现代有机合成化学第2章..

合集下载

第2章 合成气

第2章 合成气

3、脱碳方法的选择
氨加工的品种
取决于
气化所用原料和方法 后继气体精炼方法 各脱碳方法的经济性
2.2.4.原料气的精炼(CO、CO2、O2、水等)
1、铜氨溶液吸收法 氯化铜氨液 吸 蚁酸铜氨液 收 碳酸铜氨液 液 醋酸铜氨液 (1)、铜液的组成
总量≤10ppm
铜离子浓度(铜比) 氨含量 醋酸浓度 残余CO、CO2(再生液)
3、甲烷化法
互逆 甲烷蒸汽转化 机理分析:
甲烷蒸汽转化机理
CH4 + [ ] ? [CH 2 ]
[CO] [ ] + CO
甲烷化机理
CO + [ ] [CO]
H2
[CH2 ] + H2O [CO] + 2H2
[CO] + [ ] [C ] + [O]
[C] + H2 ? [CH2 ] H2 揪快? CH4 [ ]
CH 4 + H 2O CO + 3H 2
H2O + [ ] [O] + H 2
[O] + H2 ? H2O [ ]
CO2 + [ ] ? [CO2 ]
[CO2 ] + [ ] [CO] + [O* ]
CO + [O] [ ] + CO2
CO + H 2O CO2 + H 2
利用催化剂使CO、CO2加氢生成CH4使气体 精炼的方法,可使CO、CO2&度增加都会造成扩散系数下降
5.活性系数与催化剂用量
活性系数指真实工业条件下的使用活性与标准条件下的比值 催化剂用量:
VK
yCO ,2 dy G CO = r òyCO ,1 xA k

第2章 卤化技术

第2章 卤化技术


(2)
-三氯甲苯的制备
2.3.3 饱和烃的取代氯化
饱和烃的取代卤化也是自由基链反应,与芳环侧链卤 化的反应历程相似。这类反应中最重要的生产实例是甲烷 和一氯甲烷的氯化制各种氯甲烷以及石蜡的氯化制氯化石 蜡。 1.甲烷的氯化制各种氯甲烷
甲烷的氯化有氯气氯化和氧氯化两种方法,现分别叙 述如下。 (1)氯气氯化 甲烷的氯化是连串反应,可依次生成一氯甲烷、二氯 甲烷、三氯甲烷和四氯化碳,它们都有广泛的用途。


甲烷的氯化,目前在工业都采用在300~500℃的热氯化法。 甲烷的热氯化是速度极快的强烈放热反应,反应时间只需要几秒钟, 在反应体系中,氯气局部过浓的区域,放热量大,局部温度过高, 反应激烈,会发生炭化、二聚等副反应。为了控制反应温度,工业 上常采用如下方法: 1)控制C12与CH4摩尔比。甲烷的单程转化率一般不超过30%, 并将未反应的甲烷和一部分较低级的甲烷氯化物循环回反应器。 2)使用多级串联绝热反应器。在每两个反应器之间有冷却装置, 氯气分别通人每个反应器中。 3)利用流化床换热反应器。可利用惰性热载体(例如石英粉)和传热 装置移除反应热。或利用负载有氯化钾或氯化铜的铝胶催化剂或分 子筛催化剂为热载体。 4)向反应区喷人一定量的雾状四氯化碳或其他多氯甲烷,利用它 们的汽化来移除反应热。 单用全返混型流化床反应器,氯的转 化不完全,因此在实际生产中采用返混型和活塞流型反应器串联的 方法。
(2)卤化试剂
在芳烃的卤代反应中,必须注意选择合适的卤化 试剂,因这往往会影响反应的速度卤原子取代的位置、 数目及异构体的比例等,反应过程如下
(3)介质
常用的介质有水、盐酸、硫酸、醋酸、氮仿 及其他卤代烃类化合物。反应介质的选取是根据 被卤化物的性质而定的。对于卤化反应容易进行 的芳烃,可用稀盐酸或稀疏酸作介质,不需加其 他催化剂;对于卤代反应较难进行的芳烃,可用 浓硫酸作介质,并加入适量的摧化剂。反应若需 用有机溶剂,则该溶剂必须在反应条件下显示惰 性。例如,水杨破的织代可用醋酸作溶剂;荣的 氯代可用四氯化碳或氯苯作溶剂。溶剂的更换常 常影响到卤代反应的速度,甚至影响到产物的结 构及异构体的比例。一般来讲,采用极性溶剂的 反应速度要比用非极性溶剂快。

现代有机合成化学第2章

现代有机合成化学第2章
3. 1,3-二羰基化合物的烃基化 最常用的1,3-二羰基化合物有:
A. β-酮酸酯:如β-丁酮酸乙酯,即乙酰乙酸乙酯
B. 丙二酸酯:如丙二酸二乙酯(C2H5OOCCH2COOC2H5)
C. β-二酮:即RCOCH2COR。
(1)β-酮酸酯的烃基化 通常都是在乙醇中用C2H5ONa或C2H5OK将它们转化成
A. 碱的影响
叔丁醇钾特别适用于酸性适中活泼亚甲基的烃基化。对于那些 酸性较弱的活性亚甲基化合物,则需用更强的碱,如氨基钠的液氨 溶液等作催化剂。
不对称的二酮在过量的碱存在下,可生成两种不同的
双负离子,当与烷基化试剂反应时,往往以一种烃基化产 物为主,即烃基首先进入取代基较少的α-碳。
B. 烃基化剂的影响
常见的能使α-氢活化的基团,其活化作用的大小顺序大致如下: -NO2>-COR>-SO2R>-COOR=CN>-SOR>-Ph
当一个碳上连有两个这样的基团时,这个碳上的氢就更加活泼, 也就表现出有更大的酸性。
由于活泼亚甲基化合物的酸性甚至比醇的酸性还强,因此它们 与醇钠的无水醇溶液作用即可形成一定浓度的烯醇负离子。
常用的烃化剂是卤代物。伯卤烷、仲卤烷、烯丙基卤、 苄卤等反应结果较好。叔卤烷则主要发生消除反应。
若采用非碱性的氟化硼或过氯酸银作催化剂,则叔卤代 烷亦可顺利进行烷基化反应。
选用伯卤烷为烃基化剂,可以得到较多的碳烃基化产物。
不同卤素的RX相比,反应活性如下:
RI>RBr>RCl
C.溶剂的影响
在非质子极性溶剂中,氧上烃基化比例增加; 在质子溶剂或非 极性溶剂中,碳上烃基化比例增加。
形成环状酮 (异常反应)
COOH COOH

有机合成路线-第二章.5

有机合成路线-第二章.5

4、Diels-Alder反应具有高度的六体专一性,双烯物对亲双烯物进行 Diels-Alder反应具有高度的六体专一性, 反应具有高度的六体专一性 顺式加成,顺、反构型的亲双烯物在进行反应时,能保持其原有的基本 顺式加成, 反构型的亲双烯物在进行反应时, 构型,而且带有取代基的二烯物其加成反应也是按顺式进行的。 构型,而且带有取代基的二烯物其加成反应也是按顺式进行的。如:
OH
① O3 ② Me2S OHC
O
O
O
H , H2O
环状化合物无论其数量,还是其实际应用价值, 环状化合物无论其数量,还是其实际应用价值,都一直是合成 工作者们十分感兴趣的领域之一。目前成环方法主要有三类: 工作者们十分感兴趣的领域之一。目前成环方法主要有三类:第一 类成环反应是分子内形成的变型,在这一过程中,具有n个原子的 类成环反应是分子内形成的变型,在这一过程中,具有 个原子的 碳链环化成n元环;第二类反应是分子间的,涉及两个不同分子之 碳链环化成 元环;第二类反应是分子间的, 元环 间同时形成两个键,这种过程通常称为环加成反应,其中Diels间同时形成两个键,这种过程通常称为环加成反应,其中 Alder反应是一个典型的例子。第三类反应包含电环化反应,它是 反应是一个典型的例子。 反应是一个典型的例子 第三类反应包含电环化反应, 分子内反应而在机理方面与环加成有关。 分子内反应而在机理方面与环加成有关。
OMe O 1,6-Con FGI OMe
Me C H
⑵路线: 路线:
OMe Na,NH3(l) t-BaOH Me Me OMe ① O3 ②H2O/[Zn] O Me C H
Me
Me
O
Me NaBH4 O OM C OH
五、Diels-Alder反应在有机合成中应用 反应在有机合成中应用

人教高二化学选修5有机化学基础-第2章第1节课时001

人教高二化学选修5有机化学基础-第2章第1节课时001
菜单
(2)烯烃的化学性质 ①单烯烃
菜单
菜单
1.从烷烃、单烯烃同系物的分子式分析,烷烃、单烯 烃分子式通式是什么?
【提示】 烷烃:CnH2n+2(n≥1),单烯烃: CnH2n(n≥2)。
菜单
1.异构现象的产生 由于 碳碳双键
不能旋转而导致分子中原子或
原子团 在空间的排列方式 不同。
2.异构的分类
菜单
2.化学性质的比较
烷烃
烯烃
通式 代表物
结构特点
CnH2n+2(n≥1)
CnH2n(n≥2)
甲烷(CH4)
乙烯(CH2===CH2)
全部单键;饱和链 含碳碳双键;不饱

和链烃;键角120°
菜单
菜单
取代反应与加成反应的比较
加成反应
取代反应
一般是C—H、O—H或
不饱和键中的不稳定键先 C—O键断裂,结合一个 键的
菜单
【问题导思】 ①存在顺反异构现象的分子结构有什么特点? 【提示】 分子中需含有碳碳双键。 ②顺2丁烯与反2丁烯分别与Br2加成,产物是否相同? 【提示】 相同。产物均为2,3二溴丁烷。
菜单
1.产生顺反异构现象的条件 顺反异构现象是以分子中存在碳碳双键为前提的,烷 烃、炔烃不存在这种异构现象。 顺反异构:立体异构的一种,由双键不能自由旋转引 起的,一般指烯烃分子中的双键。 顺式异构体:两个相同原子或基团在双键同一侧的为 顺式异构体。
菜单
1.由沸点数据:甲烷-161.7 ℃、乙烷-88.6 ℃、丁
烷-0.5 ℃、戊烷36.1 ℃,可判断丙烷的沸点可能是( )
①高于-0.5 ℃ ②约是-90 ℃ ③约是-40 ℃
④高于-88.6 ℃
A.①②

有机化学课后习题答案第二章

有机化学课后习题答案第二章

有机化学课后习题答案第⼆章2章思考题2.1 分析共轭效应和超共轭效应的异同点,重点阐述σ-π和p-π共轭。

2.2 请举例说明同分异构体中各种异构体的定义及其异同点。

2.3解释甲烷氯化反应中观察到的现象:(1)(1)甲烷和氯⽓的混合物于室温下在⿊暗中可以长期保存⽽不起反应。

(2)(2)将氯⽓先⽤光照射,然后迅速在⿊暗中与甲烷混合,可以得到氯化产物。

(3)(3)将氯⽓⽤光照射后在⿊暗中放⼀段时期,再与甲烷混合,不发⽣氯化反应。

(4)(4)将甲烷先⽤光照射后,在⿊暗中与氯⽓混合,不发⽣氯化反应。

(5)(5)甲烷和氯⽓在光照下起反应时,每吸收⼀个光⼦产⽣许多氯化甲烷分⼦。

2.4 3-氯-1,2-⼆溴丙烷是⼀种杀根瘤线⾍的农药,试问⽤什么原料,怎样合成?2.5 写出烯烃C5H10的所有同分异构体,命名之,并指出哪些有顺反异构体。

2.6 找出下列化合物的对称中⼼.(1)⼄烷的交叉式构象(2)丁烷的反交叉式构象(3)反-1,4-⼆甲基环已烷(椅式构象)(4)写出1,2,3,4,5,6-六氯环已烷有对称中⼼的异构体的构象式(椅式)。

2.7 ⼀个化合物的氯仿溶液的旋光度为+10o, 如果把溶液稀释⼀倍, 其旋光度是多少? 如化合物的旋光度为-350o, 溶液稀释⼀倍后旋光度是多少?2.8 ⼄烯、丙烯、异丁烯在酸催化下与⽔加成,⽣成的活性中间体分别为、、,其稳定性>>, 所以反应速度是>>。

解答2.1 答:在离域体系中,键长趋于平均化,体系能量降低⽽使分⼦稳定性增加。

共轭体所表现出来的这种效应叫共轭效应。

共轭体系分为π-π共轭体系和p-π共轭体系。

超共轭效应是当C—H键与相邻的π键处于能重叠位置时,C—H键的轨道与π轨道也有⼀定程度的重叠,发⽣电⼦的离域现象,此时,键向π键提供电⼦,使体系稳定性提⾼。

它分为-p 和-π超共轭。

超共轭效应⽐共轭效应⼩。

异构现象异同点举例构造异构分了中原互相联结的⽅式和次序不同1. 碳链异构碳链不同2. 位置异构取代基在碳链或环上的位置不同3.官能团异构官能团不同⽴体异构分⼦中原⼦在空间2.3 答:(1)⽆引发剂⾃由基产⽣(2)光照射,产⽣Cl·,氯⾃由基⾮常活泼与甲烷⽴即反应。

第2章 第1节 第2课时 有机化学反应的应用——卤代烃的制备和性质

第2章 第1节 第2课时 有机化学反应的应用——卤代烃的制备和性质
【答案】 D
2.中国古代有“女娲补天”的传说,现代人因为氟氯代烷造成的臭氧层空 洞也在进行着“补天”,下列关于氟氯代烷的说法错误的是( )
【解析】 CH2ClF只有一种结构。 【答案】 B
3.(2016·郑州高二检测)下列物质分别与NaOH的醇溶液共热,能发生消去反 应且生成的有机物只有一种结构的是( )
【答案】 B
8.由环己烷可制备1,4-环己二醇的二醋酸酯,下列有关的八步反应(其中所有 无机产物都已略去):
其中有3步属于取代反应,2步属于消去反应,3步属于加成反应。
其中有3步属于取代反应,2步属于消去反应,3步属于加成反应。 试回答: (1)反应________属于取代反应。 (2)写出上述化合物结构简式:B________,C________。 (3)反应④所用的试剂和条件是________。
为什么说卤代烃在有机合成中起着桥梁作用? 【提示】
由此可见,在有机合成中卤代烃往往是改造有机化合物分子结构的中间产 物,实现烃—烃的含氧衍生物转变的桥梁。
[核心·突破] 1.卤代烃消去反应与水解反应的比较
2.卤代烃中卤素原子的检验 (1)实验原理 R—X+H2O―Na△―O→H R—OH+HX HX+NaOH===NaX+H2O HNO3+NaOH===NaNO3+H2O AgNO3+NaX===AgX↓+NaNO3 根据沉淀(AgX)的颜色(白色、浅黄色、黄色)可确定卤素(氯、溴、碘)。
设计一种以乙烯和氯气为原料制取氯乙烯的方案(其他原料自选),用化学方 程式表示(不必注明反应条件)。
要求:①反应产生的氯化氢必须用于氯乙烯的制备;②不应需要高温,因此缺点之一是高能耗,需要 氯化汞作催化剂,汞是重金属,因此缺点之二是会污染环境。
(2)乙烷和氯气反应可制得ClCH2CH2Cl,ClCH2CH2Cl加热分解得到氯乙烯和 氯化氢,产生的氯化氢可以与乙炔反应又生成氯乙烯,因此方案为CH2===CH2+ Cl2―→ClCH2CH2Cl、ClCH2CH2Cl―→CH2===CHCl+HCl、HC≡CH+ HCl―→CH2===CHCl。

《精细有机合成基础》PPT课件(2024版)

《精细有机合成基础》PPT课件(2024版)

I: -CH3是斥电子基 使苯环上电子云密度
+C、+I同向,都使苯环上电子云 密度
15
有-I,无T: 如-N+(CH3)3、-CF3、-CCl3等 (1)使σ-配合物均不稳定,使苯环钝化; (2)使邻、对位取代产物更不稳定; (3)为间位定位基。
16
有-I,-T: 如-NO2、-CN、-COOH、-CHO等 (1)诱导效应与共轭效应作用一致; (2)则使苯环钝化; (3)间位定位基。
℃) 2.47
26
2.1 芳香族亲电取代的定位规律
4、亲电试剂的空间效应(P10 表2-3) 5、新取代基的空间效应 6、反应的可逆性
27
7、反应条件的影响
温度
(1)通常情况下,温度升高,亲电取代反应活性增 高,选择性下降。
混NO酸2 硝化
NO 2
NO 2
NO 2


NO 2
0℃ 5%
94%
NO 2 NO 2
-I:吸电子 +I:供电子 共轭效应(T):包括π-π共轭和p-π共轭。
-T:吸电子 +T:供电子
14
有+I,无T: 如-C2H5,-CH3 (1)使σ-配合物稳定,活化苯环;
(2)使H 邻、对位取代产物更稳定H ; (3)H 为C 邻H、对位定位基。 H C H
C: s-p超共轭 使苯环上电子云密度
四、苯环上已有两个取代基的定位规律
已有两个取代基为同一 类型定位基,且处于间 位,则定位作用一致。
已有两个取代基为同一 类型定位基,且处于邻、 对位,则定位作用不一 致——取决于定位能力 的强弱。
CH3
少量
COOH
CH3
主产物
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乙烯式卤代烃和卤代苯不能用作烷基化试剂。
2.2.2 在芳环上形成碳碳单键的其他反应
(1)氯甲基化 苯及其衍生物在无水ZnCl2催化下与甲醛 (或多聚甲醛)和浓盐 酸 (或干HCl)作用,芳环上的氢可被CH2Cl取代,又叫布兰克反应。
(2)甲酰化
咖特曼一科赫反应 在费-克反应催化剂或强酸存下由苯、烷基苯、联苯、烷基联 苯等芳烃,与一氧化碳和氯化氢作用所发生的环上氢被甲酰基取代 而生成芳醛的反应。
二烃基铜化锂与具旋光活性的卤代烷反应优先获得构 型逆转产物。
铜离子对卤代烷进行亲核取代,生成“三烷基铜”中 间体,并使构型逆转,继而中间体分解,保持构型地生成 取代产物。
2.2
通过芳香取代反应形成碳碳单键
2.2.1 费里德一克拉夫茨(Friedel-Crafts)反应
Friedel-Crafts烷基化反应的特点:
(1)NaOH,H2O (2)HCl
n-C5H11
H C COOH CH3
(3)β-二酮的烃基化
β-二酮与β-酮酸酯、丙二酸酯类似,也能发生烃基化而生成相 应的烃基化产物。
21
(4)其它活泼亚甲基化合物的烃基化
含有其它致活基团(如CN、Ph、SO、SO2等)的活泼亚甲基化 合物的烃基化反应与1,3-二羰基化合物的相似。
可用CO和HCl在 使CO溶于反应体 系,在苯环上引进 甲酰基。 配位络合剂CuCl中,
维尔斯迈尔-哈克反应
2.3
通过碳碳重键的加成形成碳碳单键
2.3.1 α, β-不饱和羰基化合物的共轭加成 α, β-不饱和羰基化合物由于羰基的极性和共轭链电荷 分布疏密的交替性,羰基碳和β-碳带部分正电荷。当亲核 试剂与它作用既可加到羰基碳上(1, 2-加成 ),又可加到 β-碳上(1, 4加成,又称为共轭加成 )。
通常是碳上优先烃基化,碳原子的亲核性大于氧原子。
2. 影响活泼亚甲基化合物烃基化的因素
A. 碱的影响 叔丁醇钾特别适用于酸性适中活泼亚甲基的烃基化。对于那些 酸性较弱的活性亚甲基化合物,则需用更强的碱,如氨基钠的液氨 溶液等作催化剂。
不对称的二酮在过量的碱存在下,可生成两种不同的 双负离子,当与烷基化试剂反应时,往往以一种烃基化产 物为主,即烃基首先进入取代基较少的α-碳。
β-取代亚铵盐
a-取代醛酮
烯基季铵盐
原来的醛或酮
制备烯胺时,可以用脂肪仲胺 (如二甲胺),但更常用环状仲 胺(如四氢吡咯、吗琳等)。 两个α-C上取代基数目不同的不对称酮与仲胺作用时,主要生 成取代较少的烯胺。当a-碳上连有较大基团时,空间位阻妨碍了N 与π轨道的共平面。
当酮通过形成烯胺进行二烃基化时,第二个烃基进入取代基较 少的位臵。
若将醛或酮先转化成烯胺的金属盐,然后再烃基化,可以提高 碳烃基化产物的收率。
以烯胺镁盐进行烃基化,即使用简单的卤烷作烃基化剂,也 能得到较好的收率。
2.1.3 用有机铜试剂的取代反应形成碳碳单键
有机铜化合物是在研究应用有机镁化合物时发现的。一价卤化 铜能有效的催化格氏试剂和α,β-烯酮的反应,1,4-加成产物。至到 1966年,House等人通过实验证实有机酮化合物的存在。 有机铜大致可分为烃基铜RCu和二烃基铜锂R2CuLi两大类。
第二章 碳碳单键的形成
2.1 通过亲核取代反应形成碳碳单键
亲核取代 反应是形成碳-碳单键最常用的方法之一
R X +
- · ·Nu
R Nu +
烃基化试剂
- · X ·
一 般
底物: R-X、R-OTs、 R-O-SO3H 亲核试剂:
能提供碳负离子的化合物: 如:-CN、RC≡C-等
以下从几类化合物的烃基化角度,讨论一些应用较多 的形成碳一碳单键的亲核取代反应。
3. 1,3-二羰基化合物的烃基化 最常用的1,3-二羰基化合物有:
A. β-酮酸酯:如β-丁酮酸乙酯,即乙酰乙酸乙酯 B. 丙二酸酯:如丙二酸二乙酯(C2H5OOCCH2COOC2H5) C. β-二酮:即RCOCH2COR。
(1)β-酮酸酯的烃基化 通常都是在乙醇中用C2H5ONa或C2H5OK将它们转化成 烯醇盐,然后与卤代烷发生烃基化反应,即在α-C上引入 烃基。
B. 烃基化剂的影响
常用的烃化剂是卤代物。伯卤烷、仲卤烷、烯丙基卤、 苄卤等反应结果较好。叔卤烷则主要发生消除反应。
若采用非碱性的氟化硼或过氯酸银作催化剂,则叔卤 代烷亦可顺利进行烷基化反应。 选用伯卤烷为烃基化剂,可以得到较多的碳烃基化产 物。
不同卤素的RX相比,反应活性如下:
RI>RBr>RCl
2.1.1 活泼亚甲基化合物的烃基化
1. 活泼亚甲基化合物的定义
当一个饱和碳原子上连有硝基、羰基、氰基、酯基、苯基等 吸电子基团时,这个碳原子上的氢被致活了,因此这类化合物叫做 活泼亚甲基化合物。
给电子基团:电负性比氢小的 吸电子基团:电负性比氢大的 有机化合物中一些常见原子及取代基的电负性大小次序 : -N+R3>-NO2>-COOH>-COOR>-CO>-F > -Cl > Br > -I > -OCH3 > -NHCOCH3 > -C6H5 > -CH=CH2> H >-CH3 > -C2H5 > -CH(CH3) 2 > -C(CH3) 3
对于位阻较大时,乙基进攻β碳原子。
2.3.2 迈克尔(Michael)加成反应
Michael反应是美国化学家Arthur Michael于1887年 发现的。是迄今为止最为广泛应用的碳-碳键形成方法之 一。 α, β-不饱和羰基化合物与碳负离子给予体(碱作用下 的活泼亚甲基化合物、烯胺等)发生加成反应,反应的结 果是碳负离子加到β碳上,而α碳原子上则加上一个H。 反 应 通 式
斯托克(Stork)反应。
烯胺烃基化主要是用活泼的卤代物 (如碘甲烷、苄基卤、烯丙 基卤、α-卤代酸、α-卤代醚等)为烃基化剂。 以伯卤烷、仲卤烷为烃基化剂,烯胺的烃基化主要发生在亲核 的氮上;叔卤烷则更加不宜使用,因为烯胺的碱性将使叔卤烷发生 消除反应。
Exercises
Advantages
(1) 不需要加碱,避免了醛酮的自身缩合反应; (2) 一烃基化产物的收率较高; (3) 反应的区域选择性较高,主要是烃基进入取代基较 少的碳上。
在通常的反应条件下,共轭加成的平衡常数大于1, 2-加成的平衡常数,所以α, β-不饱和羰基化合物与弱的或 中等强度的亲核试剂相作用,或者与活泼亚甲基化合物所 形成的碳负离子相作用,主要生成共轭加成产物,有时跟 反应条件有关。
1,2-加成是动力学控制产物,而1,4-加成是热力学控 制产物。
α,β-不饱和羰基化合物与强亲核试剂金属氢化物或有 机金属化合物相作用,主要生成羰基加成产物(1,2-加成)
C.溶剂的影响
在非质子极性溶剂中,氧上烃基化比例增加; 在质子溶剂或 非极性溶剂中,碳上烃基化比例增加。 溶剂 HMPA(六甲基磷酰胺) THF(四氢呋喃) t-BuOH(叔丁醇) 碳烃基化产物 15% 94% 94% 氧烃基化产物 83% 0% 0%
D.金属离子的影响
与烯醇负离子配对的金属离子的种类,对烃基化位臵也有影响。 以 Li + 、 Na+ 、 K+ 相比, Li + 与烯醇负离子结合最牢, K + 最不牢, Na+居中。这就是说烯醇锂盐最有利于碳上烃基化。
酸式分解并不是绝对不用,特别是在α- 位有二个取代基时, 酸式分解也能有较好的收率。
(2)丙二酸酯的烃基化
丙二酸酯的烃基化常在乙醇钠的乙醇溶液中进行;因其酸性不 太强,氧上取代的竞争反应不严重,故除可用卤代烷作烃基化剂外, 也可用磺酸酯作烃基化剂。’
丙二酸酯的烃基化产物经水解再受热脱羧,可转化成羧酸。
脱羧
(-CO2)
COOH 形成环状酮 (异常反应) COOH COOH COOH
O
+
H2O
+
CO2
O
+
H2O
+
CO2
例如:
CH2(CO2Et)2
(1)EtONa, EtOH (2)n-C5H1ቤተ መጻሕፍቲ ባይዱBr
n-C5H11CH(CO2Et)2
(1)EtONa, EtOH (2)CH3I
n-C5H11
COOEt C COOEt CH3
反应历程:
δ - O
CH3 C CH2 O COC2H5
O
O
+
OH
-
H3C C CH2COC2H5 OH
O CH3 C O
O
δ+
O H3 C C OH
+
CH2 COC2H5
OH -
O
O
+
+
CH3 COC2H5
CH3CH2OH
O 2 CH3 C
β- 酮酸酯在发生酸式分解的同时,不可避免地要发生酮式分 解,以致羧酸的收率不如利用丙二酸酯的好。所以若以β-酮酸酯 为原料时,主要应用它的酮式分解反应。
①易发生重排反应,不适合制备长的直链烷基苯。
CH2CH2CH3
CH3CH2CH2Cl AlCl 3
30%
CH(CH3)2
+
70%
由于正氯丙烷与三氯化铝作用生成异丙基正离子
要得到不重排产物,应使用较弱的催化剂FeCl3,或在较低
的温度下进行反应,但此时反应较慢。
②不易控制在一元取代阶段,常常得到一元、二元、多元取代产
2. 活泼亚甲基化合物的性质
①活泼亚甲基化合物由于吸电子基的诱导效应,使得α-碳上的 氢具有一定的酸性 ,可以解离而生成碳负离子,通常称为烯醇负 离子。
常见的能使α-氢活化的基团,其活化作用的大小顺序大致如下: -NO2>-COR>-SO2R>-COOR=CN>-SOR>-Ph 当一个碳上连有两个这样的基团时,这个碳上的氢就更加活 泼,也就表现出有更大的酸性。
相关文档
最新文档