有机合成方法学的一些新进展
精细有机合成的新方法和新技术

精细有机合成的新方法和新技术在有机化学领域,精细有机合成技术一直以来受到广泛的关注。
近年来,随着新材料、新药物的不断涌现,精细有机合成技术也得到了持续的发展和创新。
本文将介绍一些新的精细有机合成方法和技术,包括化学反应过程的精确控制、环境友好的催化剂、氢气合成的先进技术等。
一、精确控制化学反应过程化学反应中,反应物的种类、浓度、溶剂、温度、反应时间等因素会影响反应的速率、选择性和产物质量。
为了得到高质量的产物,精确控制化学反应过程是非常关键的。
其中,反应温度是影响反应速率和选择性的关键因素之一。
低温反应可以提高高反应物间的选择性,而高温反应可以提高反应速率。
一些新的技术和方法已经被应用于温度控制,例如热电效应、微波加热、电子可控陶瓷加热等。
另一个影响化学反应过程的关键因素是反应物浓度。
高浓度可以提高反应速率,但也容易造成争夺反应物而导致副反应的产生。
对反应物浓度的控制是通过使用微量反应来实现的。
微量反应在反应过程中控制了反应物的精确配比,产生了更高的选择性和高质量产物。
微液滴逐个处理技术和微通道技术是常用的微量反应方法。
二、环境友好的催化剂传统催化剂在有机合成的过程中,常常需要大量的溶剂和高温高压条件,这不仅浪费能源,而且产生了大量的废弃物,对环境造成了影响。
因此,环境友好的催化剂显得尤为重要。
近年来,一些新的催化剂被提出并应用于有机合成中,例如绿色催化剂、生物催化剂等。
其中,绿色催化剂是指那些使用天然有机物、小分子化合物、无机盐等环境友好的催化剂。
这些催化剂不仅能够提高反应的速率和选择性,而且可溶于水、酒精、甚至绿色溶剂如DMSO。
这些催化剂在与溶剂的混合中,形成稳定的包裹形态,从而在增加反应速率的同时,促进水解反应,并保证产品纯度。
此外,生物催化剂是一类在正常温度和压力下,利用微生物、酶体细胞等生物体进行的有机合成反应。
这些生物催化剂可以在极度温和的条件情况下,实现高选择性的合成。
三、氢气合成的先进技术氢气是一种环境友好的燃料,因此氢气合成技术已经被广泛研究和应用于有机合成领域。
浅谈现代有机合成的最新进展

浅谈现代有机合成的最新进展摘要简要介绍现代有机合成的新概念和新方法,从有机合成的新溶剂、微波在有机合成中的应用以及具体的有机合成实例三个方面,综述有机合成新技术、新方法的情况。
关键词有机合成;新技术;微波;无溶剂;进展有机合成是指利用化学方法将原料制备成新的有机物的过程。
现代的有机合成不但能合成自然界存在的结构复杂而多样的有机物,而且能合成大量的自然界中没有的具有独特功能性分子的物质。
有机合成化学发展很快,有关新试剂、新方法、新技术、新理念不断涌现。
1现代有机合成新概念1.1原子经济化原子经济化的概念是美国著名有机化学家B.M.Trost于1991年首先提出的,并将它与选择性归结为合成效率的2个方面。
高效的有机合成应最大限度地利用原料分子中的每一个原子,使之转化到目标分子中,达到零排放。
原子经济化反应有两大优点:一是最大限度地利用原料;二是最大限度地减少了废物的生成,减少了环境污染。
原子经济化反应符合社会发展的需要,是有机合成的发展方。
原子经济化是现代有机合成追求的一个重要目标,也是绿色合成的一个重要指标。
原子经济化原则引导人们在有机合成的设计中经济地利用原子,避免使用保护或离去基团,减少或消除副产物的生成。
当前,提高有机合成原子经济化的主要途径有:开发高选择性和高效的催化剂;开发新的反应介质和试剂,提高反应选择性。
总的来说主要在合成路线和反应条件上做文章。
1.2绿色有机合成绿色化学是化学学科发展的必然选择,是知识经济时代化学工业发展的必然趋势。
绿色有机合成的研究正围绕着反应、原料、溶剂、催化剂的绿色化而展开,而包括基因工程、细胞工程、酶工程和微生物工程在内的生物技术、微波技术、超声波技术以及膜技术等新兴技术也将大大促进绿色有机合成的发展。
实现有机合成的绿色化,一般从以下方面进行考虑:开发、选用对环境无污染的原料、溶剂、催化剂;采用电化学合成技术;尽量利用高效的催化合成,提高选择性和原子经济性,减少副产物的生成;设计新型合成方法和新的合成路线,简化合成步骤;开发环保型的绿色产品;发展应用无危险性的化学药品等。
有机化学合成方法的新进展与应用

有机化学合成方法的新进展与应用有机化学合成方法是化学领域中的一项基础性研究,它涉及到有机分子的合成、结构的设计以及新材料的开发等方面。
随着化学技术的不断进步和研究的深入,有机合成技术也有了更多的新进展和应用,从而为人类的生产和生活带来了更大的便利。
本文将围绕有机化学合成方法的新进展和应用展开论述。
1. -烯酮的合成-烯酮是一种重要的有机化合物,在医药和农药的生产中都有着广泛的应用。
传统的-烯酮合成方法主要是通过将酸、酯、醛和酮等物质进行酸催化加成反应来合成。
但这样的方法具有条件苛刻、含有酸等缺点,不利于大规模生产应用。
最近几年,一种新型合成方法的出现为-烯酮的合成提供了新思路。
这种方法以C-H/C-C键的活化为基础,利用金属催化剂或基团转移酶等促进剂来实现-烯酮的高效合成。
这种方法的优点在于反应条件温和,化学品易得,不含有毒化合物等。
2. 金属有机物的合成金属有机物是用金属与含有一定碳氢框架的有机物结合而成的新型有机化合物。
它们在分子结构、导电性、光学性等方面具有独特性,并具有广泛的应用场景。
在传统合成方法中,金属有机物的制备通常采用反应的煎烧、固定化的方式,反应时间长且成本高。
近年来,随着有机化学技术的发展,新型的快速、高效的金属有机物的合成方法得到了越来越广泛的应用。
这些方法涵盖了各种金属有机化学反应,例如共轭加成反应、代替基加成反应等。
3. 快速亲核加成反应亲核加成反应是有机化学合成中的一种关键技术,它是化学家研究和合成分子的重要工具。
亲核加成反应通常要求反应剂必须具有强亲核性,反应条件也比较苛刻。
最近研究人员开发了一种新的快速亲核加成反应方法,即NPB反应(nucleophile-polar-bond approach)。
这种方法在反应物之间加入用于促进反应的中间体,并且在反应过程中紫外线辐射还可以提高反应速率。
NPB反应的优点在于不需要加入任何亲核试剂,在温和的反应条件下即可进行反应。
nature 有机合成方法学

nature 有机合成方法学Nature的有机合成方法学是一门研究如何合成有机化合物的学科,它涉及到有机合成反应的机理、条件和策略等方面。
有机合成是有机化学的核心内容之一,它在药物研发、材料科学、农药合成等领域有着重要的应用价值。
有机合成方法学的发展,为我们设计和合成复杂有机分子提供了强有力的工具。
下面将从几个方面介绍Nature的有机合成方法学的研究进展。
有机合成方法学的研究使得我们能够更加高效地合成目标化合物。
通过发展新的催化剂、反应条件和策略,研究人员能够实现原子经济合成、高选择性反应和高产率合成等目标。
例如,金属有机催化剂的应用已经成为有机合成的重要手段之一,可以实现多种底物的高效转化。
此外,采用新型的反应条件,如超声波辐射、微波辐射和流动反应等,也能够加速反应速率并提高产率。
有机合成方法学的研究也推动了新颖合成策略的发展。
合成策略是指在合成过程中的整体规划和设计,包括底物选择、键合构建和合成路径的设计等。
有机合成方法学的发展为我们提供了更多的选择和可能性。
例如,通过选择合适的底物和反应条件,我们可以实现立体选择性反应,合成单一立体异构体。
此外,通过反应级联和分子重构等策略,我们能够将简单的底物转化为复杂的目标化合物。
有机合成方法学的研究也促进了新型催化剂的发展。
催化剂是有机合成中不可或缺的工具,它能够加速反应速率、提高产率和选择性。
有机合成方法学的发展为我们提供了发现和设计新型催化剂的思路和方法。
例如,通过合理设计配体和金属中心,我们可以实现高效的手性催化反应。
有机合成方法学的研究也涉及到机理的解析和理论的发展。
有机合成反应的机理研究对于我们理解反应过程、优化反应条件和设计新的反应具有重要意义。
近年来,理论计算的发展使得我们能够更好地揭示有机反应的机理和催化剂的作用模式。
理论计算可以模拟反应过渡态和中间体的结构,预测反应的速率常数和选择性,为实验提供指导和解释。
Nature的有机合成方法学是一门重要的研究领域,它对于合成复杂有机分子和开发新型催化剂具有重要意义。
有机合成方法学研究报告

有机合成方法学研究报告研究报告摘要:有机合成方法学是有机化学领域中的重要研究方向,旨在开发新颖、高效、环境友好的合成方法,为合成有机化合物提供可行的途径。
本研究报告综述了有机合成方法学的最新研究进展,包括金属催化、光化学、电化学和生物催化等方面的方法,并对其应用前景进行了展望。
引言:有机合成方法学的发展对于有机化学的发展具有重要意义。
传统的有机合成方法常常需要使用大量的试剂和溶剂,产生大量的废弃物,对环境造成严重污染。
因此,开发新的合成方法,提高合成效率,减少废弃物的产生,已成为有机化学研究的热点领域。
一、金属催化有机合成方法金属催化有机合成方法是目前最为常用和有效的有机合成方法之一。
通过金属催化剂的引入,可以实现多种有机反应的高效转化。
例如,钯催化的Suzuki偶联反应可以实现芳香化合物的合成,铜催化的Ullmann偶联反应可以实现芳香胺的合成。
此外,还有钯催化的Heck反应、钌催化的氢转移反应等等。
金属催化有机合成方法具有反应条件温和、反应底物适用范围广等优点,已在药物合成、天然产物全合成等领域得到广泛应用。
二、光化学有机合成方法光化学有机合成方法是利用光能直接促进化学反应的方法。
光化学反应具有反应速度快、选择性高、废弃物少等优点。
其中,光促进的单电子转移反应、光促进的能量转移反应和光促进的化学键形成反应等是光化学有机合成的重要手段。
光化学合成方法在天然产物全合成、药物合成等领域具有重要应用价值。
三、电化学有机合成方法电化学有机合成方法是利用电能直接促进化学反应的方法。
通过电化学反应,可以实现一些传统方法无法实现的反应,如电化学氟化反应、电化学羟基化反应等。
电化学有机合成方法具有底物范围广、反应条件温和等优点。
然而,电化学方法的应用仍然受到反应体系的限制,需要进一步研究和改进。
四、生物催化有机合成方法生物催化有机合成方法是利用酶或细胞等生物催化剂促进化学反应的方法。
与传统的有机合成方法相比,生物催化有机合成方法具有高选择性、温和反应条件、无需使用有毒试剂等优点。
有机化学论坛2篇

有机化学论坛有机化学论坛是一个为有机化学研究者和爱好者提供交流、分享和探讨的平台。
在论坛上,人们可以就有机化学的理论、实验技术以及最新研究成果展开讨论和交流。
本文将介绍有机化学论坛的一些主题和讨论内容。
第一篇:有机合成方法的研究进展有机合成方法是有机化学中的一项重要研究方向。
通过发现和开发新的合成方法,有机化学家可以合成更复杂、有机功能分子。
在本篇文章中,我们将介绍一些有机合成方法的研究进展。
首先,我们将介绍经典的有机合成方法,如格氏反应、酯的加成消除反应和还原反应等。
这些方法已经被广泛应用于有机合成领域,并取得了很大的进展。
我们将重点介绍这些方法的机理和应用领域,并讨论它们在有机合成中的优势和局限性。
接下来,我们将介绍一些新兴的有机合成方法,如金属催化的交叉偶联反应、不对称合成和氧化反应等。
这些方法的出现极大地提高了有机合成的效率和选择性。
我们将重点介绍这些方法的原理和机理,并讨论它们在有机合成中的应用潜力和挑战。
最后,我们将讨论一些有机合成方法的发展趋势。
随着科学技术的不断进步,有机化学研究正朝着更高效、更环保和更可持续的方向发展。
我们将探讨新的反应条件、新的催化剂和新的合成策略等方面的研究进展,并展望未来有机合成方法的发展趋势。
第二篇:有机功能分子的合成与应用有机功能分子在药物、材料和能源领域具有重要的应用价值。
通过有机合成方法,有机化学家可以合成出具有特定功能的有机分子,并将其应用于各种领域。
在本篇文章中,我们将介绍一些有机功能分子的合成与应用。
首先,我们将介绍一些具有生物活性的有机功能分子的合成与应用,如药物分子和生物探针等。
这些分子在药物研究和生物学研究中具有重要的应用价值。
我们将重点介绍这些分子的合成方法和生物活性,并讨论它们在药物和生物学研究中的应用案例。
接下来,我们将介绍一些具有特殊物理性质的有机功能分子的合成与应用,如发光分子和导电分子等。
这些分子在材料科学和电子学领域具有广泛的应用潜力。
有机合成反应的新进展

有机合成反应的新进展近年来,有机合成领域一直在不断推陈出新,为化学界带来了一系列新颖的合成方法和新进展。
本文将介绍一些在有机合成反应中取得的新进展,包括催化剂的设计与应用、绿色合成的发展以及金属有机化学的新突破。
一、催化剂的设计与应用催化剂在有机合成反应中起到了至关重要的作用,能够提高反应速率和选择性。
近年来,科学家们通过对催化剂的设计与优化,取得了一些令人瞩目的成果。
1. 杂环催化剂的应用杂环催化剂是一类具有特殊结构的催化剂,在有机合成领域中得到了广泛应用。
例如,噁唑、噻唑等杂环催化剂能够有效地催化苯胺的C-H活化反应,实现对芳香胺的直接官能团转化。
2. 可持续催化剂的发展随着对环境保护的重视,绿色合成在有机化学中得到了广泛应用。
科学家们致力于开发可持续的催化剂,以减少或避免对环境的污染。
例如,金属有机骨架材料(MOMs)是一种可持续发展的催化剂,具有高效催化性能和可循环利用的特点。
二、绿色合成的发展绿色合成是有机化学合成中的一个热门研究领域,倡导使用环境友好的反应条件和可持续的合成方法。
1. 可再生资源的应用可再生资源是绿色合成的重要组成部分,其利用可以减少对石油等有限资源的依赖。
例如,生物质废弃物可以通过催化转化为有机化学建筑块,再进一步合成有机化合物。
2. 溶剂的选择与优化合理选择溶剂对于绿色合成至关重要。
传统的溶剂如苯、二甲基甲酰胺等对环境有一定的危害。
科学家们通过开发新型溶剂,如离子液体等,取得了可喜的成果。
三、金属有机化学的新突破金属有机化学是有机合成研究的重要分支,通过探索金属有机体系的性质和反应机理,科学家们取得了一些新进展。
1. 金属催化的碳碳键构建金属催化的碳碳键构建反应是有机合成中的重要反应之一。
例如,钯催化的脱氧交叉偶联反应可以实现芳香化合物的构建,极大地拓展了有机合成的可能性。
2. 金属催化的不对称合成不对称合成是现代有机合成领域的热门研究方向。
金属催化的不对称合成反应能够高效地构建手性化合物,对于药物合成和生物活性研究具有重要意义。
有机化学合成技术的最新研究进展

有机化学合成技术的最新研究进展有机化学合成技术一直以来都是化学领域最重要的分支之一。
有机合成技术可以制造出大量的有机分子,如药品、艺术品、合成纤维、化妆品等。
其中,每一种化合物的设计都需要适当的有机合成。
随着技术的不断发展,有机合成的方法也在不断更新与改进。
本文将介绍近年来有机化学合成技术的最新研究进展。
一、可持续发展有机合成有机合成往往涉及到使用特定的有机溶剂、合成剂、触媒等。
这些化学剂往往会产生不良的环境影响。
因此,开展可持续发展的有机化学合成技术成为了当今有机合成领域的热门研究方向。
最近的研究表明,绿色合成、可再生合成和催化合成是三个能够使有机合成更加可持续发展的主要途径。
绿色合成,以及可再生合成技术主要是保护环境和减少剩余物和废弃物的量。
其基本原理是,在有机合成中使用可再生物料和可生物降解物料。
例如,代表性的丙酮的可再生合成,是将生物质转化为酸并接合成官能化合物。
这样的合成的确是可持续发展的,因为它减少了化学物质的消耗,减小了剩余物的含量,减少了环境和人类健康的影响。
催化合成依赖于特殊的触媒,它们能够加快或控制化学反应的速率,而不改变化学反应的末态。
随着科学家对这些特定触媒的研究加深,他们正在将这些发现用于有机合成过程中。
优化催化合成的方法,可以提高反应效率,减少反应时间,降低反应的成本及生成不需要的副反应物等问题。
二、基于计算的合成技术基于计算机模拟的合成设计是有机合成中的一种新颖的方法。
该方法使用计算机程序来模拟和优化新的有机合成反应路线,从而加速新化合物的开发与研究。
这种基于计算的有机合成技术在过去10 年中有了重大的进展。
他们已经发现并降低了有机反应中的耗能因素和废物产生,缩短了反应的出现时间和占用的空间,同时也更加有效地控制了合成质量,提高了有机化学的聚合度。
三、深度学习技术在有机合成中的应用深度学习是一种机器学习技术,它与计算机科学和人工智能学术领域有着紧密的联系。
最近,他们被成功应用于有机化学合成技术中,以优化合成过程和允许更快地开发标准化过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Schrock等采用手性卡宾催化剂,在酰胺或胺上进行 了不对称RCM反应。
Furstner A, Turet L, Angew. Chem. Int. Ed., 2005, 44: 3462-3466
(2)金参与的有机合成反应
采用负载于TO2上的纳米金能选择氢化还原硝基,而不影 响分子内其它部位的双键、羰基、氰基等,优于相应的钯、铂 类催化剂。
Liu Y, Ding K L, J. Am. Chem. Soc., 2005, 127: 10488-10489
(2)小分子有机催化剂催化不对称合成 脯胺类小分子催化不对称反应
Enders D, Huttle M R M, Gondal C, Raabe G, Nature, 20006, 441:861-863
目前人工合成青蒿素由于其工艺复杂、毒副作
用大、成本高而不能投入生产。世界上青蒿素药物 的生产主要依靠中国从野生和栽培青蒿中直接提取。 但是青蒿中青蒿素的含量很低(0.1%-1% w/w),且受 地域性种植影响较大。由于野生资源已远远不能满 足世界范围内对青蒿素原料日益增长的需求,我国 四川、云南、广东、贵州等地区正在使用大量土地 进行人工种植以获取原料。最近世卫组织又再次呼 吁扩大青蒿素原料生产并已着手在非洲大陆推广青 蒿的本土化种植甚至青蒿素药品的本土化生产。开 展生物技术研究大幅度提高青蒿中的青蒿素含量, 将可以部分缓解原料紧张的局面,节约土地的使用。
Louie J, Bielawski C W, Grubbs R H, J. Am. Chem. Soc., 2001, 123: 11312-11313
钯催化分子间烷基化和紧接着的分子内芳基化环化反应。
Bressy C, Alberico D, Lautens M, J. Am. Chem. Soc., 2005, 127: 13148-13149
• Artemisinin was isolated and its structure resolved by Chinese researchers in the early 1970s
(Klayman D. L. et al., Science, 1985)
• In 1979, the Chinese reported that artemisinin drugs are rapidly acting, effective and safe for the treatment of patients with P. vivax or P. falciparum infection
2006年Krause等报到了第一例金催化的碳硫键形成反应。
Morita N, Krause N, Angew. Chem. Int. Ed., 2006, 45: 1897-1899.
用金催化的苯并噻吩衍生物的合成显示了金催化的又一特色, 这时钯因中毒问题而不能促进相应反应。
Nakamura I, Sato T, Yamamoto Y, Angew. Chem. Int. Ed., 2006, 45: 4473-4475.
3、“一个反应瓶”内的多步反应
“一个反应瓶”内的多步反应可以从相对简单、易得的原 料出发,不经中间体的分离直接获得结构复杂的分子,是在 经济上和环境友好上较为有利的反应方法学。
(1)串联反应
科学家感兴趣的是烯烃复分解反应后,在同一反应瓶中 利用原烯烃复分解反应的催化剂再催化第二个类型不同的反 应,这样的串联反应曾被形象地称之为“一石二鸟”反应。 早年(2001年)Grubbs等的串联反应合成麝香酮是这方面 的先驱工作。
Lalonde M P, Chen Y G, Jacobsen E N, Angew. Chem. Int. Ed., 2006, 45: 6366-6370
手性磷酸类Brönsted酸(质子酸)催化不对称反应
Rueping M, Sugiono E, Azap C, Angew.Chem. Int. Ed., 2006, 45: 2617-2619
据世界卫生组织最新报告,疟疾是除艾滋病以外世
界上有明显上升趋势的传染病,它是热带和亚热带地区 的一个传播性疾病,危害着二十亿人口的身体健康;恶 性疟疾每年造成4亿多人感染和至少100万人死亡,特别 是在非洲已成为头号杀手。为此在2004年,Nature杂志 专门刊登了多篇评述和展望,探讨如何预防、治疗疟疾 以及相关研究进展 (Nature, 19 August 2004, 430:(7002))。
(3)其它
Coossen L J, Deng G J, Levy L M, Science, 2006, 313: 662-664
2、自由基介导的合成反应
Guindon Y, Bencheqroun M, Bouzide A, J. Am. Chem. Soc., 2005, 127: 554-558.
Hayashi Y, Aratakc S, Okano T, Takahashi J, Sumiya T, Shoji M, Angew. Chem. Int. Ed., 2006, 45: 5527-5529
奎宁类生物碱小分子催化不对称反应
Wang J, Li H, Zu L S, Jiang W, Xie H X, Duan W H, Wang W, J. Am. Chem. Soc., 2006, 128: 12652-12653
2004年7月底,世界卫生组织表示:计划2005年在重庆 酉阳采购1亿人份的青蒿制剂;过去不赞成采用青蒿素
的美国、英国等主要捐助国家以及联合国儿童基金会和
世界银行都欢迎这种新药,新的“艾滋病、肺结核和疟 疾全球基金”已经批准11个国家购买青蒿素,并且指示 其他34个国家减少对两种旧药──氯喹(Chloroquine)和 周效磺胺(Sulfadoxine pyrimethamine)的需求,转为使 用新药。据法国RHON公司、SANOFI公司及瑞士诺华 公司预测,未来5~10年青蒿素类产品将在世界市场上 形成15亿美元的销售额。作为新型药物,青蒿素类抗疟 药至少有20~30年生命周期。而我国的现单、复方青 蒿制剂药品年出口额只在700万美元左右,所占份额不 足1%,市场发展潜力巨大。
• 从常用中药青蒿中发现的抗疟疾新药青蒿 素,开辟了抗疟疾药的新类型,且疗效奇 特。
• 紫杉醇是从红豆杉中发现的二萜类生物碱, 结构新奇,对多种癌症具有明பைடு நூலகம்的疗效。
青蒿含有挥发油、 青蒿素等成分,有 明显的降温解热作 用,还能帮助排汗。 所以,夏日将青蒿 水煎液作为清凉饮 料,是防治中暑的 良药。
Gellman等则用同样的脯氨酸衍生物催化实现了醛与甲醛 衍生物的Mannich型反应,从而合成手性的β-氨基醇
Chi Y G, Gellman S H, J. Am. Chem. Soc., 2006, 128: 6804-6805
Westermann B, Neuhaus C, Angew. Chem. Int. Ed., 2005, 44: 4077-4079
Corma A, Serna P, Science, 2006, 313: 332-334
Shi X D, Corin D J, Toste F D, J. Am. Chem. Soc., 2005, 127: 5802-5803
Yang C G, He C , J. Am. Chem. Soc., 2005, 127: 6966-6967
CHEMICAL STRUCTURE
CHEMICAL STRUCTURE
• 青蒿素是中国学者在20世纪70年代初从青 蒿(Artemisia annua L.)中分离得到的抗疟 有效单体,是含有过氧桥结构的新型倍半 萜内酯化合物,是目前世界上最有效的治 疗脑型疟疾和抗氯喹恶性疟疾的药物,被 世界卫生组织称为“治疗疟疾的最大希 望”,具有快速、高效、无抗药性、低毒 副作用的特征。最新研究表明,青蒿素不 仅能抗疟疾,而且在抗病毒、肿瘤等方面 都有独特效果,其医药价值具有很大的开 发空间 。
HISTORY
• Artemisinin is the extraction product from the herb Artemisia annua L.
• Was used in traditional Chinese Medicine for the treatment of febrile diseases.
(Webster H. K. et al., Trans R Soc Trop Med Hyg, 1994)
• It is a tetracyclic structure with a trioxane ring and a lactone ring.
• The trioxane ring contains a peroxide bridge, the active moiety of the molecule.
手性纯化合物合成的另一方面是通过不对称合成,包括 底物诱导的、化学剂量手性试剂参与的不对称合成反应以及 手性催化剂参与的催化不对称合成反应。
(1)金属催化的不对称反应
Kato N, Mita T, Kanai M, Therrien B, Kawano M, et al, J. Am. Chem. Soc., 2006, 128: 6768-6769
(Tracy J. W. et al., Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 10th Ed., 2001)
CHEMISTRY
• Artemisinin is a so-called sesquiterpene with a molecular weight of 282
Poulsen T B, Bernardi L, Bell M, Jorgensen K A, Angew. Chem. Int. Ed., 2006, 45: 6551-6554