人体行为识别技术
人体行为识别介绍

人体行为识别介绍人体行为识别(Human Behaviour Recognition,简称HBR)是一种通过计算机视觉和模式识别技术来自动识别和分析人类行为的方法。
它可以通过分析人的动作、姿势、面部表情等特征来实现人类行为的自动识别和分析。
在人体行为识别中,最常用的技术包括姿态估计、运动分析和动作识别。
姿态估计是通过分析人体的关节点来估计人的姿态和动作,常用的方法包括使用深度学习和传统的计算机视觉算法。
运动分析是通过分析人的运动轨迹和运动方式来识别人的行为,常用的方法包括光流分析和运动特征提取。
动作识别是通过分析人的动作序列来判断人的行为,常用的方法包括使用机器学习和深度学习算法。
人体行为识别可以应用于各种实际场景。
在视频监控中,人体行为识别可以帮助监控系统自动识别和分析犯罪行为,从而提高监控系统的效率和准确性。
在智能交通系统中,人体行为识别可以帮助识别和分析交通参与者的行为,从而提供更安全和高效的交通服务。
在健康监测中,人体行为识别可以帮助识别和分析人的行为,从而提供更准确和个性化的健康监护服务。
在虚拟现实中,人体行为识别可以帮助模拟和分析人的行为,从而提供更逼真和沉浸式的虚拟体验。
虽然人体行为识别在各种应用领域都有着广阔的前景,但是它也面临一些挑战和限制。
首先,人体行为识别需要大量的数据和有效的特征表示方法。
在实时应用中,人体行为识别还需要具有较低的计算复杂度和高准确性的算法。
其次,人体行为识别在不同的环境和条件下都需要具备一定的鲁棒性和适应性。
此外,人体行为识别还需要考虑隐私和安全问题,以确保人的个人信息得到有效保护。
总的来说,人体行为识别是一种能够通过计算机视觉和模式识别技术来自动识别和分析人类行为的方法。
它在各种应用领域都有着广泛的应用前景,并且可以提供更安全、便捷和高效的服务。
随着计算机视觉和机器学习技术的不断发展,相信人体行为识别将会在未来取得更大的突破和应用。
人体行为轨迹识别与分析研究

人体行为轨迹识别与分析研究随着科技的不断发展,人工智能技术的应用也越来越广泛,其中人体行为轨迹识别与分析技术便是其中之一。
人体行为轨迹识别与分析技术,顾名思义,就是通过对人体的行为轨迹进行分析和识别来推断人体的行为动作、情感状态和心理活动等信息。
该技术已广泛应用于生物医学、心理学、社会学、安防和智能交通等领域。
一、人体行为轨迹识别技术的研究现状目前,人体行为轨迹识别技术的研究重点主要包括以下几个方面:动作识别、情感识别、心理状态识别、人物识别、动态轨迹生成和恶意行为检测等。
动作识别是指通过对人体行为轨迹的分析和识别来推断出人体进行的动作。
目前,常见的动作识别方法主要包括传统的人工特征提取和机器学习算法。
其中,机器学习算法主要分为传统的监督学习和无监督学习两种。
传统的监督学习算法主要包括支持向量机、决策树、神经网络和贝叶斯分类器等;无监督学习算法主要包括聚类、降维和异常检测等。
现代的深度学习技术,如卷积神经网络、循环神经网络和生成对抗网络等,也被应用于动作识别领域,并取得了不错的成果。
情感识别是指通过对人体情感状态的分析和识别来推断出人体的情感状态。
情感识别技术常用的方法主要包括语音识别、面部表情识别和生理信号识别等。
其中,面部表情识别和生理信号识别常用于观察人体的心理状态,如焦虑、压力、愉快等;而语音识别则主要用于推断人体的情感倾向,如友好、敌对等。
心理状态识别是指通过对人体生理信号和行为轨迹等多种信息的分析和识别来推断人体的心理状态。
常用的心理状态识别方法主要包括心率变异性分析、电脑断层扫描(CT)、磁共振成像(MRI)和核磁共振波谱等。
人物识别是指通过对人体行为轨迹的分析和识别来推断人体的身份信息。
人物识别技术常用的方法主要包括人脸识别、指纹识别、虹膜识别和声纹识别等。
动态轨迹生成是指通过对人体行为轨迹的分析和识别来推断出人体的运动轨迹。
传统的轨迹生成方法主要包括高斯过程回归、粒子滤波和卡尔曼滤波等。
人体行为识别技术的原理与应用

人体行为识别技术的原理与应用随着科学技术的不断发展,人们的生活方式和工作环境也在发生改变,同时也让一些新型技术逐渐兴起并应用于我们的生活中。
其中,人体行为识别技术就成为了当代科技领域中备受瞩目的一项技术成果。
它可以通过智能算法和人体行为生物特征进行识别和监测,从而达到更加智能化、便捷化的目的。
本文将从原理和应用两个方面进行介绍。
一、人体行为识别技术的原理人体行为识别技术的核心在于从视频数据或者传感器数据中提取出人体行为的生物特征,再通过模式识别等技术进行处理和比对,最终实现人体的识别和监测。
在具体实现上,人体行为生物特征主要包括了姿态、动作、面部表情等。
其中,姿态指人体的几何形状和空间位置,动作指人体在不同时间下运动的状态变化,面部表情则反映了人体的情绪和心理状态。
基于这些生物特征,目前人体行为识别技术主要采用了机器学习和深度学习等技术。
首先,利用传感器或者高清摄像头采集到的数据来进行训练,将数据进行转化和筛选,构建出一个较小的数据集。
接着,根据这些数据进行特征提取,在通过特征分类的方法来实现人体行为模式的识别。
最后再应用到实际的工作场景中,对人体进行检测和识别。
二、人体行为识别技术的应用人体行为识别技术已经在许多领域得到了广泛的应用,其主要应用领域包括了安防、健康等。
1. 安防在安防方面,人体行为识别技术被用于室内视频监控系统、智能交通系统等方面。
智能监控系统利用视频数据可追踪人员,通过跟踪记录来分析场所中人员的行为习惯和行为模式,从而预测出异常行为。
智能交通系统通过识别司机的面部表情和身体姿态,以预测出其驾驶行为和驾驶状态。
2. 健康人体行为识别技术在健康领域中的应用也在不断增多。
医疗方面,这项技术可以帮助医生进行跟踪,监测患者的康复情况,并提供针对性的康复方案。
在体育场馆中,人体行为识别技术帮助体育教练通过运动员的姿态和动作来评估运动能力、提高训练质量和准确性。
除此之外,人体行为识别技术可以在零售行业中帮助零售商更好地了解顾客的消费行为;在智能家具领域中,它还可以通过识别人体姿势,来提供更加人性化的家居智能化方案。
《2024年人体行为识别关键技术研究》范文

《人体行为识别关键技术研究》篇一一、引言随着人工智能技术的飞速发展,人体行为识别技术已经成为计算机视觉领域的研究热点。
人体行为识别技术可以通过对视频或图像中人体动作的识别与分析,实现对人体行为的自动理解和判断。
该技术在智能监控、人机交互、医疗康复、虚拟现实等领域具有广泛的应用前景。
本文将重点研究人体行为识别的关键技术,分析其发展现状及存在的问题,并提出相应的解决方案。
二、人体行为识别技术的发展现状人体行为识别技术主要通过图像处理、计算机视觉、模式识别等技术手段,对人体在特定环境中的行为进行识别和分析。
近年来,随着深度学习技术的发展,人体行为识别的准确性和实时性得到了显著提高。
目前,人体行为识别技术主要应用于智能监控、人机交互、医疗康复等领域。
在智能监控领域,通过识别异常行为,有助于提高安全防范能力;在人机交互领域,通过识别用户的行为意图,实现更加自然的交互方式;在医疗康复领域,通过分析患者的康复动作,为康复训练提供科学的指导。
三、人体行为识别的关键技术1. 特征提取技术特征提取是人体行为识别的关键步骤之一。
通过提取人体行为的时空特征、运动轨迹特征、骨骼关节特征等,实现对行为的准确描述和表达。
常用的特征提取方法包括深度学习算法、光流法、轮廓分析法等。
2. 深度学习技术深度学习技术在人体行为识别中发挥着重要作用。
通过构建深度神经网络模型,实现对人体行为的自动学习和识别。
目前,卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等在人体行为识别中得到了广泛应用。
3. 多模态信息融合技术多模态信息融合技术可以将不同传感器获取的数据进行融合,提高人体行为识别的准确性和鲁棒性。
例如,将视频图像信息和音频信息进行融合,实现对人体行为的全方位识别。
四、存在的问题及解决方案1. 数据集不足和不平衡问题目前,人体行为识别的数据集相对较少,且存在类别不平衡问题。
这导致模型在训练过程中容易出现过拟合和泛化能力差的问题。
基于人体运动轨迹的行为识别技术

基于人体运动轨迹的行为识别技术随着人工智能技术的日益成熟,人体运动轨迹的研究已经越来越受到关注。
基于人体运动轨迹的行为识别技术是一项能够对人类行为进行自动化识别的技术。
它可以对各种行为进行分类和识别,如体育运动、犯罪行为、普通日常行为等。
这项技术不仅具有广泛的应用价值,而且可以填补人类判断力的不足。
一、人体运动轨迹的获取方法人体运动轨迹的获取方法有很多种,比如视觉方法、惯性传感器方法、声音方法等。
其中,视觉方法是最常用的一种方法。
它可以通过摄像头捕捉人体运动轨迹,采集到的数据可以用来识别不同行为。
惯性传感器方法利用传感器测量人体运动的加速度和重力,来获取人体运动轨迹。
声音方法则可以通过分析人体在行为时发出的声音来识别不同的行为。
二、人体运动轨迹的特征提取方法在获取到人体运动轨迹之后,需要对数据进行处理,以便用于行为识别。
这个处理过程主要包括特征提取和分类器训练两个阶段。
特征提取是将人体运动轨迹中的有用信息提取出来,而舍去那些无用的信息。
常用的特征提取算法包括PCA(主成分分析)、LDA(线性判别分析)、SVM(支持向量机)等。
三、人体行为分类的算法人体行为分类的算法主要包括决策树算法、KNN(最近邻居算法)、SVM算法等。
决策树算法是基于树形结构的分类方法,它可以将数据进行分类并生成一棵树,用于分类预测。
KNN算法是通过比较新数据与历史数据的相似度来判定其所属类别。
SVM算法采用超平面来进行分类,它可以有效地解决非线性可分问题。
四、人体运动轨迹在不同领域的应用基于人体运动轨迹的行为识别技术可以应用于各个领域,如体育运动、智能家居、犯罪预防等。
在体育运动领域中,这项技术可以用于运动员的行为监测和分析,帮助教练针对个人情况进行纠正;在智能家居领域中,这项技术可以实现对家庭成员的行为识别和自动化控制;在犯罪预防领域中,这项技术可以用于监控路面上的行为,以便及时发现可疑人物和行为。
五、人体运动轨迹技术的发展前景在未来,基于人体运动轨迹的行为识别技术将有更广泛的应用场景和更多的研究方向。
人体行为识别介绍

人体行为识别介绍人体行为识别是指通过分析和识别人体的动作、姿态和行为,实现对个体身份、行为意图和心理状态的判断与识别。
它是一种基于人体动作特征的生物识别技术,可以应用于人机交互、智能安防、健康监控等领域。
本文将介绍人体行为识别的原理、方法和应用。
一、人体行为识别的原理人体行为识别的基本原理是通过分析和提取人体的动作、姿态和行为特征,利用数学模型和机器学习算法进行模式匹配和分类识别。
其基本步骤包括:数据采集、特征提取、模式识别和分类。
具体来说,数据采集可以通过传感器、摄像头等设备获取,然后通过图像处理和计算机视觉技术分析和提取人体的动作特征,如人体的关节点位置、运动轨迹等;接下来,通过机器学习算法对提取的特征进行训练和分类,建立模型。
最后,将实时获取的数据与建立的模型进行匹配和比对,判断和识别人体的行为。
二、人体行为识别的方法1.传感器技术:包括惯性传感器、压力传感器、心率传感器等,可以实时监测和记录人体的动作、姿态和生理信号。
2.图像处理和计算机视觉技术:通过图像分析和处理,提取人体的动作特征,如人体关节点的位置、运动轨迹等。
常用的技术包括背景差分、轮廓检测、模板匹配等。
3.机器学习和深度学习:通过对训练数据进行学习和训练,建立人体行为识别的模型。
常用的算法包括支持向量机、决策树、卷积神经网络等。
三、人体行为识别的应用1.智能安防:通过人体行为识别技术,可以实现对可疑行为的检测和警报。
例如,通过监控摄像头对人体行为进行分析,识别不寻常的行为模式,如盗窃、骚扰等,及时报警。
2.人机交互:人体行为识别可以实现无触控的人机交互方式,提供更加自然和智能的交互体验。
例如,通过对手势的识别,实现手势控制电视、智能家居等设备的操作。
3.健康监控:通过人体行为识别技术,可以对老人、儿童等特殊人群进行健康监护。
例如,通过分析人体的姿态和活动轨迹,判断老人是否跌倒,及时预警和救援。
4.人员管理:人体行为识别可以实现对人员身份和行为的管理。
智能家居系统中的人体行为识别技术应用方法

智能家居系统中的人体行为识别技术应用方法智能家居系统的兴起给家庭生活带来了极大的便利和舒适。
而在智能家居系统中,人体行为识别技术是其中一项重要的应用。
通过人体行为识别技术,智能家居系统可以准确识别家庭成员的行为,从而提供个性化的服务。
本文将介绍智能家居系统中常用的人体行为识别技术方法。
一、图像识别技术图像识别技术在智能家居系统中得到广泛应用。
通过监控摄像头捕捉到的图像,系统可以利用图像识别算法来分析人体的行为。
其中,深度学习技术是一种常用的图像识别方法。
通过训练神经网络模型,系统可以对不同的人体行为进行精确分类和识别。
例如,在智能家居系统中,通过安装摄像头进行室内监控,可以实时监测家庭成员的行为。
系统可以通过图像识别技术判断家庭成员的身份和行为,如识别出是谁在使用厨房、卧室或客厅,并根据个人的喜好和习惯提供相应的服务,如自动调节灯光、空调温度等。
二、语音识别技术语音识别技术是智能家居系统中另一种常见的人体行为识别方法。
通过分析家庭成员的语音信息,系统可以准确判断他们的行为意图,并作出相应的反应。
语音识别技术主要基于语音信号的特征提取和模式识别算法。
智能家居系统可以通过安装麦克风等音频设备,实时采集家庭成员的语音信息。
系统通过语音识别技术将语音转化为文本,进而理解家庭成员的话语内容。
例如,家庭成员可以通过语音命令控制智能家居系统,如播放音乐、调节室温等。
三、传感器技术传感器技术也是智能家居系统中常用的人体行为识别方法之一。
智能家居系统可以通过安装各种传感器,如红外传感器、温湿度传感器、压力传感器等,来感知家庭成员的行为活动。
通过红外传感器,智能家居系统可以检测到家庭成员的位置和活动。
例如,当有人靠近门口时,系统可以自动开启门锁;当有人离开房间时,系统可以自动关闭电灯等。
通过温湿度传感器,智能家居系统可以感知到环境的变化。
例如,当室内温度过高时,系统可以自动调节空调温度;当室内湿度过高时,系统可以自动开启抽湿设备。
人体行为识别技术的使用技巧与精度评估

人体行为识别技术的使用技巧与精度评估人体行为识别技术是一种通过对个体行为模式进行分析和识别的技术,以识别和区分不同个体。
这一技术广泛应用于安全控制、人机交互、医疗诊断等领域。
本文将介绍人体行为识别技术的使用技巧,并进行精度评估。
一、人体行为识别技术的使用技巧1. 数据采集:人体行为识别技术的效果直接受到数据质量的影响。
为了提高识别的精度和可靠性,应当采集大量丰富的数据,包括多种不同行为模式的样本数据。
同时,在数据采集过程中应注意控制环境因素,例如光线、噪声等对识别结果的干扰。
2. 特征提取:在进行人体行为识别时,需要从原始数据中提取出具有区分性的特征。
常见的特征包括人体姿势、步态、手势等。
对于不同的行为模式,需要确定适合的特征提取方法,并采用合适的算法进行特征提取。
3. 模型训练:构建准确的行为识别模型是提高技术效果的关键。
在模型训练过程中,可以采用常见的机器学习算法,例如支持向量机、深度学习等。
训练数据的质量和数量对模型的效果具有重要影响,因此需要选择合适的训练数据集,并进行有效的数据预处理和特征匹配。
4. 连续识别:人体行为通常是连续的而不是离散的,因此在实际应用中,应考虑如何实现连续的行为识别。
可以使用滑动窗口技术或者递归神经网络等方法进行连续识别。
此外,还可以利用上下文信息和模式匹配的方法来提高识别效果。
二、人体行为识别技术的精度评估1. 精确度:人体行为识别技术的精度通常用准确率来衡量,即识别正确的样本数与总样本数的比值。
为了评估识别准确度,可以采用交叉验证或者留一验证的方法,对识别模型进行评估。
另外,可以通过引入混淆矩阵来分析不同行为之间的混淆情况。
2. 召回率:除了精确度外,还需要考虑识别过程中漏报的情况。
召回率是指识别正确的样本数与实际存在的某一类别样本数的比值。
较高的召回率表示识别的全面性较好,但可能会伴随着较高的误报率。
3. F1值:为了综合考虑准确度和召回率,可以使用F1值进行评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人体行为识别技术在计算机视觉领域中,人体运动行为识别是一个被广泛关注的热点问题,在智能监控、机器人、人机交互、虚拟现实,智能家居,智能安防,运动员辅助训练等方面有巨大应用价值。
行为识别问题一般遵从如下基本过程:数据图像预处理,运动人体检测、运动特征提取、特征训练与分类、行为识别。
着重从这几方面逐一回顾了近年来人体行为识别的发展现状和常有方法。
并对当前该研究方向上待解决的问题和未来趋势做了分析。
行为理解可以简单地认为是时变数据的分类问题,即将测试序列与预先标定的代表典型行为的参考序列进行匹配。
通过对大量行为理解研究文献的整理发现:人行为理解研究一般遵从特征提取与运动表征、行为识别、高层行为与场景理解等几个基本过程。
特征提取与运动表征是在对目标检测、分类和跟踪等底层和中层处理的基础上,从目标的运动信息中提取目标图像特征并用来表征目标运动状态;行为识别则是将输入序列中提取的运动特征与参考序列进行匹配,判断当前的动作处于哪种行为模型;高层行为与场景理解是结合行为发生的场景信息和相关领域知识,识别复杂行为,实现对事件和场景的理解。
【2】1、行为识别的应用从应用领域的分类来讲,可以将人体运动分析的应用分成如下几个领域:①智能监控这里所指的“智能”包含两个方面的含义。
一种“智能”是指系统能够在一定的场景中检测是否有人的出现(如通过检测人脸的方法)防止只是简单的通过运动目标检测所造成的错误报警(例如因为动物活动或者刮风摇动树枝等等而造成误报)。
另外一种“智能”是指系统能够监视一定场所中人的活动,并对其行为进行分析和识别,跟踪可疑行为(如经常在重要地点徘徊等等行为)从而采取相应的报警措施。
通常把报警系统设置于银行、机场、车站、码头、超市、办公大楼、住宅小区等地,以实现对这些场所的智能监控。
②虚拟现实跟踪现实世界人的姿态,从而创建一个虚拟的仿真场景,实现人与这个虚拟世界的交互。
该领域的具体应用涉及视频游戏、虚拟摄影棚、计算机动画等方面。
③高级用户接口指可以通过对用户手势的识别来代替传统的鼠标和键盘输入,从而实现人与计算机之间的智能交互。
此外,通过对手势语言的理解,还可以进行聋人与计算机之间的手语交流。
④运动分析人体运动分析可以运用于基于内容的视频检索领域。
例如可以检索在运动会上单杠比赛中运动员的杠上动作。
这样可以节省用户大量的查询视频资料的时间和精力。
另外一种应用是用于各种体育项目中,提取运动员的各项技术参数(如关节位置、角度和角速度,等等),通过分析这些信息,可以为运动员的训练提供指导和建议,有助于提高运动员的训练水平。
此外,还可以用于体育舞蹈动作的分析,以及临床矫形术的研究等领域。
⑤基于模型的视频编码通过提取一定的静态场景中人物的形态特征参数和3D姿态参数,以较低的数据量对视频数据流加以描述,实现视频数据的压缩和低比特率传送。
可以用于在因特网上展开远程视频会议以及VOD(Video-On-Demand)视频点播。
总之,人体运动跟踪的研究已涉及到计算机视觉、模式识别、视频图像处理等方面的理论问题和实际应用问题,对人体这一带有关节旋转运动的非刚体目标的跟踪与分析将会促进这些领域在理论上产生新的处理方法,并将对诸多应用领域产生潜在的影响。
2、行为识别研究难点行为识别发展至今,取得了很大的进展,在低层,中层和高层都取得了一定的突破,但是行为识别算法并不成熟,目前不存在一个算法适合所有的行为分类,3个视觉层次中都还有很多严峻的问题有待解决。
其研究的难点主要体现在以下几个方面:1)动作类内类间的变化太大对于大多数的动作,即使是同一动作都有不同的表现形式。
比如说走路,可以在不同的背景环境中完成,走路的速度也可以从慢到快,走路的步长亦有长有短。
其它的动作也有类似的结果,特别是一些非周期的运动,比如过马路时候的走路,这与平时周期性的走路步伐明显不同。
由此可见,动作的种类本身就很多,再加上每一种类又有很多个变种,所以给行为识别的研究带来了不少麻烦。
2)环境背景等影响环境问背景等因素的影响可谓是计算机视觉各个领域的最大难点。
主要有视角的多样性,同样的动作从不同的视角来观察会得到不同的二维图像;人与人之间,人与背景之间的相互遮挡也使计算机对动作的分类前期特征提取带来了困难,目前解决多视觉和遮挡问题,有学者提出了多摄像机融合通过3维重建来处理;另外其影响因素还包括动态变化和杂乱的背景,环境光照的变化,图像视频的低分辨率等。
3)时间变化的影响人体的行为离不开时间这个因素。
而我们拍摄的视频其存放格式有可能不同,其播放速度有慢有快,这就导致了我们提出的系统需对视频的播放速率不敏感。
4)数据的获取和标注既然把行为识别问题当成一个分类问题,就需要大量的数据来训练分类模型。
而这些数据是视频数据,每一个动作在视频中出现的位置和时间都不确定,同时要考虑同一种动作的不同表现形式以及不同动作之间的区分度,即数据的多样性和全面性。
这一收集过程的工作量不小,网上已经有一些公开的数据库供大家用来实验,这将在本文的第3部分进行介绍。
另外,手动对视频数据标注非常困难。
当然,有学者也提出了一些自动标注的方法,比如说利用网页图片搜索引擎,利用视频的字幕,以及利用电影描述的文本进行匹配。
5)高层视觉的理解上面一提到,目前对行为识别的研究尚处在动作识别这一层。
其处理的行为可以分为2类,一类是有限制类别的简单规则行为,比如说走、跑、挥手、弯腰、跳等。
另一类是在具体的场景中特定的行为,如检测恐怖分子异常行为,丢包后突然离开等。
在这种场景下对行为的描述有严格的限制,此时其描述一般采用了运动或者轨迹。
这2种行为识别的研究都还不算完善,遇到了不少问题,且离高层的行为识别要求还相差很远。
因此高层视觉的理解表示和识别是一个巨大的难题。
3人体行为分析研究一般的运动人体行为分析主要包括一下几个流程:1)数据库建立;2)运动人体检测;3)运动特征提取;4)行为理解与识别。
在我们的运动人体行为分析研究中,重点研究运动人体检测和运动特征提取。
如图1所示是运动行为分析研究的整体框架:图13.1运动目标检测对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步,运动检测即为从序列图像中将变化区域从背景图像中提取出来。
目前,已有的运动目标检测方法按照算法的基本原理可以分为三类:帧间差分法、背景减除法和光流法。
三类方法各有其优缺点。
(1)背景减除法背景减除法是预先选取不含前景运动目标的背景图像,然后将当前图像帧与背景图像相减得到前景目标。
最常用且有效的是背景减除法。
此类算法的缺点是由于通常需要缓冲若干帧来学习背景,因此往往需要消耗大量的内存,这使其使用范围受到了限制。
此外,对于大范围的背景扰动,此类算法的检测效果也不理想。
Stauffer和Grimson提出的高斯混合模型是使用最为广泛的背景建模方法。
高斯混合模型通过多个高斯分布对背景建模,每个分布对应一种背景像素的模态,从而能够适应像素层面上的背景扰动问题,并能通过对背景的不断更新,使系统能对背景的变化自适应。
但是,高斯混合模型对于全局光照变化、阴影非常敏感,对于缓慢的运动目标检测效果也不理想。
(2) 帧间差分法帧间差分法的主要思想就是利用视频图像序列中连续两帧或三顿的差异来检测发生运动的区域。
Lipton等人提出的用于实时视频流中运动冃标检测的算法就是顿间差分的方法[Lipton98]。
顿间差分法的特点是动态性强,能够适应动态背景下的运动目标检测。
但是,这类算法检测出的目标轮廓非常不理想,在目标内部会留有许多空洞,在目标运动较快时目标的轮廓会被扩大,在目标运动较慢时甚至有可能无法得到目标的边界。
(3)基于光流的运动目标检测算法基于光流的运动目标检测算法是利用光流方程计算出每个像素点的运动状态矢量,从而发现运动的像素点,并且能够对这些像素点进行跟踪。
在摄像机运动、背景变化时,光流法也能检测出运动目标,并且它能同时完成运动目标检测和跟踪,但是该方法的计算复杂度高,在没有专用硬件支持的情况下很难做到实时检测,同时,光流场的计算非常容易受到噪声、光照变化和背景扰动的影响。
采用光流场计算的方法也很难将运动目标的轮廓完整地提取出来。
3.2运动目标分类目标分类是指从运动目标检测到的前景运动区域中提取感兴趣目标区域。
复杂场景小检测到的前景区域可能包含不同种类的目标,如行人、车辆、飞鸟、刘云、摇动的树枝等,在人体运动分析系统中,只对运动人体感兴趣,因此需要对运动目标的类型进行分析识别,提取人体目标。
目前常用的目标分类方法有如图2:图23.3运动目标跟踪依据运动目标的表达和相似性度量, 运动目标跟踪算法可以分为四类: 基于主动轮廓的跟踪、基于特征的跟踪、基于区域的跟踪和基于模型的跟踪。
跟踪算法的精度和鲁棒性很大程度上取决于对运动目标的表达和相似性度量的定义, 跟踪算法的实时性取决于匹配搜索策略和滤波预测算法。
1)基于主动轮廓的跟踪Kass等人提出的主动轮廓模型, 即Snake模型, 是在图像域内定义的可变形曲线, 通过对其能量函数的最小化, 动态轮廓逐步调整自身形状与目标轮廓相一致, 该可变形曲线又称为Snake曲线。
Snake技术可以处理任意形状物体的任意形变,首先将分割得到的物体边界作为跟踪的初始模板, 然后确定表征物体真实边界的目标函数, 并通过降低目标函数值, 使初始轮廓逐渐向物体的真实边界移动。
基于主动轮廓跟踪的优点是不但考虑来自图像的灰度信息, 而且考虑整体轮廓的几何信息, 增强了跟踪的可靠性。
由于跟踪过程实际上是解的寻优过程, 带来的计算量比较大,而且由于Snake模型的盲目性, 对于快速运动的物体或者形变较大的情况, 跟踪效果不够理想2)基于特征的跟踪基于特征匹配的跟踪方法不考虑运动目标的整体特征, 只通过目标图像的一些显著特征来进行跟踪。
假定运动目标可以由惟一的特征集合表达, 搜索到该相应的特征集合就认为跟踪上了运动目标。
除了用单一的特征来实现跟踪外, 还可以采用多个特征信息融合在一起作为跟踪特征。
2)基于特征的跟踪基于特征的跟踪主要包括特征提取和特征匹配两个方面。
(1)特征提取,特征提取是指从景物的原始图像中提取图像的描绘特征,理想的图像特征应具备的特点是a)特征应具有直观意义,符合人们的视觉特性; b)特征应具备较好的分类能力, 能够区分不同的图像内容; c)特征计算应该相对简单,以便于快速识别; d)特征应具备图像平移、旋转、尺度变化等不变性。
目标跟踪中常用的运动目标的特征主要包括颜色、纹理、边缘、块特征、光流特征、周长、面积、质心、角点等。
提取对尺度伸缩、形变和亮度变化不敏感的有效特征至今仍是图像处理研究领域中一个比较活跃的方面。
(2)特征匹配,特征提取的目的是进行帧间目标特征的匹配, 并以最优匹配来跟踪目标。