数字图像处理实验报告maap数字图像处理大作业期末论文
matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。
二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。
从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。
其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。
此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。
频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。
常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。
假定原图像为f(x,y),经傅立叶变换为F(u,v)。
频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。
四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。
数字图像处理matlab版实验报告

数字图像处理实验报告(matlab版)一.实验目的:熟悉数字图像处理中各种椒盐噪声的实质,明确各种滤波算法的的原理。
进一步熟悉matlab的编程环境,熟悉各种滤波算法对应的matlab函数。
实验结果给以数字图像处理课程各种算法处理效果一个更直观的印象。
二.实验原理:1.IPT(图像处理工具箱)基本函数介绍1. imread函数该函数用于从图形文件中读出图像。
格式A=IMRAED(FILENAME,FMT)。
该函数把FILENAME 中的图像读到A中。
若文件包含一个灰度图,则为二维矩阵。
若文件包含一个真彩图(RGB),则A为一三维矩阵。
FILENAME指明文件,FMT指明文件格式。
格式[X,MAP]=IMREAD(FILENAME,FMT).把FILENAME中的索引图读入X,其相应的调色板读到MAP中.图像文件中的调色板会被自动在范围[0,1]内重新调节。
FMT的可能取值为jpg 或jpeg,tif或tiff,bmp,png,hdf,pcx,xwd。
2.imwrite函数该函数用于把图像写入图形文件中。
格式IMWRITE(A,FILENAME,FMT)把图像A写入文件FILENAME中。
FILENAME指明文件名, FMT指明文件格式。
A既可以是一个灰度图,也可以是一个真彩图像。
格式IMWRITE(X,MAP,FILENAME,FMT)把索引图及其调色板写入FILENAME中。
MAP必须为合法的MATLAB调色板,大多数图像格式不支持多于256色的调色板。
FMT的可能取值为tif或tiff,jpg或jpeg,bmp,png,hdf,pcx,xwd。
3. imshow函数显示图像。
格式IMSHOW(I,N).用N级离散灰度级显示灰度图象I。
若省略N,默认用256级灰度显示24位图像,64级灰度显示其他系统。
格式IMSHOW(I,[LOW HIGH]),把I 作为灰度图显示。
LOW值指定为黑色,HIGH指定为白色,中间为按比例分布的灰色。
《数字图像处理》期末大作业(1)

《数字图像处理》期末大作业大作业题目及要求:一、题目:本门课程的考核以作品形式进行。
作品必须用Matlab完成。
并提交相关文档。
二、作品要求:1、用Matlab设计实现图形化界面,调用后台函数完成设计,函数可以调用Matlab工具箱中的函数,也可以自己编写函数。
设计完成后,点击GUI图形界面上的菜单或者按钮,进行必要的交互式操作后,最终能显示运行结果。
2、要求实现以下功能:每个功能的演示窗口标题必须体现完成该功能的小组成员的学号和姓名。
1)对于打开的图像可以显示其灰度直方图,实现直方图均衡化。
2)实现灰度图像的对比度增强,要求实现线性变换和非线性变换(包括对数变换和指数变换)。
3)实现图像的缩放变换、旋转变换等。
4)图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理。
5)采用robert算子,prewitt算子,sobel算子,拉普拉斯算子对图像进行边缘提取。
6)读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标。
3、认真完成期末大作业报告的撰写,对各个算法的原理和实验结果务必进行仔细分析讨论。
报告采用A4纸打印并装订成册。
附录:报告模板《数字图像处理》期末大作业班级:计算机小组编号:第9组组长:王迪小组成员:吴佳达浙江万里学院计算机与信息学院2014年12月目录(自动生成)1 绘制灰度直方图,实现直方图均衡化 (5)1.1 算法原理 (5)1.2 算法设计 (5)1.3 实验结果及对比分析 (5)2 灰度图像的对比度增强 (5)2.1 算法原理 (5)2.2 算法设计 (5)2.3 实验结果及分析 (5)3 图像的几何变换 (5)3.1 算法原理 (5)3.2 算法设计 (5)3.3 实验结果及分析 (5)4 图像加噪(用输入参数控制不同噪声),然后使用空域和频域进行滤波处理 (5)4.1 算法原理 (5)4.2 算法设计 (6)4.3 实验结果及分析 (6)5 采用robert,prewitt,sobel,拉普拉斯算子对图像进行边缘提取 (6)5.1 算法原理 (6)5.2 算法设计 (6)5.3 实验结果及分析 (6)6 读入两幅图像,一幅为背景图像,一幅为含有目标的图像,应用所学的知识提取出目标 (6)6.1 算法原理 (6)6.2 算法设计 (6)6.3 实验结果及分析 (6)7 小结(感受和体会) (6)1 绘制灰度直方图,实现直方图均衡化1.1 算法原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
昆明理工大学数字图像处理期末报告范文

昆明理工大学数字图像处理期末报告范文数字图像处理期末大作业用自己拍摄的图像,完成以下作业:作业一、MATLAB图像处理基本操作一、实验目的掌握MATLAB语言中图象数据与信息的读取方法;掌握图像灰度调整。
二、实验要求用Matlab语言完成如下实验:1)打开一个BMP文件2)将其局部区域的灰度值进行改变3)另存为一个新的BMP文件三、程序源代码clearall;I=imread('lab1.bmp');%读入原图像ubplot(1,2,1);imhow(I);%显示原始图像title('原始BMP图像');J=imadjut(I,[0.3,0.7],[]);%调整图像灰度值imwrite(J,'newlab1.bmp');%另存为新图像ubplot(1,2,2);imhow(J);%显示局部灰度改变后的图像title('局部灰度改变后的图像');四、实验结果五、实验总结通过本次实验,我学习了使用MATLAB进行图像的读入读出操作,以及对图像选中区域的灰度进行改变。
初步熟悉了MATLAB工具软件对图像处理的应用。
作业二、图像高通、低通滤波一、实验目的学会用Matlab软件对图像傅里叶变换。
对图像进行低、高通滤波,观察频谱和图像变化。
二、实验内容Matlab编程实现图像傅立叶高通、低通滤波,给出算法原理及实验结果。
三、实验原理低通滤波器:容许低频信号通过,但减弱(或减少)频率高於截止频率的信号的通过。
用在绘制长期走势或均化。
高通滤波器:容许高频信号通过、但减弱(或减少)频率低於截止频率信号通过的滤波器。
强调细节。
四、程序源代码1)傅里叶高通滤波:源程序为:clearall;I=imread('lab2.jpg');I=rgb2gray(I);figure(1),imhow(I);title( '原图像');=ffthift(fft2(I));[a,b]=ize();a0=round(a/2);b0=round(b/2);d=1 0;p=0.2;q=0.5;fori=1:aforj=1:bditance=qrt((i-a0)^2+(j-b0)^2);ifditance<=dh=0;eleh=1;end;(i,j)=(p+q某h)某(i,j);end;end;=uint8(real(ifft2(iffthift())));figure(2);imhow();title('高通滤波所得图像');2)傅里叶低通滤波:源程序为:clearall;I=imread('lab2.jpg');I=rgb2gray(I);figure(1),imhow(I);title( '原图像');=ffthift(fft2(I));[a,b]=ize();a0=round(a/2);b0=round(b/2);d=1 0;fori=1:aforj=1:bditance=qrt((i-a0)^2+(j-b0)^2);ifditance<=dh=1;eleh=0;end;(i,j)=h某(i,j);end;end;=uint8(real(ifft2(iffthift())));figure(2);imhow();title('低通滤波所得图像');五、实验结果六、实验总结通过这次实验,我熟悉了MATLAB编程结构,学会使用MATLAB提供的库函数进行图像傅里叶变化。
(完整word版)数字图像处理 实验报告(完整版)

数字图像处理实验一 MATLAB数字图像处理初步一、显示图像1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中;2.利用whos 命令提取该读入图像flower.tif的基本信息;3.利用imshow()函数来显示这幅图像;实验结果如下图:源代码:>>I=imread('lily.tif')>> whos I>> imshow(I)二、压缩图像4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。
7.用imread()读入图像Sunset.jpg和Winter.jpg;8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小;9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。
其中9的实验结果如下图:源代码:4~6(接上面两个) >>I=imread('lily.tif')>> imfinfo 'lily.tif';>> imwrite(I,'lily.jpg','quality',20);>> imwrite(I,'lily.bmp');7~9 >>I=imread('Sunset.jpg');>>J=imread('Winter.jpg')>>imfinfo 'Sunset.jpg'>> imfinfo 'Winter.jpg'>>figure(1),imshow('Sunset.jpg')>>figure(2),imshow('Winter.jpg')三、二值化图像10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。
数字图像处理大作业报告

数字图像处理实验报告实验选题:选题二组员:学号:班级:指导老师:实验日期:2019年5月22日一、实验目的及原理1.识别出芯片的引脚2.熟悉并掌握opencv的某些函数的功能和使用方法原理:通过滤波、形态学操作得到二值图,再在二值图中设置条件识别引脚部分。
二、实现方案对图片滤波、调节阈值做边缘检测过滤掉一部分图片中干扰元素;然后通过膨胀、腐蚀操作来减少引脚的空心部分;再通过findContours()函数找到引脚的边缘并得到轮廓的点集,设置特定的长宽比和矩形面积识别引脚部分。
三、实验结果四、源码#include<iostream>#include<cmath>#include"opencv2/highgui/highgui.hpp"#include"opencv2/imgproc/imgproc.hpp"using namespace std;using namespace cv;int main(int argv, char **argc){//载入图片Mat srtImag = imread("2.jpg");Mat G_blur = srtImag.clone();//降噪blur(G_blur, G_blur, Size(5, 5));//imshow("降噪", G_blur);//Canny边缘检测Mat Canny_Imag = G_blur;Canny_Imag = Canny_Imag > 176;Canny(G_blur, Canny_Imag, 300, 50, 3);//imshow("边缘检测", Canny_Imag);//膨胀Mat element = getStructuringElement(MORPH_RECT, Size(10, 10));dilate(Canny_Imag, Canny_Imag, element);//imshow("膨胀", Canny_Imag);//腐蚀Mat element_1 = getStructuringElement(MORPH_RECT, Size(11, 11));erode(Canny_Imag, Canny_Imag, element_1);//imshow("腐蚀", Canny_Imag);//查找轮廓vector<vector<Point>>contours;vector<Vec4i>hierarchy;findContours(Canny_Imag, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);vector<vector<Point>> contour_s(contours.size());//该数组共有contours.size()个轮廓的点集vector<Rect> Rec_s(contours.size());//逼近多边形的点集数组//获得每个轮廓点集的逼近多边形的点集for (size_t i = 0; i < contours.size(); i++) {approxPolyDP(Mat(contours[i]), contour_s[i], 3,false);//contour_s存储逼近多边形的点集Rec_s[i]= boundingRect(contour_s[i]); //Rec_s存储最小包围矩形的点集}//筛选合适长宽比的矩形并将其画出来Mat result_Imag = srtImag.clone();for (size_t j = 0; j < contours.size(); j++) {double as_ra;//长宽比as_ra = Rec_s[j].height / Rec_s[j].width;if (as_ra > 3.3 && as_ra < 9.3 && Rec_s[j].area() > 20) { rectangle(result_Imag, Rec_s[j], Scalar(0, 255, 255), 2, 7);}}imshow("result", result_Imag);waitKey(0);return 0;}五、总结经过这次实验,我熟悉了对blur()、Canny()、dilate()、erode()、findContours()、approxPolyDP()等函数的使用,了解了Rect类的构成等。
数字图像处理实验报告(全部)

实验1直方图一.实验目的1.熟悉matlab图像处理工具箱及直方图函数的使用;2.理解和掌握直方图原理和方法;二.实验设备:1.PC机一台;2.软件matlab。
三.程序设计在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。
I=imread('cameraman.tif');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题四.实验步骤1. 启动matlab双击桌面matlab图标启动matlab环境;2. 在matlab命令窗口中输入相应程序。
书写程序时,首先读取图像,一般调用matlab自带的图像,如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像;3.浏览源程序并理解含义;4.运行,观察显示结果;5.结束运行,退出;五.实验结果:观察图像matlab环境下的直方图分布。
(a)原始图像 (b)原始图像直方图六.实验报告要求1、给出实验原理过程及实现代码:I=imread('coins.png');%读取图像subplot(1,2,1),imshow(I) %输出图像title('原始图像') %在原始图像中加标题subplot(1,2,2),imhist(I) %输出原图直方图title('原始图像直方图') %在原图直方图上加标题2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。
实验2 均值滤波一.实验目的1.熟悉matlab图像处理工具箱及均值滤波函数的使用;2.理解和掌握3*3均值滤波的方法和应用;二.实验设备:1.PC机一台;2.软件matlab三.程序设计在matlab环境中,程序首先读取图像,然后调用图像增强(均值滤波)函数,设置相关参数,再输出处理后的图像。
《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字图像处理数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。
数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。
数字图像处理技术已经在各个领域上都有了比较广泛的应用。
图像处理的信息量很大,对处理速度的要求也比较高。
MATLAB强大的运算和图形展示功能,使图像处理变得更加的简单和直观。
本文介绍了MATLAB 语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行数字图像处理,并通过一些例子来说明利用MATLAB图像处理工具箱进行图像处理的方法。
主要论述了利用MATLAB实现图像增强、二值图像分析等图像处理。
1.1 课题研究目的及意义数字图像处理(Digital Image Processing),就是利用数字计算机或者其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。
例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。
总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。
由于计算机处理能力的不断增强,数字图像处理学科在飞速发展的同时,也越来越广泛地向许多其他学科快速交叉渗透,使得图像作为信息获取以及信息的利用等方面也变得越来越重要。
目前数字图像处理的应用越来越广泛,已经渗透到工业、医疗保健、航空航天、军事等各个领域,在国民经济中发挥越来越大的作用。
MathWorks公司推出的MATLAB软件是学习数理知识的好帮手。
应用MATLAB 友好的界面和丰富、实用、高效的指令及模块,可以使人较快地认识、理解图像处理的相关概念,逐步掌握图像信号处理的基本方法,进而能够解决相关的工程和科研中的问题。
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。
随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大,已在国家安全、经济发展、日常生活中充当越来越重要的角色,对国计民生的作用不可低估。
2 数字图像处理的简介所谓数字图像就是把传统图像的画面分割成如图2-1所示的被成为像素(picture element, 简称pixel。
有时候也用pel这一简写词)的小的离散点,各像素的灰度值也是用离散值即整数值来表示的。
数字图像(digital imagine)和传统的图像即模拟图像(picture)是有差别的。
图2-1 数字图像为了从一般的照片,景物等模拟图像中得到数字图像,需要对传统的模拟图像进行采样与量化两种操作(二者统称为数字化)。
1.采样采样(sampling)就是把在时间上和空间上连续的图像变成离散点(采样点,即像素)的集合的一种操作。
图像基本上是在二维平面上连续分布的信息形式要把它输入到计算机中,首先要把二维信号变成一维信号,因此要进行扫描(scanning)。
最常用的扫描方法是在二维平面上按一定间隔顺序地从上方顺序地沿水平方向的直线(扫描线)扫描,从而取出浓淡值(灰度值)的线扫描(Laster扫描)。
对于由此得到的一维信号,通过求出每一特定间隔的值,可以得到离散的信号。
对于运动图像除进行水平,垂直两个方向的扫描以外,还有进行时间轴上的扫描。
通过采样,如设横向的像素数为M,纵向的像素数为N,则画面的大小可以表示为“M*N”个像素。
2.量化经过采样,图像被分解成在时间上和空间上离散分布的像素,但是像素的值(灰度值)还是连续值。
像素的值,是指白色-灰色-黑色的浓淡值,有时候也指光的强度(亮度)值或灰度值。
把这些连续的浓淡值或灰度值变为离散的值(整数值)的操作就是量化。
如果把这些连续变化的值(灰度值)量化为8bit,则灰度值被分成0-2552的256个级别,分别对应于各个灰度值的浓淡程度,叫做灰度等级或灰度标度。
在0-255的值对应于白-黑的时候,有以0为白,255为黑的方法,也有以0为黑,255为白的方法,这取决于图像的输入方法以及用什么样的观点对图像进行处理等,这是在编程时应特别注意的问题。
但在只有黑白二值的二值图像的情形,一般设0为白,1为黑。
对连续的灰度值赋予量化级的,即灰度值方法有:均匀量化(uniform quantization),线性量化(liner quantization),对数量化,MAX量化,锥形量化(tapered quantization)等。
3. 采样、量化和图像细节的关系上面的数字化过程,需要确定数值N和灰度级的级数K。
在数字图像处理中,一般都取成2的整数幂,即:N= (2.1)2nK= (2.2)2m一幅数字图像在计算机中所占的二进制存储位数b为:*log(2)**()m N N b N N m bit == (2.3)例如,灰度级为256级(m=8)的512×512的一幅数字图像,需要大约210万个存储位。
随着N 和m 的增加,计算机所需要的存储量也随之迅速增加。
由于数字图像是连续图像的近似,从图像数字化的过程可以看到。
这种近似的程度主要取决于采样样本的大小和数量(N 值)以及量化的级数K(或m 值)。
N 和K 的值越大,图像越清晰。
2.2 数字图像处理概述数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。
数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展(特别是离散数学理论的创立和完善);三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。
2.2.2 研究内容数字图像处理主要研究的内容有以下几个方面:(1)图像变换。
由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅里叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
(2)图像编码压缩。
图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
(3)图像增强和复原。
图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
(4)图像分割。
图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。
(5)图像描述。
图像描述是图像识别和理解的必要前提。
作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。
对于特殊的纹理图像可采用二维纹理特征描述。
随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。
(6)图像分类(识别)。
图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。
图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。
2.2.3 基本特点(1)数字图像处理的信息大多是二维信息,处理信息量很大。
如一幅256×256低分辨率黑白图像,要求约64kbit的数据量;对高分辨率彩色512×512图像,则要求768kbit数据量;如果要处理30帧/秒的电视图像序列,则每秒要求500kbit~22.5Mbit数据量。
因此对计算机的计算速度、存储容量等要求较高。
(2)数字图像处理占用的频带较宽。
与语言信息相比,占用的频带要大几个数量级。
如电视图像的带宽约5.6MHz,而语音带宽仅为4kHz左右。
所以在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本亦高,这就对频带压缩技术提出了更高的要求。
(3)数字图像中各个像素是不独立的,其相关性大。
在图像画面上,经常有很多像素有相同或接近的灰度。
就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上,而相邻两帧之间的相关性比帧内相关性一般说还要大些。
因此,图像处理中信息压缩的潜力很大。
(4)由于图像是三维景物的二维投影,一幅图象本身不具备复现三维景物的全部几何信息的能力,很显然三维景物背后部分信息在二维图像画面上是反映不出来的。
因此,要分析和理解三维景物必须作合适的假定或附加新的测量,例如双目图像或多视点图像。
在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。
(5)数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大。
由于人的视觉系统很复杂,受环境条件、视觉性能、人的情绪爱好以及知识状况影响很大,作为图像质量的评价还有待进一步深入的研究。
另一方面,计算机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究。
例如,什么是感知的初始基元,基元是如何组成的,局部与全局感知的关系,优先敏感的结构、属性和时间特征等,这些都是心理学和神经心理学正在着力研究的课题。
2.2.4 主要应用计算机图像处理和计算机、多媒体、智能机器人、专家系统等技术的发展紧密相关。
近年来计算机识别、理解图像的技术发展很快,也就是图像处理的目的除了直接供人观看(如医学图像是为医生观看作诊断)外,还进一步发展了与计算机视觉有关的应用,如邮件自动分检,车辆自动驾驶等。
下面仅罗列了一些典型应用实例,而实际应用更广。
(1)在生物医学中的应用主要包括显微图像处理;DNA显示分析;红、白血球分析计数;虫卵及组织切片的分析;癌细胞的识别;染色体分析等等。
(2)遥感航天中的应用军事侦察、定位、导航、指挥等应用;多光谱卫星图像分析;地形、地图、国土普查;地质、矿藏勘探;天文、太空星体的探测及分析等。