现代有机合成的新方法

合集下载

合成有机化合物的新方法研究

合成有机化合物的新方法研究

合成有机化合物的新方法研究有机化合物是生命的基础,也是现代化学的重要研究领域。

在过去的几十年里,合成有机化合物的方法不断发展和创新,为科学家们提供了更多的选择和可能性。

本文将探讨一些合成有机化合物的新方法研究,并对其意义和应用进行分析。

一、金属有机化合物催化合成金属有机化合物催化合成是一种新兴的合成方法,它利用金属有机化合物作为催化剂,促进有机物之间的反应。

这种方法的独特之处在于,金属有机化合物能够提供额外的反应位,从而降低反应的能垒,加速反应的进行。

例如,钯催化的Suzuki偶联反应,通过钯催化剂的作用,可以将有机硼酸酯和有机卤化物进行偶联反应,合成出目标化合物。

这种方法具有高效、高选择性和广泛适用性的特点,被广泛应用于有机合成领域。

二、生物合成法生物合成法是利用生物体内的酶或微生物来合成有机化合物的方法。

这种方法具有绿色、高效和高选择性的特点。

例如,通过利用微生物发酵产生的酶的催化作用,可以将简单的底物转化为复杂的有机分子,如抗生素、激素等。

此外,生物合成法还可以通过基因工程技术对酶进行改造,提高其催化效率和选择性。

生物合成法的研究不仅对于有机合成领域具有重要意义,还对于生物医药、农业和环境保护等领域有着广泛的应用前景。

三、可见光催化合成可见光催化合成是一种利用可见光作为能量源催化有机反应的方法。

传统的有机合成方法大多依赖于紫外光或高能量的光源,而可见光催化合成则可以利用太阳光等常见光源进行反应。

这种方法具有环境友好、节能和高效的特点。

例如,可见光催化的光氧化反应可以将有机底物氧化为目标化合物,而且该反应不需要使用有毒的氧化剂,具有良好的选择性。

可见光催化合成的研究对于有机合成领域的发展具有重要意义,同时也为可持续发展提供了新的思路和方法。

四、超分子化学合成超分子化学合成是一种利用分子间的非共价相互作用来合成有机化合物的方法。

这种方法通过设计和合成具有特定结构的分子,利用分子间的相互作用来控制反应的进行。

有机合成化学的新技术

有机合成化学的新技术

有机合成化学的新技术有机合成化学是化学领域中最受关注的分支之一。

其应用广泛,包括制药、农药、精细化工、高分子材料等多个领域。

近年来,随着技术的不断进步和发展,人们也在不断寻找有机合成化学新技术,以使有机合成化学更加高效和可持续。

一、催化合成催化合成是指通过催化剂来促进有机物之间的反应。

它通过改变反应的速率、选择性和化学性质来达到更高的效率和选择性。

现代有机合成化学可以使用多种催化剂,如酸催化、金属催化、光催化等。

酸催化是最常见的催化合成技术之一,通常用于加成反应、酯化反应和羰基化反应。

金属催化已广泛应用于加成反应、烯烃反应、氧化反应等多种反应。

光催化作为一种新型的催化合成技术,可以通过光反应来促进有机物之间的反应。

这些催化合成技术可以使化学反应快速、高效地进行,产物纯度较高,反应条件温和,环境友好。

二、微反应技术微反应技术是一种为高效合成化学所设计的新技术。

它在小尺度上实现化学反应,优点是反应时间快、反应体积少、温度控制精确,还能减少化学品的使用。

微反应技术已应用于制药、农药、颜料、染料等领域。

比如,在制药领域,微型反应器能够快速制备药物分子,减少昂贵药物的浪费和环境污染。

三、单一反应中一步多化学键形成的技术单一反应中的一步多化学键形成技术是指在一次反应中实现多条化学键的形成。

它有助于化学反应中多步反应的同步实现,以及减少所需的化学脱水剂,化学杂质和单向反应的情况。

这种技术在有机合成化学领域中的应用非常广泛。

例如,用一种简单、经济的捕存剂来促进格氏偶联反应,可在一次反应中同时形成两条化学键,这样就能够快速制备出目标分子。

四、环境友好的反应条件环境友好的反应条件被广泛应用于有机合成化学的领域中,旨在实现更可持续的有机合成过程。

它要求使用温和的反应条件,除了少量有机溶剂和生物降解性催化剂外,还要使用少量溶剂和低毒催化剂,以减少产生的化学废弃物,从而节约能源和保护环境。

例如,绿色反应中常常利用可再生能源,如太阳能或风能,使得化学合成反应更具有环境友好性。

浅谈现代有机合成的最新进展

浅谈现代有机合成的最新进展

浅谈现代有机合成的最新进展摘要简要介绍现代有机合成的新概念和新方法,从有机合成的新溶剂、微波在有机合成中的应用以及具体的有机合成实例三个方面,综述有机合成新技术、新方法的情况。

关键词有机合成;新技术;微波;无溶剂;进展有机合成是指利用化学方法将原料制备成新的有机物的过程。

现代的有机合成不但能合成自然界存在的结构复杂而多样的有机物,而且能合成大量的自然界中没有的具有独特功能性分子的物质。

有机合成化学发展很快,有关新试剂、新方法、新技术、新理念不断涌现。

1现代有机合成新概念1.1原子经济化原子经济化的概念是美国著名有机化学家B.M.Trost于1991年首先提出的,并将它与选择性归结为合成效率的2个方面。

高效的有机合成应最大限度地利用原料分子中的每一个原子,使之转化到目标分子中,达到零排放。

原子经济化反应有两大优点:一是最大限度地利用原料;二是最大限度地减少了废物的生成,减少了环境污染。

原子经济化反应符合社会发展的需要,是有机合成的发展方。

原子经济化是现代有机合成追求的一个重要目标,也是绿色合成的一个重要指标。

原子经济化原则引导人们在有机合成的设计中经济地利用原子,避免使用保护或离去基团,减少或消除副产物的生成。

当前,提高有机合成原子经济化的主要途径有:开发高选择性和高效的催化剂;开发新的反应介质和试剂,提高反应选择性。

总的来说主要在合成路线和反应条件上做文章。

1.2绿色有机合成绿色化学是化学学科发展的必然选择,是知识经济时代化学工业发展的必然趋势。

绿色有机合成的研究正围绕着反应、原料、溶剂、催化剂的绿色化而展开,而包括基因工程、细胞工程、酶工程和微生物工程在内的生物技术、微波技术、超声波技术以及膜技术等新兴技术也将大大促进绿色有机合成的发展。

实现有机合成的绿色化,一般从以下方面进行考虑:开发、选用对环境无污染的原料、溶剂、催化剂;采用电化学合成技术;尽量利用高效的催化合成,提高选择性和原子经济性,减少副产物的生成;设计新型合成方法和新的合成路线,简化合成步骤;开发环保型的绿色产品;发展应用无危险性的化学药品等。

有机化学合成方法的新进展与应用

有机化学合成方法的新进展与应用

有机化学合成方法的新进展与应用有机化学合成方法是化学领域中的一项基础性研究,它涉及到有机分子的合成、结构的设计以及新材料的开发等方面。

随着化学技术的不断进步和研究的深入,有机合成技术也有了更多的新进展和应用,从而为人类的生产和生活带来了更大的便利。

本文将围绕有机化学合成方法的新进展和应用展开论述。

1. -烯酮的合成-烯酮是一种重要的有机化合物,在医药和农药的生产中都有着广泛的应用。

传统的-烯酮合成方法主要是通过将酸、酯、醛和酮等物质进行酸催化加成反应来合成。

但这样的方法具有条件苛刻、含有酸等缺点,不利于大规模生产应用。

最近几年,一种新型合成方法的出现为-烯酮的合成提供了新思路。

这种方法以C-H/C-C键的活化为基础,利用金属催化剂或基团转移酶等促进剂来实现-烯酮的高效合成。

这种方法的优点在于反应条件温和,化学品易得,不含有毒化合物等。

2. 金属有机物的合成金属有机物是用金属与含有一定碳氢框架的有机物结合而成的新型有机化合物。

它们在分子结构、导电性、光学性等方面具有独特性,并具有广泛的应用场景。

在传统合成方法中,金属有机物的制备通常采用反应的煎烧、固定化的方式,反应时间长且成本高。

近年来,随着有机化学技术的发展,新型的快速、高效的金属有机物的合成方法得到了越来越广泛的应用。

这些方法涵盖了各种金属有机化学反应,例如共轭加成反应、代替基加成反应等。

3. 快速亲核加成反应亲核加成反应是有机化学合成中的一种关键技术,它是化学家研究和合成分子的重要工具。

亲核加成反应通常要求反应剂必须具有强亲核性,反应条件也比较苛刻。

最近研究人员开发了一种新的快速亲核加成反应方法,即NPB反应(nucleophile-polar-bond approach)。

这种方法在反应物之间加入用于促进反应的中间体,并且在反应过程中紫外线辐射还可以提高反应速率。

NPB反应的优点在于不需要加入任何亲核试剂,在温和的反应条件下即可进行反应。

有机合成化学的新技术

有机合成化学的新技术

有机合成化学的新技术有机合成化学是化学领域的重要分支之一,其主要目的在于利用已知的化合物,通过化学反应制备出新的有机化合物。

它不仅在科学领域有广泛的应用,而且在工业和医药领域也起着重要的作用。

随着科学技术的不断发展,有机合成化学也在不断创新和更新。

本文将介绍有机合成化学的一些新技术。

一、借助生物技术制备有机物卡布雷拉-司马反应是一种新的生物化学反应,它是利用一种酵母菌从植物中提取的酵素作为触媒来制备有机物。

该反应方法可用于制备高附加值的化合物,如天然香料和医药中间体等。

卡布雷拉-司马反应具有高效、经济和环境友好等优点,是未来有机化学领域的重要研究方向之一。

二、制备有机太阳能电池有机太阳能电池是一种新型的太阳能电池,它是利用有机分子和半导体薄膜的光电转换机制来制备太阳能电池。

这种电池具有成本低、制备工艺简单和环境友好等优点。

有机太阳能电池的研究与制备是当今有机化学领域的热门研究方向。

三、利用金属有机框架材料(MOFs)制备分子筛和催化剂MOFs是由金属离子和有机配体组成的一种晶体材料,具有孔隙结构和高比表面积。

利用MOFs可以制备出高效的分子筛和催化剂。

分子筛是一种具有高选择性和高效率的分离材料,可用于分离混合物中的目标物质。

催化剂是一种用于加速化学反应的材料,是许多工业流程中不可缺少的材料。

MOFs是一个有望实现分子筛和催化剂高效纳米化的研究领域。

四、丙烯酰胺基团(Acrylamide-Donors)的应用丙烯酰胺基团是一种摩尔质量较小的化合物,可作为一种化学修饰剂来修饰生物分子,如蛋白质、核酸和糖等。

丙烯酰胺基团常用于制备具有特定功能的生物分子,如具有药物传递功能的纳米粒子、用于光学成像的蛋白质标记物、用于制备生物传感器的核酸探针等。

丙烯酰胺基团的广泛应用将推动生物领域和材料科学领域的发展。

五、光催化合成光催化合成是利用光敏催化剂或半导体光催化剂促进有机合成反应的一种新技术。

光催化合成不仅具有高效、环境友好等优点,而且可以在温和的条件下完成复杂的有机合成反应。

现代有机合成方法与技术

现代有机合成方法与技术

现代有机合成方法与技术
现代有机合成方法与技术是有机化学的关键领域之一,它是指使用化学反应和技术制备有机化合物的方法。

这些方法可以用于制备药物、材料、化学品和其他有机化合物。

以下是现代有机合成的几种方法和技术:
1. 催化反应:催化剂可以促进反应速率并控制反应选择性,使得有机合成更加高效和可持续。

例如,交叉偶合反应、氢化反应等。

2. 新型反应剂:新型反应剂可以开发新的反应途径,使得有机合成更加多样化。

例如,金属有机化合物、有机催化剂等。

3. 绿色化学:绿色化学是一种可持续的有机合成方法,利用可再生和环保的反应剂和溶剂,减少对环境的损害。

例如,使用水为溶剂代替有机溶剂、使用生物质资源代替石油化学品等。

4. 微反应技术:微反应技术利用微流控技术和微芯片技术,将反应器缩小到微米级别,使得反应更加快速和高效。

这项技术在药物研究和高通量合成方面大有用处。

5. 新型配体和手性催化剂:新型配体和手性催化剂可以实现高效、高选择性的
不对称合成,用于制备手性药物和材料。

例如,手性金属有机催化剂、天然产物手性配体等。

6. 生物法合成:生物法合成利用生物催化剂和酶催化反应,实现有机合成。

该方法具有高选择性、高效率、无污染等优点,在药物合成和工业生产中应用广泛。

总之,现代有机合成方法和技术不断创新和发展,为有机化学的发展和应用提供了广阔的发展空间。

有机合成反应的新进展

有机合成反应的新进展

有机合成反应的新进展近年来,有机合成领域一直在不断推陈出新,为化学界带来了一系列新颖的合成方法和新进展。

本文将介绍一些在有机合成反应中取得的新进展,包括催化剂的设计与应用、绿色合成的发展以及金属有机化学的新突破。

一、催化剂的设计与应用催化剂在有机合成反应中起到了至关重要的作用,能够提高反应速率和选择性。

近年来,科学家们通过对催化剂的设计与优化,取得了一些令人瞩目的成果。

1. 杂环催化剂的应用杂环催化剂是一类具有特殊结构的催化剂,在有机合成领域中得到了广泛应用。

例如,噁唑、噻唑等杂环催化剂能够有效地催化苯胺的C-H活化反应,实现对芳香胺的直接官能团转化。

2. 可持续催化剂的发展随着对环境保护的重视,绿色合成在有机化学中得到了广泛应用。

科学家们致力于开发可持续的催化剂,以减少或避免对环境的污染。

例如,金属有机骨架材料(MOMs)是一种可持续发展的催化剂,具有高效催化性能和可循环利用的特点。

二、绿色合成的发展绿色合成是有机化学合成中的一个热门研究领域,倡导使用环境友好的反应条件和可持续的合成方法。

1. 可再生资源的应用可再生资源是绿色合成的重要组成部分,其利用可以减少对石油等有限资源的依赖。

例如,生物质废弃物可以通过催化转化为有机化学建筑块,再进一步合成有机化合物。

2. 溶剂的选择与优化合理选择溶剂对于绿色合成至关重要。

传统的溶剂如苯、二甲基甲酰胺等对环境有一定的危害。

科学家们通过开发新型溶剂,如离子液体等,取得了可喜的成果。

三、金属有机化学的新突破金属有机化学是有机合成研究的重要分支,通过探索金属有机体系的性质和反应机理,科学家们取得了一些新进展。

1. 金属催化的碳碳键构建金属催化的碳碳键构建反应是有机合成中的重要反应之一。

例如,钯催化的脱氧交叉偶联反应可以实现芳香化合物的构建,极大地拓展了有机合成的可能性。

2. 金属催化的不对称合成不对称合成是现代有机合成领域的热门研究方向。

金属催化的不对称合成反应能够高效地构建手性化合物,对于药物合成和生物活性研究具有重要意义。

有机合成化学新进展

有机合成化学新进展

有机合成化学新进展引言有机合成化学是研究有机化合物的合成方法和反应机理的学科,被广泛应用于药物合成、材料科学、农业化学等领域。

随着科学技术的不断进步,有机合成化学也不断取得新的突破和进展。

本文将介绍近年来有机合成化学领域的一些新进展。

进展一:可持续发展的绿色化学合成绿色化学合成是有机合成化学中的一个重要方向。

在传统的有机合成过程中,常常需要使用大量的有毒有害溶剂和试剂,产生大量废弃物。

然而,设计和开发环境友好的绿色合成方法已经成为有机合成化学的研究热点。

近年来,研究人员提出了许多新的绿色合成方法。

例如,使用可再生原料作为起始物质,采用催化剂或可再生能源驱动反应,减少或避免使用有毒溶剂和试剂。

此外,还有一些新的绿色合成策略,如超声波辅助合成、微波促进合成、流动化学合成等。

这些方法不仅提高了反应的效率和选择性,还减少了对环境的影响。

进展二:金属催化合成反应的探索金属催化合成反应是有机合成化学中的另一个重要领域。

金属催化合成反应可以通过引入金属催化剂来促进反应的进行,提高合成效率和反应选择性。

近年来,研究人员在金属催化合成反应方面取得了重要的突破。

例如,Palladium催化的羰基化反应在有机合成中得到广泛应用。

这种反应可以将碳氢键转化成碳氧键,从而构建复杂的有机分子。

除了Palladium,还有其他金属催化剂,如钯、钌、铑等,被用于合成化学的各个领域。

金属催化合成反应的发展不仅扩展了有机合成的反应类型,还提高了合成的效率和可控性。

金属催化反应的研究还在不断发展,可以预见,在未来的研究中,会有更多新的金属催化反应被发现和应用于有机合成化学中。

进展三:生物催化合成反应的应用生物催化合成反应是一种利用酶或细胞催化剂进行合成的方法。

它具有高效率、高选择性和环境友好等优点,因此受到了广泛的关注。

生物催化合成反应可以用于合成各种天然产物和药物,如激素、抗生素和酶类制剂等。

此外,生物催化合成反应还可以用于制备高附加值化学品、生物燃料和生物塑料等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代有机合成的新方法摘要: 方法是有机合成化学发展的基础,新方法的产生和发展可为有机合成开拓新的研究领域和发展方向. 介绍现代有机合成中一些新方法, 结合具体的有机合成反应实例阐述有机合成在这些新方法方面取得的新成果和进展, 现代有机合成发展方向和应重视的研究领域.关键词: 现代有机合成; 新方法; 进展The new method of the modern organic synthesisAbstract: the method of synthetic organic chemistry the development foundation, the new method forgenerating and development for organic synthesis, open up new areas of research and developmentdirection of modern organic synthesis. This paper introduces some new methods, combined with specificexamples of organic synthesis organic synthesis in these new methods to achieve new results andprogress, the modern organic synthesis development direction and importance should be attached to theresearch area.Key words: modern organic synthesis; new method; progress有机合成化学作为有机化学的一个分支, 已经有一百多年的历史. 现代的有机合成不但能合成大量的结构复杂而多样的次生生物代谢物和基因、蛋白质等复杂的生命物质, 而且能合成大量的自然界中没有的具有独特功能性分子的物质. 现代有机合成不只是合成什么的问题, 更重要的是如何合成和怎样合成的问题. 有机合成与21 世纪的三大发展学科: 材料科学、生命科学和信息科学有着密切的联系, 为三大学科的发展提供理论、技术和材料的支持. 新世纪有机合成将进一步在这三大学科领域中发挥作用并开辟新的领域. 随着生命科学和材料科学的发展, 尤其进入后基因组时代后, 需要有机合成快速提供各种具有特定生理和材料功能的有机分子, 而要获得有新结构的功能类型分子往往取决于新的合成方法, 新的方法往往又取决于新的理论. 因此, 21 世纪有机合成的发展, 需要从方法、结构与功能方面入手.1 现代有机合成的新方法有机合成的发展一方面得益于有机金属试剂的开发与应用, 另一方面得益于新的反应方式, 如自由基反应、卡宾反应、环加成反应与高效合成反应等. 这里就一些新方法给出若干实例.1.1 自由基反应自由基化学已为有机合成提供了许多新方法.主要表现在以下 4 个方面: 新型自由基原子转移供体, 如(MeSi)、SiH; 成环模型, 跨环环化反应; 在分子内自由基加成反应中自由基加成的模式, 即endo/exo 型; 自由基加成反应立体选择性的控制[ 1] .在多烯烃的体系内串联式自由基加成反应为多环化合物的合成提供了高效方法[ 2] .跨环成环反应为许多用其它方法难以合成的并环化合物的合成提供了新方法[ 3].在自由基加成反应中立体化学的控制一直是自由基反应在有机合成中应用的瓶颈, 主要是因为自由基的高反应活性. 最近, 美国的Sibi 和Porter 教授等利用Lewis 酸对化合物的羰基配位,用杂环中的手性中心来控制自由基加成反应的立体化学, 为光学活性的酰胺化合物的合成提供了方法[ 4]另一方面, 从合理设计的底物出发, 自由基反应已成为可控制的, 是在中性条件下进行高选择性反应的一种有效手段[ 5]. 选择适宜的自由基引发剂可使自由基反应在室温下进行, 糖碳苷化反应中自由基作为引发剂比AIBN 作为引发剂得到更高的立体选择性.1.2 光、电、微波促进的有机合成反应新型物理手段在有机合成中的应用受到化学家的关注, 这方面的发展也很快. 主要是对光催化、电催化、微波催化等方面的研究. 光催化反应,具有洁净无污染, 反应速度快等特点. 光学活性的有机催化剂( 不含金属) 的设计是当今研究的一个新领域[ 6] . Charette 等发现在碳) 碘键与二乙基锌交换反应中, 在没有光照的情况下, 48 h 后锌试剂2 的产率小于10% , 而当用GE 日光灯( 275 W)作为光源进行光催化时, 发现在3 h 内锌试剂2 的产率为90% [ 7].电化学过程是洁净技术的重要组成部分, 是到达绿色合成的有效手段, 在洁净合成中有独特的魅力. 有机电合成一般可避免有毒试剂的使用,通常在常温、常压下进行. 有机合成中一类非常重要的碳) 碳键形成的反应是自由基反应, 实现自由基环化的常规方法之一是使用过量的三丁基锡烷, 不过这种方法原子使用率低, 还产生有毒且难以除去的锡试剂, 而用维生素B12催化的电还原方法完全可以避免这方面的问题. 应用天然、无毒、手性的维生素B12为催化剂的电催化反应, 可产生自由基类中间体, 从而实现了在温和、中性条件下的自由基环化[ 8] . 下面的反应是一个例子.近年来, 微波辐射技术在有机合成有很好的应用, 微波催化不仅有效地提高反应速率、反应转化率和选择性, 而且体现出节能、环保等诸多优点, 微波在有机合成中的应用已引起人们的兴趣.近年来, 关于微波催化的有机合成的报道很多, 较多的是关于脂类有机物的微波催化. 如1, 3-二苯基烯丙基醋酸脂3 在P-烯丙基钯作为催化剂的情况下与丙二酸脂在手性配体存在下, 经微波促进反应, 亲核取代产物4 的产率可达77% ~ 87%[ 9] .又如由邻苯二酚与氯代异丁烯通过烷基化反应合成邻异丁烯氧基苯酚, 采用传统加热方法, 反应速度慢, 需时25 h 产物收率为50%[ 10], 而李军等采用微波辐射合成该产品, 只需115 min 产物收率可达68%[ 11] .1.3 高效合成方法1.3.1一瓶多步串联反应生物体内的化学合成是高度有序、高效进行的, 许多转化涉及多步连锁式、多米诺骨牌式反应. 由于串联反应一般经历一些活性中间体, 如碳正离子、碳负离子、自由基或卡宾等, 这样就发生了一个反应可以启动另一个反应, 因此多步反应可连续进行, 无须分离出中间体, 不产生相应的废弃物, 可免去各步后处理和分离带来的消耗和污染[ 12, 13]. 此外, 金属催化往往可产生活性中间体, 进而在一瓶内进行多步连续反应, 这类反应叫串联反应( tanderm react ion) . 在一个反应瓶内连续进行的多步串联反应以合成复杂分子, 也是一类环境友好反应. 阳离子串联反应, 自由基串联反应, 金属催化的串联反应是几类具有代表性的串联反应.早期的一个著名的例子是角鲨烯的生源合成及其仿生合成, 属阳离子串联反应[ 14]. 多种不同反应组合及其系列反应, 也是串联反应的有效方式. Boger 小组用二唑作为双烯进行的[ 4+ 2] 环加成- 失氮- [ 3+ 2] 环加成串联反应, 在一瓶反应中合成了长春花朵灵的前体, 产率达70% , 建立了5 个环和6 个手性中心[ 15]. 通过多米诺式的[ 3+ 2] 环加成-Wagner-Meerwein 重排-Friede-l Crafts 烷基化- 消除反应系列, 可实现多环体系的一瓶合成, 在报道的两例中, 产率分别达到47% 和25%[ 16] .Heathcock 研究了交让木( yuzuriha) 类生物碱的合成, 建立了用简单的一瓶反应把角鲨烯衍生物转化为二氢原交让木碱的简单方法[ 17] . 整个过程形成5 个环, 4 个碳) 碳键, 2 个碳) 氢键和8 个手性中心..Corey 小组报道阳离子引发的串联反应, 用于aspidophytine 的对映选择性合成, 这个一瓶反应的产率达到66%[ 18] .1.3.2一瓶多组分反应一瓶多组分反应也是一类高效的方法, 这类反应涉及至少3 种不同的原料, 每个反应都是下一步反应所必需的, 而且原料分子的主体部分都融进最终产物中[ 19]. Mannich反应( 三组分) 和Ugi( 四组分) 都是有名的例子. 最近Ugi 报道了一个七组分反应[ 20] , 产物的回收率达到43%. 一瓶多组分反应也可用于复杂分子的合成.1.3.3多反应中心多向反应具有多反应中心的底物也可以在一瓶完成多步反应[ 21] . 双向或多向反应也可以是高效的.2 展望现代有机合成正朝着高选择性、原子经济性和环境保护型三大趋势发展, 重点在于开发绿色合成路线及新的合成工艺, 寻找高选择性、高效的催化剂, 简化反应步骤, 开发和应用环境友好介质, 包括水、超临界流体、离子液体、氟碳相等, 以代替传统反应介质, 减少污染. 合成方法学研究成为有机合成的研究热点, 成为从化学原理入手发展新概念、新反应、新方法的突破口, 重点是对立体可控制的自由基反应的研究及组合化学在有机合成方法学发展中的应用, 合成具有独特功能的分子, 包括具有特殊性能的材料、生理活性分子和天然产物, 尤其对海洋生物源中新生物活性物质的发现与合成成为有机合成在新世纪的重要发展方向. 目前, 不对称合成的研究虽然取得了很大的进展, 今后仍旧是有机合成研究的热点问题之一,尤其对催化的不对称合成反应的研究、研制和发现新配体及手性催化剂是研究催化不对称合成的重要方面. 另外, 分子器件、分子识别、分子组装和化学生物学、合成生物学、化学材料学的研究将更进一步推进有机合成的发展, 使其融入国际科技飞速发展的潮流.参考文献[ 1] 杜灿屏, 刘鲁生, 张恒. 21 世纪有机化学发展战略[M] . 北京: 化学工业出版社, 2002.DU Can- ping , LIU Lu-sheng, ZHANG Heng. Stratagies for the development of organic chemistry in the 21st century[M] . Beijing :Chemistry Industry Press, 2002.[ 2] Takasu K, Kurotanag i J-C, Katsumata A, et al. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . I haraMTetrahedron, 1999( 40) : 6 276- 6 279.[ 3] Blake A, Hollingworth G J. Oxidation kinetics of natural organic matter by sonolysis and ozone[ J] . Pattenden Synthesis , 1999( 20) : 642- 646.[ 4] Sibi M P, Ji J, Sausker J B, et al. Species in irradiated oxygenated water[ J] . Am Chem Soc, 1999( 121) : 7 515- 7 519.[ 5] Andrew JM, Walton J C. Critical review of rate constants for reaction of bydrated electrons[ J] . Angew Chem I nt Ed Engl , 1997( 36) : 2 220- 2 226.[ 6] Ahrendt K A, Borths C J, MacMillian D W, et al. Substituent conatants for correlation analysis in chemistry and biology[ J] . AmChem Soc, 2000( 122) : 4 240- 4 246.[ 7] Charette A B, Beauchemin A, Marcoux J- F, et al. Selective control during the photoassisted oxidation of 1-butanol titanium dioxid[ J] . Am Chem Soc, 1998( 120) : 5 113- 5 117.[ 8] Hutchinson J H, Pattenden G, Plyers P L. A structural investigation of titanium dioxide photocatalysts[ J] . Tetrahedron Lett , 1987( 28) : 1 310- 1 315.[ 9] Bremberg U, Larhed M, Moberg C, et al. Novel calcium antagonists with potent and long- lasting vasodilative activty[ J] . OrgChem, 1999( 64) : 100- 107.[ 10] 陈卫民, 陈忠, 徐继红, 等. 微波辐射相转移催化合成2- ( 2- 甲氧基苯氧) 乙胺[ J] . 化学世界, 1998( 2) : 86- 89.CHEN We-i min, CHEN Zhong , XU J-i hong, et al. Microwave radiation phase trans transfer catalyst synthesis 2- ( 2-methoxy-phenoxybenzamine)-ethamivan[ J] . Chemistry World , 1998( 2) : 86- 89.[ 11] 李军, 庞军, 曹国英, 等. 微波法合成邻异丁烯氧基苯酚[ J] . 合成化学, 2000( 4) : 321- 325.LI Jun, PANG Jun, CAO Guo- ying, et al. Synthesizing ortho- isobutylene pyrocatechol oxygen phenol[ J] . Synthesis Chemistry ,2000( 4) : 321- 325.[ 12] Tonesh W.Determination for formaldehyde in the presence of bisulfite[J] .Chem Rew ,(special),1996(96) : 1- 100. [ 13] Jendy K. Simultaneous spectrofluorimetric determination of cerium and cerium by flow injection analysis[ J] . Tetrahedron ( sp ecial) , 1996( 52) : 11 358- 11 657.[ 14] Johnson W S, Plummer M S, Reddy S P, et al. Intravenous infusion in eicosapenoic acid into rabhits[ J] . Am Chem Soc, 1993( 115) : 510- 517.[ 15] Negishi E, Coperet C, Ma S, et al. New strategies in asymmetric synthesis based on Y- alkoxy butenolides[ J] . Chem Rev, 1996( 96) : 362- 366.第4 期苏育志等: 现代有机合成的新概念和新方法 31 7[ 16] Knolker H J, Baum E, Graf R, et al. Synthesis of diastereomerically prue spiro- cyclopropane derivatives containing multichiralcenters[ J] . Angew Chem . I nt Ed Engl , 1999( 38) : 2 582- 2 587.[ 17] Wallace G A, Heathcock C H. Chiral aux iliaries and ligands in asymmetric synthesis[ J] . Org Chem, 2001( 66) : 447- 452.[ 18] He F, Bo X, Altom J D, et al. Chemical toxicity to aquatic species[ J] . Am Chem Soc, 1999( 121): 6 768- 6 774. [ 19] Bienayme H, Hulme C, Oddon G, et al. Parameter estimation rules that allow accurate prediction of partion[ J] . Chem Eur J ,2000( 6) : 3 315- 3 323.[ 20] Domling A, Ugi L. Nash determination for formaldehyde in the presence of bisulfite[ J] . Angew Chem Int Ed Engl , 1993( 32) :560- 567.[ 21] Crispino G A, Ho P T, Sharpless K B, et al. The stabilization of small concentrations of formaldehyde in aqueous solutions[ J] .Science, 1993( 259) : 61- 67.。

相关文档
最新文档