10kV配电线路单相接地故障原因及处理方法
试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是现代电力系统中常见的一种电压等级,而单相接地故障是在10kV电力系统中比较常见的故障之一。
这种故障如果处理不及时和有效,就有可能对电力系统的安全稳定运行产生影响。
本文将从10kV电力系统单相接地故障的原因、特点及处理方法等方面进行论述,以便于更好地理解和处理此类故障。
1. 设备故障:10kV电力系统中的变电所、配电室、开关设备等设备在长期运行中可能会出现故障,例如设备内部的绝缘击穿、接触不良等问题,从而导致设备出现单相接地故障。
2. 外部因素:10kV电力系统所处的环境中可能存在各种外部因素,如雷电、动物触碰、人为操作失误等,这些因素也可能导致单相接地故障的发生。
3. 设计缺陷:有些10kV电力系统在设计上可能存在一些缺陷,如绝缘距离不足、接地装置设置不当等,这些设计缺陷也有可能引发单相接地故障。
二、10kV电力系统单相接地故障的特点1. 故障电流大:单相接地故障时,故障线路上的电流会突然增大,有可能远远超过正常运行时的电流值。
2. 导致相间故障:单相接地故障有可能会引起相间故障,对电力系统的其他线路产生影响。
3. 安全隐患大:单相接地故障会导致线路和设备的绝缘受损,存在着较大的安全隐患,一旦处理不当就可能引发火灾、电击等事故。
1. 及时排除故障原因:一旦发生单相接地故障,首先要及时排除故障的具体原因,找出是设备故障、外部因素还是设计缺陷引起的故障,以便有针对性地采取后续处理措施。
2. 绝缘检测和维修:对发生单相接地故障的设备和线路进行绝缘检测,找出绝缘击穿、绝缘老化等问题,并及时进行维修和更换,保证设备和线路的正常运行。
3. 接地处理:针对发生单相接地故障的设备和线路进行接地处理,提高绝缘等级,减少接地故障的发生概率。
4. 故障检测与消除:在电力系统中设置故障检测装置,一旦发生单相接地故障能够及时报警并消除故障,保证电力系统的安全可靠运行。
关于10kV线路单相接地故障原因分析及处理措施分析

关于 10kV 线路单相接地故障原因分析及处理措施分析摘要:我国社会经济的迅速发展使国民用电需求不断增加,因而各类配电线路的架设也越来越多,为我国人民的生活带来了极大的便利。
而配电系统中容易出现很多问题,单相接地故障是最容易且最多发的一种故障问题,其造成的危害也是非常严重的。
本文旨在分析10kV配电线路中单相接地故障发生的原因以减少故障发生率,并探究相应的处理措施降低危害与各类资源的损耗。
关键词:10kV线路;单相接地故障;原因;处理措施单相接地故障是指电力运输时某一单相与地面意外接触导致的故障,其产生原因有很多种,需要结合实地检测情况进行仔细分析才能对症下药的解决故障问题。
当油田电网系统中10kV配电线路出现单相接地故障时,对油田的原油挖掘和提炼工作无疑会造成巨大的负面影响。
1.10kV配电线路单相接地故障原因分析1.1避雷器被击穿由于10kV配电线路覆盖面积比较广,很容易遭受雷击,长时间被雷击之后就会导致避雷器被击穿,或是防雷装置不够完善、抗雷水平较低等。
避雷器被击穿可能出现两种状态,第一种是避雷器被击穿炸裂开,从外表上就能一眼看见;第二种是避雷器外部看上去完好,但内部被击穿并出现损坏,其底座会变黑,经测量后会发现避雷器本体升温[1]。
1.2绝缘子出现破损由于在室外被雷电长期击打、绝缘子在施工安装时没有按照要求规范安装工艺或是其本身材料较为劣质等情况而导致绝缘子破裂,无法完全隔离导线,最终致使导线裸露在外形成单相接地,引发故障情况。
第一,如果是由于雷击使绝缘子破裂,一般是由于雷击损坏了伞裙,从而使导线直接搭挂在了杆塔上,发生线路单相接地的故障现象。
第二,绝缘子在安装施工时没有规范安装方式,横向或朝下安装以致于伞裙长期积水,在雨水和雷电的长期作用下使伞裙逐渐被损毁,最终致使单相接地故障的发生。
绝缘子本身质量较差也会导致绝缘性能低,起不到绝缘作用[2]。
1.3导线脱离掉落导线会由于两种情况脱离,第一种是由于导线与瓷瓶连接扎绑不牢固,使得导线没有固定在瓷瓶上;第二种是固定绝缘子的设施出于种种原因而产生了松动掉落,导线借由绝缘子来支撑,绝缘子松动掉落之后迫使导线跟随绝缘子一起掉落,最后引发单相接地故障。
10kV线路单相接地故障原因及解决策略

10kV线路单相接地故障原因及解决策略摘要:现阶段,我国的电力事业发展步伐日渐加快,人们对于电力应用质量的需求也在不断增加,若想顺应时代的发展趋势,就应当针对电网运行中的各个环节进行把控,众所周知,10kV电网是较为常见的线路种类,在对其进行单相接地的过程中,容易遇到诸多故障和问题,而笔者则主要针对10kV线路单相接地故障的特点进行总结和阐述,而后对其引发原因予以归纳,最后提出了相对应的解决对策,具体见下述。
关键词:10kV线路;单相接地故障;原因;解决措施电力系统可以分为大电流接地系统和小电流接地系统等,我国3-66千伏电力系统多数都是运用经消弧线圈接地亦或是中性点不接地等途径实现供电的。
现阶段各县级电力企业大多都将110kV变电所作为有效电源点,将10kV配电线作为网架结构,同时将35kV输电线作为支撑骨架,在此线路的运作环节,会受各类因素的制约,比如,地电容小、电压等级低以及输配电线路短等等,使得整个接地电流系统相对较小。
如若小接地电流和负载电流小,同时系统线电压处于对称的状态,将会给用户供电过程带来不利影响,所以,大多数规章制度均允许携带一个接地点,并要求其持续运行不得超出两小时。
需要注意的是,非故障相电压会在此过程中相应的提升,影响了其本身的绝缘性能。
一、单相接地故障的典型特点单相接地可以结合其本身的接地性质进行划分,主要分为间歇性接地、完全接地和不完全接地几类,所谓的一相完全接地指的也就是金属性接地,相电压主要特点就是将一相电压归零,而其他的两相电压将会有所身高,高于线电压之时,即可判断为电压为零相即是接地相。
间歇性接地,随着击穿放电次数的变化,三项电压表将会处于来回摆动的状态,接地相电压可能会增加或是减少,非故障相电压时也会增减不一,状态不定。
一相不完全接地,也就是运用电弧接地或是高电阻接地途径,相电压的主要特点就是减少相电压,但是值得注意的是其不归零,另外两相电压如若身高,此时相较于相电压较大,最终的判断结果则是:电压相对较低的一相是接地相。
10kV配电线路单相接地故障原因分析及其处理

10kV配电线路单相接地故障原因分析及其处理摘要:10kV配电线路覆盖范围广,涉及用户众多,工作环境复杂,因此时常会出现各种故障,导致系统工作失衡。
单相接地是目前10kV配电系统常见的故障类型之一,受到业内广泛关注。
本文主要对10kV配电网络单相接地故障诱因进行探讨,据此给出相应的故障处理办法,希望可以为同行提供参照帮助。
关键词:配电系统;单相接地;故障;引言相较于其它电压等级输电线路,10kV配电线路出现单相接地故障的概率要高出许多,尤其在雨季、风雪天气时常会出现单相接地故障,对变电设备以及配网安全运行造成极大的威胁,不利于电力系统可持续运行[1]。
另外,配电线路点多、面广、设备众多,用电环境极为复杂,一旦线路出现单相接地故障,很有可能造成难以预料的严重后果。
因此,本文就10kV配电线路常见的单相接地故障进行讨论有着一定的现实意义。
1.单相接地故障主要表现及其检测一旦10kV配电系统出现单相接地故障,配套搭载的监控系统便会响应作出动作,常见的包括在变电所端会发出告警,对应的光字牌会被点亮、对故障回路进行检测的电压表显示数值趋向于零,而其它两个回路的电压值则趋向于线电压、中性点所搭载的电压表得到的数值趋向于相电压,告警灯被点亮[2]。
当发生单相接地故障时,站内随即做出告警动作,运维人员需要基于系统的告警指示开展故障排查,比如结合母线判定故障所在回路,并予以断电处理,并委派地方工作团队进行实地的勘查,直至故障的彻底排除。
1.单相接地故障原因不同于其它电压等级的输电线路,10kV配电线路运行环境更为复杂,因此多方面因素影响均会对系统造成干扰,引发线路故障。
单相接地故障常见的诱因可分成下面几种。
第一,金属接地原因。
该原因较为常见,且多出现于馈线中[3]。
主要表现即故障相电压为零或是趋向于零,非故障回路的相电压趋向于线电压。
第二,非金属接地原因,相较于前一种该类故障问题出现比例要低一些,主要出现在反馈回路中。
10kV配电网单相接地故障及处理措施

10kV配电网单相接地故障及处理措施摘要:配电网络作为直接面向电力用户的关键供电环节,其安全与稳定的运行直接关系到供电网络的供电质量。
但是在实际的运行过程中,配电网络往往会受到各种故障的影响,尤其是单相接地故障严重威胁着配电网络的安全与平稳运行。
因此准确且快速的对配电网单相接地故障进行定位与处理,具有相当重要的意义。
本文首先介绍了10kV配电网单相接地故障选线方法,然后详细论述了10kV配电网单相接地故障定位方法。
并以此为依据总结出了一套切实可行的单相接地故障定位与处理方法。
关键词:电网故障;10kV配电网;单相接地故障;故障处理随着我国社会经济的发展水平的不断提高,人们对于供电的质量与稳定性提出了更高的要求。
而配电网络作为直接面向电力用户的关键供电环节,其安全与稳定的运行直接关系到供电网络的供电质量。
但是在实际的运行过程中,配电网络往往会受到各种故障的影响,尤其是单相接地故障严重威胁着配电网络的安全与平稳运行。
另外由于10kV配电网络所处的环境十分复杂,存在相当多的配电线路分支,一旦发生单相接地故障,一般很难确认故障的线路。
此外发生故障的位置电流相对较小,难以获得较强的故障信号,这也为单相接地故障的定位与处理带来很大的困难。
一、10kV配电网单相接地故障选线方法根据判断信号模式的不同,10kV配电网单相接地故障选线方法可以分为主动信号法和被动信号法两种。
其中主动信号法是将某种频率的信号注入配电网内,并针对该信号进行检测,从而完成单相接地故障的选线工作。
主动信号法注入的信号可以分为可变频率信号和单一频率信号。
而被动信号法具体可以分为故障稳态信息法、故障暂态信号法和综合信号法。
基于故障稳态信息进行选线,首先就可以针对出线的线路,逐一进行断电,进而检测中性点的零序电压。
然后与正常情况进行对比,从而完成选线。
这种方法的选线准确率较高,但是选线的速度较慢,且工作量大,同时会对供电的稳定性产生影响。
然后还可以根据消弧线圈的失谐度,对正常状态下出线线路中零序回路的零序导纳进行计算,以此作为参考值。
10kV线路接地故障及处理

10kV线路接地故障及处理线路一相的一点对地绝缘性能丧失,该相电流经过由此点流入大地,这就叫单相接地。
农村10kV电网接地故障约占70%。
单相接地是电气故障中出现最多的故障,它的危害主要在于使三相平衡系统受到破坏,非故障相的电压升高到原来的√3倍,很可能会引起非故障相绝缘的破坏。
10kV系统为中性点不接地系统。
(一)线路接地状态分析1、一相对地电压接近零值,另两相对地电压升高√3倍,这是金属性接地(1)若在雷雨季节发生,可能绝缘子被雷击穿,或导线被击断,电源侧落在比较潮湿的地面上引起的;(2)若在大风天气此类接地,可能是金属物被风刮到高压带电体上。
或变压器、避雷器、开关等引线刮断形成接地。
(3)如果在良好的天气发生,可能是外力破坏,扔金属物、车撞断电杆等。
或高压电缆击穿等。
2、一相对地电压降低,但不是零值,另两相对地电压升高,但没升高到√3倍,这属于非金属性接地(1)若在雷雨季节发生,可能导线被击断,电源侧落在不太潮湿的地面上引起的,也可能树枝搭在导线上与横担之间形成接地。
(2)变压器高压绕组烧断后碰到外壳上或内层严重烧损主绝缘击穿而接地。
(3)绝缘子绝缘电阻下降。
(4)观察设备绝缘子有无破损,有无闪络放电现象,是否有外力破坏等因素3、一相对地电压升高,另两相对地电压降低,这是非金属接地和高压断相的特征(1)高压断线,负荷侧导线落在潮湿的地面上,没断线两相通过负载与接地导线相连构成非金属型接地。
故而对地电压降低,断线相对地电压反而升高。
(2)高压断线未落地或落在导电性能不好的物体上,或线路上熔断器熔断一相,被断开地线路又较长,造成三相对地电容电流不平衡,促使二相对地电压也不平衡,断线相对地电容电流变小,对地电压相对升高,其他两相相对较低。
(3)配电变压器烧损相绕组碰壳接地,高压熔丝又发生熔断,其他两相又通过绕租接地,所以,烧损相对地电压升高,另两相降低。
4、三相对地电压数值不断变化,最后达到一稳定值或一相降低另两相升高,或一相升高另两相降低(1)这是配电变压器烧损后又接地的典型特征某相绕组烧损而接地初期,该相对地电压降低,另两相对地电压升高,当烧损严重后,致使该相熔丝熔断或两相熔断,虽然切断故障电流,但未断相通过绕组而接地,又演变一相对地电压降低,另两相对低电压升高。
例析10kV线路单相接地故障及处理措施

例析10kV线路单相接地故障及处理措施随着社会主义市场经济的不断发展,客户对供电服务质量特别是供电可靠性的要求越来越高,电力中断会对国民经济和广大用户造成不同程度的经济损失。
2013年,大良街道有172条10kV配电网线路,网架相对较复杂,经过近年的改造,抗台风及防雷能力得到增强,但10kV线路单相接地故障仍时有发生。
当发生单相接地故障后,应该及时排查故障位置,研究故障发生的原因并予以解决,在最大程度上减少停电给社会带来的不便。
1以大良街道为例,分析10kV线路故障2013年,大良所发生跳闸49次,重合闸成功34次,不成功15次。
其中10kV线路零序动作跳闸(单相接地故障)27次,占总数的55.10%。
1.1检测10kV线路单相接地发生的故障如果在10kV配电网的线路中发生了单相接地故障,那么在变电站小电阻接地系统中,10kV高压柜内的继电保护装置就会检测到故障并发出接地信号,继电保护装置将零序保护动作跳闸;在经消弧线圈接地系统中,则只发出告警信号,变电站巡检中心一旦接收到告警信号,就会及时采取相关措施,必要时立即将故障线路断停,最后经由配电线路维修人员进行接地故障查找和处理。
1.2分析10kV线路单相接地故障所产生的原因在10kV配电线路中,往往会发生单相接地的故障,经过分析得出其产生的原因包括:通常会遇到裸导线与绝缘子固定不牢,产生脱落,使得裸导线掉在横担上,这样就造成了绝缘导线与树枝相互触碰,导线在风作用下或导线舞动引起绝缘层的破坏从而发生单相接地;位于配电变压器的10kV熔断器或者是避雷器被击穿;10kV线路中所使用的配电变压器当出现击穿高压绕组单相绝缘时便会发生故障;小动物触碰带电设备引起接地故障;还有一些类似塑料袋、风筝、金属带等漂挂物,与线路搭接在一起;线路周围存在高杆树木干扰,尤其是在刮风时树枝和线路相互接触;绝缘子由于环境原因造成了破裂或者脏污,在雨天、雾天便容易产生闪络、放电或者绝缘子的电阻减小等缺陷;在风偏的作用下,导致导线和跳线对杆塔放电;落雷也会极易将线路损坏;除此之外,由于线路周围环境的影响因素较为复杂,也会出现一些不明的因素造成单相接地故障。
试论10kV电力系统单相接地故障分析与处理方法

试论10kV电力系统单相接地故障分析与处理方法10kV电力系统是电力系统中常见的一种电压等级,而单相接地故障是在电力系统中经常发生的故障之一。
接地故障的发生会对电力系统的安全稳定运行造成影响,因此对接地故障的分析和处理显得尤为重要。
本文将从10kV电力系统单相接地故障的原因、特点、分析方法以及处理方法进行论述,希望能给读者提供一定的参考和帮助。
一、10kV电力系统单相接地故障的原因:在10kV电力系统中,单相接地故障的原因可能有很多,主要包括以下几个方面:1.设备老化:电力系统中的设备如变压器、开关、断路器等随着使用时间的增加会逐渐老化,老化设备可能造成电气绝缘的减弱,导致接地故障的发生。
2.操作失误:操作人员在操作设备的过程中,如果操作不当或疏忽大意,可能会导致设备出现故障,进而引发接地故障。
3.外部环境影响:外部环境的影响也是引发单相接地故障的重要原因,比如雷击、动物触碰、植被生长等都可能导致接地故障的发生。
二、10kV电力系统单相接地故障的特点:1.电压波动:在接地故障发生后,电压波动较大,甚至可能导致电力系统的停电。
2.过流保护动作:接地故障引起的过电流可能会导致过流保护装置的动作,从而影响电力系统的正常运行。
3.设备振动和声响:接地故障造成的故障电流通过设备会产生振动和声响,这也是接地故障的一个特点。
4.绝缘破坏:接地故障可能导致电气设备的绝缘破坏,进而影响设备的正常运行和安全性。
三、10kV电力系统单相接地故障的分析方法:1.现场检查:一旦接地故障发生,首先需要进行现场检查,查找故障点的具体位置,可以通过巡视设备、检测电流及电压等方式进行检查。
2.故障特征分析:通过对接地故障特征的分析,比如电压波动、设备振动和声响等特点,可以初步确定接地故障的性质和范围。
3.设备运行参数分析:对相关设备的运行参数进行分析,比如电流、电压、功率因数等参数的变化,以确定接地故障的具体原因和影响。
4.数据记录分析:通过对电力系统运行数据的记录进行分析,可以找出故障点并确定故障原因,以便制定相应的处理方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10kV配电线路单相接地故障原因及处理方法【摘要】笔者对10kv线路单相接地故障出现的原因分析、产生的危害和影响,同时提出了处理方法。
提高供电可靠性,保证人身和设备的安全。
【关键词】10kv线路;单相接地;故障原因;处理措施
随着城市的发展和经济的加快,城市及农村的电网改造工程的实施,10kv配电线路迅速增加。
同时为保证生产的正常进行,供电系统要求正常地稳定地对用电负荷供电。
但是,由于各种原因,也难免出现故障,特别是存雨季、台风等恶劣天气条件下,单相接地故障更是频繁发生,严重影响了变电设备和配电网的安全和经济运行。
如何减少线路的单相接地故障,提高供电可靠性,一直是配网运行的研究课题。
本文通过对10kv单相接地对配电设备造成的危害和防范措施,减少因故障引起的电量损失等方面进行简单的阐述。
1.10kv线路单相接地故障的原因
1.1雷害事故一二期农网工程和村村通电工程的实施后,配变增多,系统覆盖而大,遭受雷击的概率相对增多,不仅直击雷造成危害,而且由于防雷设惋不够完善,绝缘水平和耐雷水平较低,地闪、云闪形成的感应过电压也能造成相当大的危害,导致接地故障的发生。
1.2污闪故障系统中因绝缘子污秽闪络放电,烧伤绝缘子,造成接地故障。
1.3铁磁谐振过电压随着电网规模的扩大,网络对地电容越来越大,在该网络中的电磁式电压瓦感器和空载变电器的非线性电感相对较大,感抗比容抗大得多,受霄击、倒闸操作等的激发,往往能形成铁磁潴振产生过电压,击穿绝缘薄弱环节造成接地故障。
1.4线路的质量不高及其他原因(1)线路的安装质量不高,布局不合理。
有的线路没有按规范安装架设,交叉跨越距离不够,有的线路安装前未对绝缘子逐片(个)摇测绝缘和抽样进行交流耐压试验,配变安装的接地电阻达不到要求,配变避雷器安装前未作检测,配变低压侧未安装避雷器(雷击低压线路产生的反击过电压会串人高压侧,从而击穿绝缘薄弱环节造成接地故障);(2)运行维护不当。
线路未能定期检修,以至线路存在很大缺陷,带病运行;(3)设备绝缘薄弱。
在网各中有的设备绝缘水平低下,有些安装工艺不符合要求;(4)线路通道树木的影响。
未加强通道维护,未定期裁剪树木,常引起线路按地。
2.10kv线路单相接地故障的危害
2.1危及设备发生单相接地时,非故障相的电压将升高,特别是弧光接地过电压,将威胁系统中的变压器、电压互感器、开关、避雷器等设备的安全运行,引起设备烧毁。
2.2线路跳闸随着网络的发展,网络对地电容越来越大,当发生单相瞬间按地时,电弧不能自行熄灭,容易形成相间短路,使断路器跳闸。
另一种情况如发生单相接地时,非故障相的电压将升高,如网络中另一相存在绝缘薄弱点,势必会引起击穿,从而导至两相
接地短路,使断路器跳闸。
2.3系统失去稳定如某变电站送出的l0kv系统发生间歇性接地,接地点的电弧间歇性地熄灭与重燃,引起电网运行状态的瞬息变化,导致电磁能的强烈振荡,会使该变电站的10kv系统失去稳定,严重时将导致10kv系统停运行。
2.4降低供电可靠性单相接地毕竟是一种故障,一旦发生后要及时查找处理,将会造成用户停电,降低了供电可靠性。
2.5危及人畜生命安全及引发火灾单相接地故障多发生在雷雨季节即夏秋季,此段期间多雨、多雷、大风、气候潮湿,由于10kv 农网线路主要向农村片区供电,而此时正是农民栽种和收割期间,人、畜经常走过线路下,发生单相接地时可能造成人、畜触电伤害甚至死亡。
另外,发生电弧接地时如周围有易燃物,可能会引发火灾。
3.10kv线路单相接地故障的判断及处理
3.1分析判断(1)一相电压降为零,另两相电压升高至线电压,发出接地信号,此为完全按地;(2)一相电压降低但不为零,另两相电压升高但小于线电压,发出接地信号,此为不完全按地;(3)一相电压降低但不为零,另两相电压升高至线电压,发出接地信号,此为电弧接地;(4)一相电压降为零,另两相电压未升高,发出接地信号,此为母线电压互感器二次熔断件熔断一相;(5)一相电压降低但不为零,另两相电压未升高,发出接地信号,此为母线电压互感器一次熔断件熔断一相;(6)一相电压降低但不为零,另两相
电压升高超过线电压或两相电压降低但不为零,一相电压升高;三相对地电压依相序次序轮流升高,并在1.2~1.4倍相电压作低频摆动,约每秒一次;三相对地电压地一起升高,远远超过线电压,发出接地信号,此为并联铁磁谐振;(7)三相相电压或线电压同时大大超过额定值,此为串联铁磁谐振。
3.2故障处理发生单相接地故障后,线电压依然对称,因而不影响对用户的连续供电,按照规程规定,系统可继续运行12h,但非故障相的电压将升高,如长期运行,将危及系统的安全稳定运行,因此发生单相接地故障时,必须及时找到故障线路予以切除,确保电网稳定运行。
(1)发生单相按地故障后,变电值班员应马上复归音响,记录故障时间,接地相别,有关数值,迅速汇报当值调度和有关负责人,并按当值调度员的命令寻找接地故障;(2)先详细检查变电站内电气设备有无明显的故障迹象,如找不出故障点,再进行线路接地的寻找;(3)分割电网。
把电网分割成电气上不相连的几个部分,判断单相接地区域;(4)电网分割后,可进行拉合闸试验,顺序为:a.空载线路、无功补偿电容器。
b.双回路或有其他电源的线路,多电源线路应采取转移负荷,改变供电方式寻找故障点。
c.分支最多、最长、负荷轻或不重要的线路。
d.分支较少、较短、负荷较重的线路;(5)接地故障查出后,对一般不重要的用户线路,停电排除故障后方可恢复送电,重要用户线路,先转移负荷,做好安全措施后方可停电排除接地故障。
4.防范措施
提高10kv线路的防雷水平,在线路经过雷区的地方加装性能好的金属氧化物避雷器,降低避雷器的接地电阻,降低配变接地装置的接地电阻,在配变低压侧加装低压避雷器,使用绝缘性能好的绝缘子和线路设备。
提高10kv线路的安装质量,按规范进行安装。
加强定期检修,及时消除线路缺陷,不让线路长期带病运行。
加强线路通道的清理,定期裁剪树木,确保线路通道完好。
消除铁磁谐振。
如采用专用消谐器,电磁式电压互感器一次绕组中性点不接地等。
系统进行接地补偿。
测试接地故障电流超过3da时,可加装消弧线圈、接地变压器进行补偿。
为缩短接地故障的查找和排除接地故障时间,缩小停电范围,提高供电可性,可采用以下方法:(1)变电站内采用微机小电流接地选线装置;(2)主线上装设分段开关、较长分支线装设分支开关,较短分支线装设跌落式熔断器;(3)主线上分段装设接地故障显示仪,分支线上装设接地故障显示仪;(4)建立沿线路乡村的通信录,发生接地故障时,可电话联系询问情况,发动群众参与到线路的运行维护上来。
结束语
加强对线路各方面的运行管理工作,采取得力措施,对使线路事故降到最低限度提高线路供电可靠性,保证线路安全、优质运行具有重大意思。
参考文献
[1]吴致尧.单相接地故障问题研究[j].广东科技,2007,(1o)
[2]周封,王亚丹.1okv配电线路单相接地故障分析与故障查找[j].科技信息,2010,(o6)
[3]芮静康.常见电气故障的诊断与维修[m].北京:机械工业出版社2009
[4]周封,王亚丹.10kv配电线路单相接地故障分析及故障查找[j].科技信息,20l0(6)。