的数叫做负数, 负数都小于0
0既不是正数,也不是负数,它是正数与负 数的分界点。
1.(口答)读出下列各数,它们是哪一类数?
7 -7.46 0 50 2
正整数 负分数 整数
பைடு நூலகம்
73 正分数 负分数
把下面这些数根据你认定的数的特 征进行分类,并说出分类特征.
0, 680, -2000, +12, -23, 2 1 +3.2, -155, 25%, -12%, - 3 2
不是具有相反意义的量; 2.表示的意义要完全相反,
• 零下20 —零上10 ;而不仅仅是不同.如:向东和
℃
℃ 向南就不是相反意义的量
• 降低5米—升高8米;
• 支出100元—收入500元;
• 向东8千米—向西6千米;
• 盈利20﹪—亏损20﹪。
这样具有相反意义的量能用我们学过的 自然数和分数表示出来吗?
零,既不是正数,也不是负数 。
整数:正整数、0、负整数 统称为整数 分数:正分数、负分数 统称为分数
有理数:整数和分数统称为有理数
} 整数
正整数 自然数 0
二 有理数
。 (根据定义)
负整数
有
分数 正分数
理 数
负分数
的 分
类 有理数
(按正负性)
正有理数 0 负有理数
正整数 正分数 负整数
负分数
( )千米,规定向南行使为正.汽车向北行使
100千米,记-1做0(0 )千米.
(3)如果向银行存入50元记为50元,那么 -30.50元表示(从银行取出30.5元 )
(4)规定增加的百分比为正,增加25%记做(25%) -12%表示( 减少12%).
正整数 整数 分数 正数 负数 有理数
2003
4
3
-4.9
0
-12
有理数是否还有其它的分类方法?
有理数
(按符号)
正有理数 正整数
0
正分数
负有理数 负整数
负分数
正有理数和零又称为非负有理数
课堂小结
正数:如:123 0.5 这样的大于的0数叫做正数
负数:如:-60、-1.5 这样的小于0数叫做负数
正整数、0、负整数 统称为整数 正分数、负分数 统称为分数 整数定义中又增加了 负整数 分数定义中又增加了 负分数
定义: 整数和分数统称为有理数
三 .有理数分类
整数 正0 整数}自然数
1.有理数
(根据定义分类)
分数
负整数 正分数 负分数
正整数
2. 有理数
(按符号分类)
正有理数 正分数
0 负有理数
某一天我国三个城市的 最低气温如下:
北京-10℃
想一想?
上海5℃
广州15℃
1. -10℃,5℃,15℃这几个量分别表示什么?
2.你还在哪些地方见到过用带"-"号的数表示的量?
3.你能说出几对具有相反意义的量吗?
一。用正数与负数
注意:1.必须是同类量。如 节约3吨汽油与浪费1吨水就
表示相反意义的量
用心理解!
为了表示具有相反意义的量, 我们把一种意
义 来的 表量 示规 ,例则定如如月为::球正12、规 表,1定 面用23温 白以、度 天前15零 的学这上 气过样为 温的的正 可数数,高(叫零做除正外数). 达123C,记做123C,
正数前面可(以或放+1上23正C号,“读+做”正来表示(常省略不 写)把.另一1零种2下与3之C2)3意3;义C夜相, 记晚反做气的温-量23可规3低定C至为负,用以前学
过的数((零读除做外负)2前33面C放)上负号 “-” 来表示,如 -233、-60、 2 、-1.5等, 这样的数叫做负数.
3
(1)规定海平面以上的海拔高度为正,新疆乌
鲁木齐市高于海平面 918米,记做海拔( +918)
米,吐鲁番盆地最低点低于海平面 155米,记
做海拔( -15)5米。
(2)汽车在南北走向的高速公路上行驶,规定向
负整数
负分数
例2下列给出的各数,哪些是正数?哪些是负数? 哪些是整数?哪些是分数?哪些是有理数?
-8.4 22 17
6
0.33 0
解: 22
17 0.33
6
3 -9
5
是正数;
-8.4
3 5
-9
是负数;
22 0 -9 是整数;
-8.4
17 0.33
6
3 5
是分数;
上面所给的数都是有理数。
2.判断表中个数分别是什么数,在相应 的空格内打"√"
0是正数吗,是负数吗?
零既不是正数,也不是负数。 它是正数与负数的分界的。
-1、-2、-3、-4 ......,称为负整数;
1 2
、
2
3、1
3 4
、4.5……,称为负分数;
( - 4.5 也是分数)
相应地,1、2、3、4、……,称为正整数;
1 、2 23
、3 4
、 4.5 ……,称为正分数.
二。正数,负数的概念
正数:大于0的数
负数:正数前面加上负号的数叫做负数, 负数都小于0
0既不是正数,也不是负数,它是正数与负 数的分界点。
1.(口答)读出下列各数,它们是哪一类数?
7 -7.46 0 50 2
正整数 负分数 整数
பைடு நூலகம்
73 正分数 负分数
把下面这些数根据你认定的数的特 征进行分类,并说出分类特征.
0, 680, -2000, +12, -23, 2 1 +3.2, -155, 25%, -12%, - 3 2
不是具有相反意义的量; 2.表示的意义要完全相反,
• 零下20 —零上10 ;而不仅仅是不同.如:向东和
℃
℃ 向南就不是相反意义的量
• 降低5米—升高8米;
• 支出100元—收入500元;
• 向东8千米—向西6千米;
• 盈利20﹪—亏损20﹪。
这样具有相反意义的量能用我们学过的 自然数和分数表示出来吗?
零,既不是正数,也不是负数 。
整数:正整数、0、负整数 统称为整数 分数:正分数、负分数 统称为分数
有理数:整数和分数统称为有理数
} 整数
正整数 自然数 0
二 有理数
。 (根据定义)
负整数
有
分数 正分数
理 数
负分数
的 分
类 有理数
(按正负性)
正有理数 0 负有理数
正整数 正分数 负整数
负分数