不动点定理研究

合集下载

泛函分析中的不动点定理证明

泛函分析中的不动点定理证明

泛函分析中的不动点定理证明泛函分析是函数空间上研究函数性质的数学分支,它主要关注函数空间中的映射和变换。

不动点定理是泛函分析中的基本概念之一,它在许多数学领域中有着重要的应用。

本文将探讨泛函分析中的不动点定理及其证明过程。

不动点定理是指对于某个函数空间中的映射,如果存在某个点在映射下不发生变化,即映射的输出等于输入,那么这个点被称为不动点。

不动点定理主要讨论在特定条件下,映射总能找到一个不动点。

以下我们将介绍泛函分析中的两个不动点定理:Banach不动点定理和Brouwer不动点定理。

一、Banach不动点定理的证明Banach不动点定理是泛函分析中最基本、最重要的不动点定理之一。

它表明,对于完备度量空间中的某个收缩映射,总能找到一个唯一的不动点。

假设我们有一个完备度量空间X,并且有一个映射T:X→X,满足以下条件:1. 存在一个常数0≤k<1,使得对于任意两点x和y,都有d(Tx, Ty)≤ k · d(x, y),其中d表示度量空间X中的距离。

2. 映射T是连续的,即对于任意序列{xn}收敛于x,都有{T(xn)}收敛于T(x)。

现在我们需要证明存在一个唯一的不动点y ∈ X,使得Ty = y。

证明过程如下:首先,我们选取一个起始点x0 ∈ X,并定义一个序列{xn},其中xn = T(xn-1),即递归地将映射T作用在前一个点上。

根据条件1,我们可以证明序列{xn}是一个柯西序列。

事实上,对于任意给定的正整数n和m,我们有d(xn, xm) = d(T(xn-1), T(xm-1)) ≤ k · d(xn-1, xm-1) ≤ k^2 · d(xn-2, xm-2) ≤ ... ≤ k^n · d(x0, xm-n)由于0≤k<1,当n趋向于无穷大时,k^n趋近于0。

因此,序列{xn}是一个柯西序列。

根据完备性的定义,我们知道柯西序列在完备度量空间中必定收敛。

lefschetz不动点定理

lefschetz不动点定理

lefschetz不动点定理摘要:一、Lefschetz不动点定理简介二、Lefschetz不动点定理的证明三、Lefschetz不动点定理的应用四、Lefschetz不动点定理的扩展正文:**一、Lefschetz不动点定理简介**Lefschetz不动点定理是拓扑学中的一个重要定理,由美国数学家Lefschetz于1934年首次提出。

该定理主要研究的是流形上的不动点问题,即寻找连续映射下的不变点。

不动点在数学、物理、经济学等领域具有广泛的应用,代表着稳定和均衡的状态。

**二、Lefschetz不动点定理的证明**Lefschetz不动点定理的证明主要基于代数拓扑的方法。

首先,我们需要知道流形上的切向量场和法向量场的概念。

切向量场在流形上的每一点都有一个切向量,而法向量场在流形上的每一点都有一个法向量。

Lefschetz不动点定理的证明过程涉及到计算流形上的切向量场和法向量场之间的内积,并通过分析内积的性质得出不动点存在性。

**三、Lefschetz不动点定理的应用**Lefschetz不动点定理在数学和实际应用领域具有广泛的应用,例如:在控制论中,它被用来研究系统的稳定性;在多元函数论中,它被用来解决非线性方程组的问题;在物理学中,它被用来分析力学系统的平衡状态;在经济学中,它被用来研究市场均衡等。

**四、Lefschetz不动点定理的扩展**Lefschetz不动点定理的研究对象主要是流形上的连续映射。

在此基础上,学者们对其进行了许多扩展,如:Knaster-Tarski不动点定理、Schauder 不动点定理等。

这些扩展不仅丰富了不动点理论,还为各个领域的问题提供了更多的解决方法。

总之,Lefschetz不动点定理是拓扑学领域的一个重要定理,其证明和应用在数学和实际领域具有深远的影响。

《两类空间中压缩不动点定理的研究》范文

《两类空间中压缩不动点定理的研究》范文

《两类空间中压缩不动点定理的研究》篇一一、引言在数学领域中,不动点定理是一个重要的概念,特别是在分析学和拓扑学中。

该定理的应用范围广泛,尤其在函数空间和度量空间等两类空间中发挥着重要作用。

本文将重点研究这两类空间中的压缩不动点定理,探讨其性质、应用及发展前景。

二、函数空间中的压缩不动点定理函数空间中的压缩不动点定理是一种重要的数学工具,用于解决非线性问题。

该定理指出,在满足一定条件的函数空间中,存在一个压缩映射的唯一不动点。

这个不动点是该映射的解或极限。

(一)定理的提出与性质压缩不动点定理最早由巴拿赫提出,并广泛应用于泛函分析领域。

该定理主要涉及压缩映射的概念,即映射的某个特定性质使得其迭代序列收敛于一个唯一的不动点。

在函数空间中,这种压缩映射通常表现为某种形式的自映射。

(二)定理的应用压缩不动点定理在函数空间中的应用非常广泛,如求解非线性方程、研究微分方程的解等。

此外,该定理还可用于优化算法、计算机科学和图像处理等领域。

通过利用压缩不动点定理,可以有效地解决许多实际问题。

三、度量空间中的压缩不动点定理度量空间中的压缩不动点定理是另一种重要的数学工具,与函数空间中的定理有相似之处,但应用范围更广。

该定理在度量空间中寻找满足特定条件的压缩映射的不动点。

(一)定理的提出与性质度量空间中的压缩不动点定理是基于度量空间的性质而提出的。

该定理主要涉及距离函数和收缩性条件,确保了映射的不动点存在且唯一。

这种不动点通常表示为某个过程的极限或解。

(二)定理的应用度量空间中的压缩不动点定理在多个领域具有广泛应用,如机器学习、数据挖掘、网络流等。

通过该定理,可以有效地求解各种优化问题、决策问题以及模式识别等问题。

此外,该定理还可用于构建高效的算法和优化算法性能。

四、两类空间中压缩不动点定理的比较与联系函数空间和度量空间中的压缩不动点定理虽然有所不同,但它们之间存在密切的联系和相似之处。

这两类空间的压缩不动点定理都基于映射的收缩性条件,确保了不动点的存在和唯一性。

不动点定理的实际应用

不动点定理的实际应用

不动点定理的实际应用
不动点定理是数学中的一个重要概念,它在许多领域都有广泛的应用。

以下是一些不动点定理的实际应用:
1. 经济学:在经济学中,不动点定理被用来研究经济模型的稳定性和均衡性。

例如,它可以用于分析市场竞争、价格形成等问题。

2. 计算机科学:在计算机科学中,不动点定理被用来研究迭代算法的收敛性和稳定性。

例如,它可以用于分析搜索算法、图像处理算法等问题。

3. 物理学:在物理学中,不动点定理被用来研究量子力学中的对称性和守恒定律。

例如,它可以用于分析粒子的运动轨迹、能量转换等问题。

4. 工程学:在工程学中,不动点定理被用来研究控制系统的稳定性和性能优化。

例如,它可以用于分析飞机的姿态控制、机器人的运动规划等问题。

不动点定理在各个领域都有着广泛的应用,它为我们理解和解决实际问题提供了重要的数学工具和方法。

不动点定理研究

不动点定理研究

前言不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。

作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集。

1935年,Tyehonoff进一步将Sehauder不动点定理I推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff不动点定理(吉洪诺夫不动点定理)。

不动点定理及其应用的开题报告

不动点定理及其应用的开题报告

不动点定理及其应用的开题报告不动点定理及其应用的开题报告一、研究背景在现代数学中,“不动点”这个概念具有很广泛的应用。

它是指对于一种映射或者变换,存在一个点在经过映射或者变换后不发生改变,也就是保持不动。

例如在几何中,一个旋转操作可以将一个点固定在原位,而在求解方程或者迭代中,也会出现类似的情形。

不动点定理的研究就是为了找出在哪些条件下,一个映射或者变换存在唯一的不动点。

二、研究目的本文旨在深入探讨不动点定理在数学中的应用,具体来讲,包括几何中的不动点,乘法上的不动点,不动点定理的证明以及实际问题中的应用等。

三、主要内容1.几何中的不动点在几何中,不动点被广泛应用于旋转、对称和变形等操作中。

例如,在一个平面上绕着一个点旋转,就可以将这个点作为不动点。

在求解图形的对称性质时,一个点也可以被视为不动点。

不动点在几何中的应用是非常广泛的。

2.乘法上的不动点不动点定理也可以在乘法运算中应用。

在这种情况下,一个不动点是指一个数乘以自己等于本身。

例如,在平面几何中,一个平面上的点可以旋转角度而不改变自身的位置,这个点就是一个不动点。

同样的,在迭代计算中,一个不动点是指迭代函数的输出恰好等于其输入。

3.不动点定理的证明不动点定理的证明可以采用反证法。

也就是,假设不存在不动点,则根据映射或者变换的定义,它一定会改变某个点的位置。

根据这个假设,我们可以构造一个数学模型,通过推理可以得到一个矛盾,从而推出不动点的存在性。

4.实际问题中的应用不动点定理在实际问题中的应用非常广泛。

例如,在经济学上,不动点可以表示市场的均衡点,在工程学上,不动点可以表示一个系统的稳定状态。

不动点定理也可以应用于音乐分析、图像处理等领域。

四、结论综上所述,不动点定理是一种非常有用的工具,有着广泛的应用领域。

通过对不动点定理的深入研究和理解,我们可以更好地应用它解决实际问题。

banach 不动点定理

banach 不动点定理

banach 不动点定理
Banach不动点定理是数学中的一个重要定理,它是函数分析学中的基本定理之一。

该定理的核心思想是,对于某些特定的函数,它们总是存在一个不动点,即一个点在函数作用下不发生变化。

这个定理在实际应用中有着广泛的应用,例如在微积分、物理学、经济学等领域中都有着重要的应用。

Banach不动点定理的证明过程比较复杂,但其基本思想是通过构造一个逐步逼近的过程,使得函数序列趋近于一个不动点。

具体来说,假设有一个函数f(x),我们可以通过不断迭代f(x)来逼近其不动点。

具体来说,我们可以从一个任意的起始点x0开始,然后通过不断迭代f(x)来得到一个序列{x0, f(x0), f(f(x0)), ...}。

如果这个序列收敛于一个极限值x*,那么x*就是f(x)的一个不动点。

Banach不动点定理的重要性在于它为我们提供了一种通用的方法来证明某些函数存在不动点。

这个定理的应用非常广泛,例如在微积分中,我们可以通过Banach不动点定理来证明某些微分方程存在解;在物理学中,我们可以通过该定理来证明某些物理模型存在稳定的平衡点;在经济学中,我们可以通过该定理来证明某些经济模型存在稳定的均衡点。

Banach不动点定理是数学中的一个重要定理,它为我们提供了一种通用的方法来证明某些函数存在不动点。

该定理的应用非常广泛,它在微积分、物理学、经济学等领域中都有着重要的应用。

因此,
深入理解和掌握该定理对于我们的学术研究和实际应用都有着重要的意义。

《2024年几类经典的不动点定理与Edelstein不动点定理的统一》范文

《2024年几类经典的不动点定理与Edelstein不动点定理的统一》范文

《几类经典的不动点定理与Edelstein不动点定理的统一》篇一一、引言不动点定理是数学分析中一个重要的概念,广泛应用于函数空间、拓扑学、微分方程等领域。

在众多不动点定理中,几类经典的不动点定理以及Edelstein不动点定理都是其重要组成部分。

本文旨在将几类经典的不动点定理与Edelstein不动点定理进行统一的研究,通过理论分析,比较它们之间的异同点,从而对它们的应用领域有更深入的理解。

二、经典的不动点定理(一)巴拿赫不动点定理巴拿赫不动点定理是一种用于求解数学分析中的不连续映射问题的重要方法。

其核心思想在于证明映射的唯一固定点。

此定理适用于在巴拿赫空间上连续、有界、闭值的压缩映射,它在常微分方程理论中得到了广泛的应用。

(二)切维特里恩斯基-米修尔斯基定理切维特里恩斯基-米修尔斯基定理是一个著名的集合映射理论。

它说明了在一定条件下,紧致空间的连续自映射至少存在一个不动点。

此定理对于非线性泛函分析问题具有重要意义。

(三)斯特拉松德-沙维尔格洛德定理斯特拉松德-沙维尔格洛德定理主要关注的是自映射的迭代问题。

该定理在拓扑学和泛函分析领域中具有广泛的应用,为研究函数空间的自映射问题提供了重要的工具。

三、Edelstein不动点定理Edelstein不动点定理主要涉及自映射的不动点问题,适用于一类特殊的情况,即拓扑空间上的自映射,并且这些映射在某些特定条件下满足某种程度的连续性或周期性。

此定理是解决特定条件下的自映射问题的有效工具,有助于推动函数理论、微分方程等相关领域的研究进展。

四、几类经典的不动点定理与Edelstein不动点定理的统一虽然几类经典的不动点定理和Edelstein不动点定理在形式和适用条件上有所不同,但它们都致力于解决自映射的不动点问题。

通过深入研究这些定理的内在联系和异同点,我们可以发现它们在本质上都是对自映射的一种描述和约束,都是为了寻找满足特定条件的自映射的不动点。

因此,我们可以从本质上统一这些不同的不动点定理,使它们在不同的领域和问题中发挥更大的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、许多著名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。

作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2 设E是Banach空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点. Sehauder不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集。

1935年,Tyehonoff进一步将Sehauder不动点定理I推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff不动点定理(吉洪诺夫不动点定理)。

1950年,Hukuhara将Schauder不动点定理II与Tyehonoff不动点定理结合起来得到面的定理,我们称其为Sehauder--Tychonoff不动点定理:1941年,kllcIltani把Bmuwer不动点定理推广到集值映射的情形,得到下面的不动点定理,我们称其为Kakutani不动点定理:(克莱尼)1950年,Botmenblust,Karlin把Sehauder不动点定理I推广到集值映射的情形:1952年,Fan,Glicksberg分别把Tyehonoff不动点定理推广到集值映射的情形,成为Kakutani-Fan-Glicksberg不动点定理或K-F—G不动点定理.即1968年,Browder又证明了另一种形式的关于集值映射的不动点定理,本文称此定理为Fan-Browder不动点定理:布劳德不动点定理: 由布劳德(Browder,F.E.)提出的带边界条件的集值映射不动点定理.设X是局部凸拓扑线性空间,C为X中非空紧凸集,F:C→2X具非空闭凸值且上半连续.记δ(C)={x∈C|存在X的有限维线性子空间E,使得x属于C∩E在E中的边界}.若F满足下述两边界条件之一,则F有不动点:角谷静夫(1911年8月28日- 2004年8月17日),日本著名数学家。

耶鲁大学教授。

毕业于东北帝国大学理学部数学科。

大阪府出生。

1941年发表了不动点定理。

角谷的不动点定理将布劳威尔的不动点定理一般化。

在经济学和博弈论中,角谷的不动点定理现在被频繁使用。

莱夫谢茨证明,L(f)是整数,且如L(f)≠0,则f至少有一个不动点.其后莱夫谢茨对他的不动点定理进行一系列推广,先是推广到有边界流形(1926),在H.霍普夫(Hopf)推广到n维复形的特殊情形(1928)之后,莱夫谢茨又在1930年推广到具有有限贝蒂数的有限维紧度量空间,在1933年对有限维复形给出简单而漂亮的证明,最后他推广到所谓广义流形及局部连通空间.以不动点定理为中心,莱夫谢茨把代数拓扑学推进到一个新阶段.对于交截、乘积和上同调,对于对偶定理、相对同调和奇异同调以及局部连通集都做出系统的发展.原始的莱夫谢茨不动点定理不能包括布劳威尔不动点定理.为了把不动点定理推广到有边界流形(相对流形),他引入了相对同调群,并把庞加莱对偶定理推广到相对情形,得出莱夫谢茨对偶1374 定理.这不仅是一种推广,而且把以前两个互不相关的庞加莱对偶定理和亚力山大对偶定理统一在一起.不动点定理在数学中占有重要地位,它在无穷维空间被推广成为分析的重要工具,M.F阿蒂亚(Atiyah)及R.鲍特(Bott)把莱夫谢茨不动点定理推广到椭圆复形.江泽涵和姜伯驹等对不动点理论亦有重大发展.代数拓扑的莱夫谢茨不动点定理(和尼尔森不动点定理)值得注意,它在某种意义上给出了一种计算不动点的方法。

存在对博拉奇空间的概括和一般化,适用于偏微分方程理论一、不动点算法又称固定点算法。

所谓不动点,是指将一个给定的区域A,经某种变换ƒ(x),映射到A 时,使得x=ƒ(x)成立的那种点。

最早出现的不动点理论是布劳威尔定理(1912):设A为R n中的一紧致凸集, ƒ为将A映射到A的一连续函数,则在A中至少存在一点x,使得x=ƒ(x)。

其后,角谷静夫于1941年将此定理推广到点到集映射上去。

设对每一x∈A,ƒ(x)为A的一子集。

若ƒ(x)具有性质:对A上的任一收敛序列x i→x0,若y i∈ƒ(x i)且y i→y0,则有y0∈ƒ(x0),如此的ƒ(x)称为在A上半连续,角谷静夫定理:设A为R n中的一紧致凸集,对于任何x∈A,若ƒ(x)为A的一非空凸集,且ƒ(x)在A上为上半连续,则必存在x∈A,使x∈ƒ(x)。

J.P.绍德尔和J.勒雷又将布劳威尔定理推广到巴拿赫空间。

不动点定理在代数方程、微分方程、积分方程、数理经济学等学科中皆有广泛的应用。

例如,关于代数方程的基本定理,要证明ƒ(x)=0必有一根,只须证明在适当大的圆│x│≤R内函数ƒ(x)+x有一不动点即可;在运筹学中,不动点定理的用途至少有二:一为对策论中用来证明非合作对策的平衡点的存在和求出平衡点;一为数学规划中用来寻求数学规划的最优解。

对于一个给定的凸规划问题:min{ƒ(x)│g i(x)≤0,i=1,2,…,m},在此,ƒ和g1,g2,…,g m皆为R n中的凸函数。

通过适当定义一个函数φ,可以证明:若上述问题的可行区域非空,则φ的不动点即为该问题的解。

在1964年以前,所有不动点定理的证明都是存在性的证明,即只证明有此种点存在。

1964年,C.E.莱姆基和J.T.Jr.豪森对双矩阵对策的平衡点提出了一个构造性证明。

1967年,H.斯卡夫将此证法应用到数学规划中去。

其后,不动点定理的构造性证明有了大的发展和改进。

H.斯卡夫的证明是基于一种所谓本原集,后来的各种发展皆基于某种意义下的三角剖分。

现以n维单纯形S n为例来说明这一概念,在此,。

对每一i, 将区间0≤x i≤1依次分为m1,m2…等分,m1<m2<…,m i→,是给定的一列正整数。

对于固定的i,过分点依次作平行于x i=0的平面。

这些平面将S n分成若干同样大小的n维三角形。

它们的全体作成的集G i,称为S n的一三角剖分。

设ƒ(x)为S n→S n的一连续函数,x=(x1,x2,…,x n+1),ƒ(x)=(ƒ1(x),ƒ2(x),…,ƒn+1(x))。

定义。

由于ƒ(x)和x皆在S n上,若有则显然有ƒ(x)=x,即x为ƒ(x)的一不动点。

对每一点y∈S n赋与标号l(y)=k=min{j│y∈C j,且y j>0}。

由著名的施佩纳引理,在G i中必存在一三角形σi,它的n+1个顶点y i(k)的标号分别为k(k=1,2,…,n+1)于是可得一列正数i j(j→),使得(k)→y k,k=1,2,…,n+1。

根据σi的作法,当i j→时,收敛成一个点x。

故y k=x,k=1,2,…,n+1。

因(k)的标号为k,故y k∈C k,因而即x为所求的不动点。

因此,求ƒ(x):S n→S n的不动点问题就化为求σi(i=1,2,…) 的问题。

为了计算上的效果,除了上述的标号法之外,还有标准整数标号法、向量标号法等等。

关于如何求σi,有变维算法、三明治法、同伦算法、变维重始法等等,通过适当定义,可将上之S n改为R n或R n中之一凸集。

求一凸函数在一凸集上的极值问题也可化为求不动点问题。

一般说来,这条途径适用于维数不高但问题中出现的函数较为复杂的情况。

参考书目A.J.J.Talman Variable Dimension Fixed Point Algorithms and Triangulations, Mathematisch Centrum, Amsterdam, 1980.二、Prof. Yuguang Xu (徐裕光教授)(Kunming University, China (雲南省昆明學院))Fixed point theory and its applications(在台湾成功大学所作的报告)不动点理论研究的内容属于数学的非线性泛函分析和一般拓扑学范畴。

研究出的结果被广泛应用于分析数学,力学,微分方程,控制理论,最优化理论,非线性规划,数理经济学和博弈论等应用性学科。

(一).不动点理论的发展进程• 一个简单的不动点问题(微积分中);• 1909 年,Brouwer 的著名的不动点定理及一系列的论文创立了不动点理论;• 1922 年, 波兰著名数学家S. Banach 给出了一个既简单又实用的压缩映射原理,它也是一个不动点定理。

在简单的条件下,Banach 压缩映射原理不仅指出了映射不动点的存在性和唯一性,还提供了一种逼近不动点的方法;• 1967 年,美国数学家H. E. Scarf 找到了计算单纯形连续映射不动点的组合拓扑有限算法,这也就是Brouwer 不动点定理的构造性证明;• 1941 年,日本数学家角谷静夫(Kakutani )的集值不动点定理为博弈论建立在数学基础上作了理论准备;• 1968 年的Fan -Browder 不动点定理,1972 年的Himmelberg 不动点定理以及Tarafdar 在1987 年和1992 年分别在拓扑线性空间和H -空间建立的不动点定理;• 美国数学家Michael (1956 年),Deutsch 和Kenderov (1983 年),应用集值分析中的连续选择原理在拓扑空间建立集值不动点定理和几乎不动点定理;• 1990 年以后,关于不动点理论的研究达到一个高潮,在各种映射或空间条件下,讨论不动点,随机不动点,几乎不动点等,每年有上百篇论文发表,新的不动点定理和各种迭代逼近方法不断涌现。

相关文档
最新文档