脂肪酸的分解代谢
脂肪酸分解代谢步骤简述。

脂肪酸分解代谢步骤简述。
脂肪酸分解代谢是指将体内脂肪酸储备转化为能量的代谢过程。
下面是脂肪酸分解代谢的步骤简述:
1. 脂肪酸激活:脂肪酸进入细胞后,通过脂肪酸激活酶将脂肪酸与辅酶A结合形成活化的脂肪酰辅酶A,进入线粒体内膜。
2. β-氧化反应:线粒体内膜上有一种酶叫做丙酮酸羧化酶,可
以将脂肪酰辅酶A切割成乙酰辅酶A和一条短链脂肪酸。
接
着乙酰辅酶A进入三羧酸循环产生ATP能量。
3. 重复β-氧化反应:短链脂肪酸再次进入脂肪酰辅酶A形成
活化的脂肪酰辅酶A,再次通过丙酮酸羧化酶切割成乙酰辅酶
A和更短的脂肪酸。
这个过程会一直重复,直到脂肪酸完全分解为乙酰辅酶A。
4. ATP产生:乙酰辅酶A进入三羧酸循环,通过氧化磷酸化
过程,使NADH和FADH2组成的高能电子传递链逐步释放
出能量,最终产生ATP能量。
同时,乙酰辅酶A在三羧酸循
环中被逐步分解,产生二氧化碳和水,释放出更多能量。
5. 脂肪酸分解产生的代谢产物:脂肪酸分解产生的主要代谢产物是乙酰辅酶A和二氧化碳。
乙酰辅酶A进入三羧酸循环生
成ATP,而二氧化碳则从体内排出。
脂肪酸的分解

脂肪酸的分解
脂肪酸的分解是指将脂肪酸分解成较小的分子,以释放能量和提供营养物质给身体使用的过程。
脂肪酸的分解主要发生在线粒体内的三羧酸循环(也称为柠檬酸循环)和β-氧化中。
1. β-氧化:脂肪酸先经过一系列反应,被连续氧化成β-酮基,然后被酰辅酶A拆分为较短的脂肪酰辅酶A(这是一种活化
后的脂肪酸),其中产生一个分子烯丙基辅酶A、一个分子二烯丙基辅酶A或一个分子己二烯辅酶A。
而后短链脂肪酸进
一步被酰辅酶A拆分成较小的分子,最终短链酰辅酶A进入
三羧酸循环。
2. 三羧酸循环:短链酰辅酶A进入线粒体内的三羧酸循环,
通过一系列反应氧化成二氧化碳和水,生成高能物质如ATP,并提供营养物质如NADH、FADH2等给细胞进行能量代谢。
脂肪酸的分解不仅可以提供能量,还可以合成体内其他物质,如合成胆固醇、合成脂蛋白等。
需要注意的是,脂肪酸的分解会产生一定数量的二氧化碳和水,二氧化碳会通过呼吸排出体外,所以脂肪酸的分解也起到了排出体内废物的作用。
脂肪酸的分解代谢

饱和脂肪酸β-氧化的实验证据:
1904年,的标记实验:
实验前提:已知动物体内不能降解苯环 实验方案:用苯基标记的饱和脂肪酸饲喂动物
马尿酸
苯乙尿酸
•《脂肪酸的分解代谢》
2. 脂肪酸的β-氧化
(1)脂肪酸的活化
脂肪酸首先在线粒体外或细胞质中被活化,形成脂酰 CoA,然后进入线粒体或在其它细胞器中进行氧化。
饱和脂肪酸的氧化分解 ❖β-氧化作用 ❖α-氧化作用 ❖ω-氧化作用
不饱和脂肪酸的氧化分解 ❖单不饱和脂肪酸的氧化分解 ❖多不饱和脂肪酸的氧化分解
▪ 奇数C原子脂肪酸的氧化分解
•《脂肪酸的分解代谢》
㈠ 饱和脂肪酸的β-氧化作用
概念
脂肪酸的β-氧化作用
能量计算 乙醛酸循环 乙醛酸循环的生物学意义 乙酰COA的可能去路
脂肪酸的活化
COA-SH+ATP AMP+PPi
Pi
RCH2CH2CH2COOH
脂酰COA合酶 (硫激酶)
RCH2CH2CH2CO~SCOA
(脂酰COA)
氧化脱H 水合 氧化脱H
FAD
FADH2
-
脂酰COA脱H酶 (3种)
RCH2C=CCO~SCOA
(△2反式烯脂酰COA)
烯脂酰COA水合酶
-
OH
HMGCOA 裂解酶
乙酰-COA
自动
丙酮
D - -羟丁酸脱氢酶
乙酰乙酸
NADH+H+ NAD+
•《脂肪酸的分解代谢》
D - -羟丁酸
一般情况:乙酰乙酸在肌肉线粒体中的分解
+
-酮酯酰COA转移酶
TCA
生化2017-脂类代谢

高密度脂蛋白 high density lipoprotein (HDL)
70
71
血浆脂蛋白的组成
CM VLDL
密度
<0.95
0.95~1.006
脂类 含TG最多, 含TG
组
80~90%
成 蛋白 最少, 1%
质
50~70% 5~10%
L-甘油3-P
甘油
甘油激酶
55
从 甘油-3-磷酸和3个脂酰-CoAs形成三酰甘油
56
甘油三酯的合成代谢
甘油三酯 (肝脏、脂肪组织)
磷酸甘油
脂肪酸
磷酸二羟丙酮
甘油的磷酸化
糖代谢
乙酰CoA
脂肪酸氧化
57
第四节
胆固醇代谢
58
59
一、胆固醇的合成
• 合成部位:肝细胞质基质及光面内质网 • 合成原料:
血液 新生CM
FFA
外周组织
成熟CM
CM残粒
LPL
脂蛋白脂肪酶 肝细胞摄取
74
2. 极低密度脂蛋白(VLDL) ——运输内源性TG
• 由肝细胞合成,将肝细胞合成的TG、磷脂、胆固 醇及其酯转运至其他组织,不断脱脂,转变为 LDL。
VLDL
VLDL
残粒
FFA
FFA
外周组织
LDL
75
3. 低密度脂蛋白(LDL) ——转运内源性胆固醇至肝外 组织
第十一章 脂类代谢及其调节
宋崴
1
第一节 脂肪酸代谢
2
一、脂肪酸的分解代谢
脂肪动员
甘油(glycerol)
脂肪酸(fatty acid)
第二十八章脂肪酸的分解代谢

HOCH2(CH2)n COO醇酸脱氢酶
NAD(P) + NAD(P)H+H+
OHC(CH2)n COO醛酸脱氢酶
-OOC(CH 2)n
ω -二羧酸的过
程。
NAD(P) +
NAD(P)H+H+
COO-
四、酮 体
(一)、乙酰-CoA的代谢结局 进入柠檬酸循环;合成固醇类;合成脂肪酸; 合成酮体。
(二)、肝脏中酮体的形成
O RCH2CH2CH2C H O 脂 酰 CoA脱 氢 酶 SCoA RCH2C C C SCoA FAD FADH2 H
水化
• 在烯脂酰CoA水合酶催化下,,-烯脂酰 CoA水化,生成L(+)--羟脂酰CoA。
H O RCH2C C C H SCoA H2O 烯 脂 酰 CoA水 合 酶
OH OH
脱羧酶
CO2
CH3CHOHCH2COOH
--羟丁酸
CH3COCOOH
丙酮
乙酰辅酶A 丙酮 乙酰乙酸 β -羟丁酸
(三)、酮体的氧化
脱氢酶
乙酰乙酸
心肌等
骨骼肌等
乙酰乙酰 辅酶A
β -羟丁酸
• 利用酮体的酶有两种,即 • 琥珀酰CoA转硫酶(主要存在于心、肾、脑和骨 骼肌细胞的线粒体中) • 乙酰乙酸硫激酶(主要存在于心、肾、脑细胞线 粒体中)
脂 酰 CoA合 成 酶 RCH2CH2CH2COOH + ATP O RCH2CH2CH2C AMP + CoASH
O
RCH2CH2CH2C AMP + PPi O RCH2CH2CH2C SCoA + AMP
(二)、脂肪酸转入线粒体
第十一单元脂代谢 脂肪酸的分解代谢

第十一单元脂代谢28章脂肪酸的分解代谢29章脂类的生物合成脂肪酸的空间构象三酰甘油的结构示意图28章脂肪酸的分解代谢线粒体中脂肪酸氧化的化学步骤可分为三步:1 )长链脂肪酸降解为两个碳原子单元--乙酰CoA2 )乙酰CoA经过柠檬酸循环氧化成CO23 ) 从还原的电子载体到线粒体呼吸链的电子传递1 脂质的消化、吸收和传送2 脂肪酸的氧化3 不饱和脂肪酸的氧化4 酮体5 磷脂的代谢6 鞘脂类的代谢7 甾醇的代谢8 脂肪酸代谢的调节1 脂质的消化、吸收和传送1.1 脂肪的消化发生在脂质—水的界面处脂类先进行消化,在小肠内的各种脂类水解酶的作用下水解成较小的简单化合物--甘油和脂肪酸。
由于脂类是水不溶性的,而消化作用的酶却是水溶性的,因此脂类的消化是在脂质—水的界面处发生的。
消化的速度取决于界面的表面积。
在小肠蠕动的“剧烈搅拌下”,在胆汁盐的乳化作用下,消化量大幅增加。
1.2 胆汁盐促进脂类在小肠中被吸收包括胆酸、甘氨胆酸和牛黄胆酸胆汁盐对于脂类的乳化作用可以增加脂类的消化吸收。
脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。
1.3 吸收脂类的消化产物,甘油单脂、脂肪酸、胆固醇、溶血磷脂可与胆汁酸乳化成更小的混合微团(20nm),这种微团极性增大,易于穿过肠粘膜细胞表面的水屏障,被肠粘膜的拄状表面细胞吸收。
被吸收的脂类,在柱状细胞中重新合成甘油三酯,结合上蛋白质、磷酯、胆固醇,形成乳糜微粒(CM),经胞吐排至细胞外,再经淋巴系统进入血液。
在脂肪组织和骨骼肌毛细血管中,在脂蛋白脂肪酶(lipoprotein lipase,LPL)作用下,乳糜微粒中的三酰甘油被水解为游离脂肪酸和甘油,游离脂肪酸被这些组织吸收,甘油被运送到肝脏和肾脏,经甘油激酶和甘油-3-磷酸脱氢酶作用,转化为磷酸磷酸二羟丙酮2 脂肪酸的氧化2.1 脂肪酸的活化2.2 脂肪酸转入线粒体2.3 β-氧化2.4 脂肪酸氧化是高度的放能过程2.5 甘油的氧化2.1 脂肪酸的活化脂肪酸的分解(代谢)发生于原核生物的细胞溶胶及真核生物的线粒体基质中。
脂肪酸无氧代谢

脂肪酸无氧代谢
脂肪酸的无氧代谢通常发生在细胞缺氧或氧气供应受限的情况下,这个过程被称为脂肪酸的无氧氧化或厌氧代谢。
在脂肪酸的无氧代谢过程中,脂肪酸首先被活化并转化为酰基辅酶A (acyl-CoA),这一步骤需要消耗能量。
然后,酰基辅酶A 会在没有氧气的情况下进行代谢,产生一些中间产物,如丙酮酸和乳酸。
具体来说,脂肪酸的无氧代谢会经历以下几个步骤:
1. 脂肪酸活化:脂肪酸与辅酶A(CoA)结合形成酰基辅酶A。
2. 脱氢:酰基辅酶A 经过脱氢反应,形成烯酰基辅酶A。
3. 水合:烯酰基辅酶A 与水反应,形成β-羟基酰基辅酶A。
4. 脱水:β-羟基酰基辅酶A 脱水,形成α,β-不饱和酰基辅酶A。
5. 还原:α,β-不饱和酰基辅酶A 被还原,形成脂肪酸。
脂肪酸的无氧代谢产生的能量相对较少,并且会产生大量的乳酸。
在正常情况下,细胞更倾向于使用脂肪酸的有氧代谢来产生更多的能量。
28 脂肪酸的分解代谢

Δ2 –反-烯脂酰辅酶A
烯脂酰CoA水合酶
H
RCH2C-CH2COSCoA
OH
β-羟脂酰辅酶A
β-氧化的反应过程4---脱氢
H
RCH2C-CH2COSCoA
OH
β-羟脂酰辅酶A
NAD+
羟脂酰CoA脱氢酶
O
NADH+H+
RCH2C-CH2COSCoA
β-酮脂酰辅酶A
β-氧化的反应过程5---硫解
脂酶A1、A2、C、D的作用位点如脂质一章图示,它们 广泛存在于各种类型的细胞中。
(三) 吸收
在人和动物体内,小肠可以吸收脂类的水解产物,包 括脂肪酸(70%)、甘油、β-甘油一酯以及胆碱、部分水 解的磷脂和胆固醇等。
其中甘油、单酰甘油同脂酸在小肠粘膜细胞内重新合 成三酰甘油。新合成的三酰甘油与少量磷脂和胆固醇混 合在一起,在一层脂蛋白的包裹下形成乳糜微粒,从小 肠粘膜细胞中分泌到细胞外液,进入血液,最终被组织 吸收。
ATP ADP
NAD+ NADH
甘油
α-磷酸甘油
甘油磷酸激酶
磷酸二羟丙酮
α-磷酸甘油 脱氢酶
3磷酸甘油醛
糖代谢
(一)脂肪酸的活化
合酶在催化反应中没有 ATP直接参加反应,如若ATP直 接参加反应,则是合成酶。 (这里就应当是合成酶)
RCOOH + ATP
脂肪酸
脂酰CoA合酶
RCO-AMP+PPi 脂酰AMP
Biochemistry
概述
• 脂肪酸氧化的化学反应可分为三个方面: • 一是长链脂肪酸降解为两个碳原子单元,即乙酰-CoA。 • 二是乙酰-CoA经过柠檬酸循环氧化成CO2 。 • 三是从还原的电子载体到线粒体呼吸链的电子传递。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磷脂的代谢(自学)
五.脂肪酸代谢的调节控制
(一) 脂肪酸进入线粒体的调控 脂肪酸分解代谢的调控主要是由线粒体控制脂 肪酸进入线粒体内.主要的调控点是肉碱酰基 转移酶Ⅰ, 它强烈的受丙二酸-coA抑制,丙二 酸-coA处于高水平时,它指向脂肪酸的合成,抑 制水解.
(二) 心脏中脂肪酸氧化的调节
脂肪酸的氧化是心脏的主要能源,心脏用能减少,乙酰 coA与NADH积累,前者抑制硫解酶的活性。
3.许多类脂及其衍生物有重要的生理作用。如固醇类激素、 维生素D及胆汁酸等,磷酸肌醇有细胞内信使的作用,前 列腺素有各种生理效应,而糖脂与细胞的识别和免疫方 面有着密切的关系。
4.人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿症等都与 脂类代谢紊乱有关。
一.脂肪酸的结构
1.脂肪酸的结构 脂肪酸有一长的烃链,其一端为羧基。绝 大多数的脂肪酸有着偶数的碳原子,而且 不具侧链。饱和脂肪酸在其碳-碳原子这 间没有双键。但单或多-不饱和则有一个 或多个双键。
脂肪酸的完全氧化可以产生大量的能量。例如软脂酸 (含16碳)经过7次-氧化,可以生成8个乙酰CoA,每一 次-氧化,还将生成1分子FADH2和1分子NADH。软脂酸完 全氧化的反应式为: C16H31CO~SCoA + 7 CoA-SH + 7 FAD + NAD+ +7 H2O 8 CH3CO~SCoA + 7 FADH2 + 7 NADH + 7 H+ 按照一个NADH产生2.5个ATP,1个FADH2产生1.5个ATP, 1 个乙酰CoA完全氧化产生10个ATP计算,1分子软脂酰CoA 在分解代谢过程中共产生108个ATP。 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 108 – 2 = 106 个ATP。
几种重要的脂肪酸结构式
常见的脂肪酸的名 及分子式
第二节、脂肪的分解代谢 一.甘油三脂的水解
脂肪(甘油三脂)的分解是经过脂肪酶 催化。组织中有三种脂肪酶,一步步地 把甘油三酯水解成甘油和脂肪酸。这三 种酶是脂肪酶、甘油二酯脂肪酶、单脂 酰甘油单酯脂肪酶。其水解的步骤如下:
甘油三脂 的水解
二.甘油的代谢
பைடு நூலகம்
四. 酮体的代谢
当来自-氧化的乙酰COA不能及时彻底氧化时,过 量的乙酰COA转化成乙酰乙酸及D--羟丁酸。 D--羟丁酸、乙酰乙酸及它的非酶分解产物丙酮 合在一起称为酮体。
1.酮体的合成途径
(1)二分子乙酰辅酶A经硫解酶催化生 成乙酰乙酰辅酶A
硫解酶
(2) -羟基--甲基戊二酰COA (HMG COA)的形成
甘油经血液输送到肝脏后,在ATP存在下,由甘油激酶催 化,转变成3-磷酸甘油。这是一个不可逆反应过程。 3磷酸甘油在磷酸甘油脱氢酶(含辅酶NAD+)作用下,脱氢 形成磷酸二羟丙酮。
2 CH2OPO3 磷酸甘油脱氢酶 甘油激酶 CHOH CHOH C O ATP ADP CH2OH NAD+ NADH+ H+ CH OH CH2OH 2
(5)丙酮的生成
乙酰乙酸脱羧酶
患糖尿病时,乙酰乙酸形成速度大于分解。因此若糖尿 病患者不加治疗时,他们血液中会出现大量酮体,常可 以在他们的呼吸中闻到一种甜味。
2.酮体的分解
(1)乙酰乙酸在肌肉线粒体中经3-酮脂 酰辅酶A转移酶催化,能被琥珀酰辅酶A活 化成乙酰乙酰辅酶A
(2)乙酰乙酰辅酶A被-氧化酶系中的硫解酶 裂解成乙酰辅酶A进入三羧酸循环
O RCH2CH2CH2C H O 脂 酰 CoA脱 氢 酶 SCoA RCH2C C C SCoA FAD FADH2 H
水化
在烯脂酰CoA水化酶催化下,,-烯脂酰 CoA水化,生成L(+)--羟脂酰CoA。
H O RCH2C C C SCoA H H2O 烯 脂 酰 CoA水 合 酶
OH
(二)不饱和脂肪酸 的氧化
1.不饱和脂肪酸一样循-氧化进行降解
2.氧化至双键处需“烯酯酰CoA异构酶”将 顺式烯酯酰CoA转化成反式烯酯酯CoA,多不 饱和酸氧化(产生烯酸),还需“2,4-二烯 酯酰CoA酶还原酶 3.继续氧化
油酸(18:1) 的氧化
亚油酸(18:2)的氧化
(三)含奇数碳脂肪酸的氧化
O
RCH2 CH CH C SCoA
氧化
L--羟脂酰CoA在L--羟脂酰CoA脱 氢酶催化下,脱氢生成-酮脂酰CoA。 反应的氢受体为NAD+。此脱氢酶具有立 体专一性,只催化L(+)--羟脂酰CoA的 脱氢。
OH O
羟 脂 酰 CoA脱 氢 酶 烯
O
O
RCH2 CH CH C SCoA NAD
1.循-氧化进行降解 2.产物除了已酰COA,还有丙酰COA
丙酰COA的去向
1.转化成琥珀酰COA进入三羧酸循环
2.通过-羧丙酸支路进行,形成已酰辅酶A 进入三羧酸循环
6.脂肪酸的其它氧化方式
-氧化:在动物体中,C10 或C11脂肪酸的碳 链末端碳原子(-碳原子)可以先被氧化, 形成二羧酸。二羧酸进入线粒体内后,可以 从分子的任何一端进行-氧化,最后生成的 琥珀酰CoA可直接进入三羧酸循环。 -氧化:在植物种子萌发时,脂肪酸的-碳 被氧化成羟基,生成-羟基酸。-羟基酸可 进一步脱羧、氧化转变成少一个碳原子的脂 肪酸。上述反应由单氧化酶催化,需要有O2、 Fe2+和抗坏血酸等参加。
脂肪酸跨线粒体内膜的转运
(一)脂肪酸的-氧化
脂肪酸的-氧化的假说: Franz Knoop 将不同长短的直链脂肪酸的甲基 -碳原子与体内不被氧化的苯基连接并喂狗,然后 检查尿中的最终产物。结果如下:
脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化分 解时,碳链的断裂发生在脂肪酸的-位, 即氧化是从羧基端-位碳原子开始的,每 一次氧化切除一个2碳片段。脂肪酸的-氧 化是含偶数碳原子或奇数碳原子饱和脂肪 酸的主要分解方式。 • 脂肪酸的-氧化在线粒体中进行,
(三)激素对脂肪酸代谢的调节 胰高血糖素与肾上腺素使脂肪组织cAMP含量 升高, cAMP变构激活cAMP-依赖性蛋白激酶, 后者增加甘油三酯脂肪酶磷酸化水平,从而加 速脂解作用。胰岛素作用与之相反。
(四) 机体代谢的需要
(五)长时间膳食的改变导致相关酶水平 的调整
课后作业
1.由1mol硬脂酰-CoA的经—氧化和TCA循环彻底降 解可获取多少ATP? 2.由1mol油酸的经—氧化和TCA循环彻底降解可获 取多少ATP?
第28章
脂肪酸的分解代谢
1.脂肪的氧化分解 2.脂肪酸的合成 3.磷脂的代谢 4.胆固醇的代谢 5.脂蛋白 6.脂类代谢紊乱引发的病症
第一节 概述
脂类主要包括甘油三酯(脂肪)、磷脂 和类固醇等。脂类代谢是指在生物体细 胞内上述各类物质的生物合成和分解过 程。
•脂类代谢对于生命活动具有重要意义
1. 脂肪在动物体内和植物种子及果实中大量存储。脂肪在 氧化时可以比其他能源物质提供更多的能量。 2. 磷脂是生物膜的主要组成成分。由于是兼性分子,构成 膜外面亲水,内面疏水的特性,使得细胞内环境得以相 对稳定。
O RCH2 C
O CH C SCoA
硫解酶 CoASH
O RCH2C
O SCoA + CH3C SCoA
B氧化
4.-氧化产物的去向
FADH2,NADH
进入TCA循环,彻底的降解 脂肪合成 乙酰COA 参与其它代谢 酮体、帖类、固醇类 物质合成 进入乙醛酸循环 琥珀酸 糖异生
5.脂肪酸-氧化产生的能量
CH2OH
CH2OPO3
2-
-
三.脂肪酸的分解代谢
1. -氧化 氧化, 水合, 氧化, 断裂 2. TCA循环 3.电子传递与氧化磷酸化 (p235)
1. 脂肪酸的活化
脂肪酸进入细胞后,首先在线粒体外或胞浆中 被活化,形成脂酰CoA,然后进入线粒体进行氧 化。 在脂酰CoA合成酶催化下,由ATP提供能量,将 脂肪酸转变成脂酰CoA:
题1答案: 1mol硬脂酰-CoA经—氧化产生9mol乙酰-CoA。总反应式为: 软脂酰-CoA+8FAD+8NAD++8CoA+8H20 CoA+8FADH2+8NADH+ 8H+ 9 mol乙酰-
FADH2和NADH在线粒体的电子传递链中被氧化,
产生ATP:
乙酰-CoA经三羧酸循环彻底氧化, 产生ATP: 所以1mol硬脂酰-CoA彻底氧化产生ATP:
脂 酰 CoA合 成 酶 RCH2CH2CH2COOH + ATP O RCH2CH2CH2C AMP + CoASH O
RCH2CH2CH2C AMP + PPi
脂酰腺苷酸
O
RCH2CH2CH2C
SCoA + AMP
2.脂酰CoA转运入线粒体
催化脂酰CoA氧化分解的酶存在于线粒体的基质中,所以 脂酰CoA必须通过线粒体内膜进入基质中才能进行氧化分 解。 脂酰CoA需要借助一种特殊的载体肉碱(L- 羟基-y-三甲 铵基丁酸)才能转运到线粒体内。脂酰CoA在肉碱脂酰转移 酶催化下,与肉碱反应,产生脂酰肉碱,然后通过线粒体 内膜。脂酰肉碱在线粒体内膜的移位酶帮助下穿过内膜, 并与线粒体基质中的CoA作用,重新生成脂酰CoA, 释放出 肉碱。肉碱再在移位酶帮助下,回到线粒体外的细胞质中。
HMG COA合成酶
(3) -羟基-´-甲基戊二 酰COA裂解
--裂解酶