平均数的参数估计与显著性检验

合集下载

6教育统计学第六章

6教育统计学第六章
S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2

SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。

第二讲-第五章 t检验-2011

第二讲-第五章 t检验-2011
表5-4 粤黄鸡饲养试验增重
二、配对设计两样本平均数的差异显著性检验
非配对设计要求试验单位尽可能一致。如 果试验单位变异较大,如试验动物的年龄、体 重相差较大,若采用上述方法就有可能使处理 效应受到系统误差的影响而降低试验的准确性 与精确性。 为了消除试验单位不一致对试验结 果的影响,正确地估计处理效应,减少系统误 差,降低试验误差,提高试验的准确性与精确 性,可以利用局部控制的原则,采用配对设计。
表 非配对设计资料的一般形式
非配对设计两样本平均数差异显著性检 验的基本步骤如下:
(一)提出无效假设与备择假设
H0:1 2 ,H A:1 2
(二)计算t值 计算公式为:
t x1 x2 S x1x2
df (n1 1) (n2 1)
其中:
S x1x2
受 H A:1 2 ,表明长白后备种猪与蓝塘后
备种猪90kg背膘厚度差异极显著,这里表现 为长白后备种猪的背膘厚度极显著地低于蓝 塘后备种猪的背膘厚度。
【例5.4】 某家禽研究所对粤黄鸡进行饲 养对比试验,试验时间为60天,增重结果如 表5-4,问两种饲料对粤黄鸡的增重效果有无 显著差异?
一是非配对设计或成组设计两样本平均数差 异显著性检; 二是配对设计两样本平均数差异显著性检。
一、非配对设计两样本平均数的差异显著性检验 非配对设计或成组设计是指当进行只有两个处
理的试验时,将试验单位完全随机地分成两个组, 然后对两组随机施加一个处理。在这种设计中两组 的试验单位相互独立,所得的二个样本相互独立, 其含量不一定相等。非配对设计资料的一般形式见 下表。
两尾概率为0.01的临界t值:t0.01(18) =2.878,即:
P(|t|>2.101)= P(t>2.101) + P(t <-2.101)=0.05

统计假设测验(显著性检验)

统计假设测验(显著性检验)

判定是否属小概率事件的概率值叫显著水平 (significant level), 一般以α表示。农业上常取0.05 和0.01。凡计算出的概率p小于α的事件即为小概率 事件。
统计上,当1%<p ≤5%称所测差异显著, p ≤1%称差异极显著, p>5%称差异不显著,
所以,统计假设测验又叫差异显著性测验 (difference significance test)
在实际检验时,计算概率可以简化,因为在标准正态分布下:
P(|u|>1.96)=0.05, P(|u|>2.58)=0.01, 因此,在用u分布作检验时, |u|≥1.96,表明概率P<0.05,可在0.05水平上否定H0; |u,|≥表2.明58P,>表0.明05概,率可P接<受0.H001。,不可必在再0.计01算水实平际上的否概定率H0。|u|<1.96
第二节 单个平均数的假设检验
单个平均数的假设检验就是检验某一样本所 属总体平均数是否和某一指定的总体平均数相同 ,检验所依据的理论基是平均数的抽样分布
一 单个平均数u检验
(一)应用条件: 1 总体参数μ0和σ2为已知 。 2 总体参数μ0已知, σ2 为未知,但
为大样本(n≥30),可用S2估计。
此错误的概率为β。
β
β
x1 x1 μ0
x2 x2μ
x
否定区间
接受区间
由图可见,β的大小与|μ-μ0|、α有反比关系;而与标准

有 正比关系。
x
n
实际中控制犯两类错误的措施有以下几种:
①适当增大水平间差距,即增大|μ-μ0|。
②增加n。
③根据试验目的,通过调整α的大小来控制犯错 误的概率。即 当试验者主观希望获得差异显著(不显著) 的检验结果时,(此时易接受第一类(二类)错 误),应适当减小(增大) α。

生物统计附试验设计课件-第5章 t检验

生物统计附试验设计课件-第5章  t检验

上一张
下一张
P(|t|>2.878)= P(t>2.878) 主 页 退出
+ P(t<-2.878)=0.01
由于 根据两样本数据计算所得的 t 值 为 2.426,介于两个临界t值之间,即:
t0.05<2.426<t0.01 所以,| t |≥2.426的概率P介于0.01 和0.05之间,即:0.01 <P< 0.05。 图5-1 | t |≥2.426的两尾概率 如图5-1所示,说明 无效假设成立的可能 性, 即试验的表面效应为试验误差的可能性在 0.01─ 0.05之间。
第一节 显著性检验的基本原理
一、显著性检验的意义
随机抽测10头长白猪和10头大白猪经产母猪的产 仔数,资料如下:
长白:11,11,9,12,10,13,13,8,10,13 大白: 8, 11,12,10,9, 8 ,8, 9,10,7
经计算,得长白猪 10头经产母猪产仔平均数 x1
=11头,标准差S1=1.76头;大白猪10头经产母猪
与 2 差异极显著”,在计算所得的t值的右上方
标记“* *”。
上一张 下一张 主 页 退 出
这 里 可 以 看 到 ,是否否定无效假

H 0:1
,是用实际计算出的检验统计量t的绝对
2
值与显著水平α对应的临界t值 : ta比较。若|t|≥ta,
则在α水平上否定
H 0:1
上一张 下一张 主 页 退 出
样本,通过样本研究其所代表的总体。例如,设 长白猪经产母猪产仔数的总体平均数为 1 , 大 白猪经产母猪产仔数的总体平均数为 2 ,试 验 研究的目的,就是要给 1 、2 是否相同 做出推 断。由于总体平均数 1、2未知 ,在进行显著性 检验时只能以样本平均数 x1 、x2作为检验对象, 更确切地说,是以( x1 - x2 )作为检验对象。

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验

公卫执业医师-综合笔试-卫生统计学-第三单元总体均数的估计和假设检验[单选题]1.两个样本均数比较作t检验,其他条件不变,犯第Ⅱ类错误的概率最小的是A.α=0.05B.α=0.(江南博哥)01C.α=0.1D.α=0.2E.该问题提法不对正确答案:D参考解析:一类错误α和二类错误β有一定的关系,α越大,β越小。

所以本题答案选择D。

掌握“Ⅰ型错误与Ⅱ型错误”知识点。

[单选题]5.下列关于均数的标准误的叙述,错误的是A.是样本均数的标准差B.反映样本均数抽样误差大小C.与总体标准差成正比,与根号n成反比D.增加样本含量可以减少标准误E.其值越大,用样本均数估计总体均数的可靠性越好正确答案:E参考解析:样本均数的标准差称为均数的标准误,是描述样本均数抽样误差大小的指标,其大小与总体标准差成正比,与根号n成反比。

标准误越小,抽样误差越小,用样本均数估计总体均数的可靠性越好。

故选项E叙述错误,本题选E。

掌握“标准误及可信区间★”知识点。

[单选题]6.关于可信区间,正确的说法是A.可信区间是总体中大多数个体值的估计范围B.95%可信区间比99%可信区间更好C.不管资料呈什么分布,总体均数的95%的可信区间计算公式是一致的D.可信区间也可用于回答假设检验的问题E.可信区间仅有双侧估计正确答案:D参考解析:按一定的概率估计总体参数的可能范围,该范围称为可信区间,可以用来估计总体均数的可能所在范围,常按95%可信度估计总体参数的可能范围。

掌握“标准误及可信区间★”知识点。

[单选题]7.同类定量资料下列指标,反映样本均数对总体均数代表性的是A.四分位数间距B.标准误C.变异系数D.百分位数E.中位数正确答案:B参考解析:样本均数的标准差即均数的标准误,简称标准误。

可用来描述样本均数的抽样误差,标准误越小,则说明样本均数的抽样误差越小,样本均数对总体均数的代表性越好。

掌握“标准误及可信区间★”知识点。

[单选题]8.比较两药疗效时,下列可作单侧检验的是A.己知A药与B药均有效B.不知A药好还是B药好C.己知A药与B药差不多好D.己知A药不会优于B药E.不知A药与B药是否有效正确答案:D参考解析:已知A药不会优于B药,只有低于B药的一种可能,所以可作单侧检验。

第五章t-检验

第五章t-检验

第五章t-检验第五章 t 检验统计推断是根据样本和假定模型对总体作出的以概率形式表述的推断; 包括假设检验和参数估计。

第⼀节显著性检验的基本原理⼀、显著性检验的意义随机抽测10头长⽩猪和10头⼤⽩猪经产母猪的产仔数,资料如下:长⽩:11,11,9,12,10,13,13,8,10,13 ⼤⽩:8, 11,12,10,9, 8 ,8, 9,10,7=11头, S 1=1.76头; =9.2头, S 2=1.549头。

仅凭 - =1.8头,得出长⽩与⼤⽩产仔数不同的结论是不可靠的。

因为如再随机抽样,⼜可得两样本。

由于抽样误差的随机性,两样本平均数就不⼀定是11头和9.2头,其差值也不⼀定是1.8头。

这种差异有两种原因:品种造成的差异;试验误差(或抽样误差)。

两个总体间的差异⽐较:⼀种⽅法是计算出总体参数进⾏⽐较。

准确,但常常是不可能进⾏的;另⼀种通过样本研究其所代表的总体。

为什么以样本平均数作为检验对象呢?这是因为样本平均数具有下述特征:1、离均差的平⽅和∑( x - )2最⼩。

说明样本平均数与样本各个观测值最接近,平均数是资料的代表数。

2、样本平均数是总体平均数的⽆偏估计值,即E ()=µ。

3、根据统计学中⼼极限定理,样本平均数服从或逼近正态分布。

由上所述,⼀⽅⾯有依据由样本平均数和的差异来推断总体平均数µ1 、µ2相同与否,另⼀⽅⾯⼜不能仅据样本平均数表⾯上的差异直接作出结论,其根本原因在于试验误差(或抽样误差)的不可避免性。

Xi= µ + εi1x 2x 1x 2x x x 1x 2x εµεµ+=+∑==∑n n x x i i /)(µ1-µ2 处理效应;试验误差( - )。

从试验的表⾯效应与试验误差的权衡⽐较中间接地推断处理效应是否存在,是显著性检验的基本思想。

⼆、显著性检验的基本步骤(⼀)⾸先对试验样本所在的总体作假设假设µ1 = µ2 或µ1 -µ2 =0,意义是试验的表⾯效应:- =1.8头是试验误差,处理⽆效,称为⽆效假设,记作 H 0µ1 = µ2 或µ1 -µ2 =0 , 是被检验的假设,通过检验可能被接受,也可能被否定。

总体均数的估计和t检验


它不受样本大小和样本变异性的影响,是衡量数据分布中心位
03
置的重要参数。
总体均数的点估计
点估计(Point Estimation):使用 样本统计量来估计总体参数的方法。
样本均数(Sample Mean):作为总 体均数的点估计量,它是从样本数据 中计算得出的平均值。
总体均数的区间估计
要点一
区间估计(Interval Estimation)
根据t统计量的显著性,得出配对观测值之 间是否存在显著差异的结论。
配对样本t检验的应用
01
比较同一受试者在不同时间点的生理指标或心理指 标是否存在显著差异。
02
比较同一受试者在不同条件下的行为表现是否存在 显著差异。
03
比较不同治疗方法的效果是否存在显著差异。
04
CHAPTER
两独立样本t检验
两独立样本t检验的概念
它适用于在实验设计时将观测值配对的情况,例如同一受试者在不同时间 点或不同条件下获得的观测值。
配对样本t检验的目的是检验两组配对观测值的均值是否存在显著差异。
配对样本t检验的步骤
1. 数据收集
收集两组配对观测值的数据,确保数据来源可靠、准确。
2. 数据整理
将数据整理成适合进行t检验的表格形式,包括配对观测值的编 号、观测值、差值等。
两独立样本t检验是用来比较 两个独立样本的总体均数是否
有显著差异的统计方法。
它适用于两个独立样本,且 每个样本的观察值相互独立,
不受其他因素的影响。
两独立样本t检验的前提假设 是:两个样本的总体均数相等, 且每个样本的观察值服从正态
分布。
两独立样本t检验的步骤
01
02
03

显著性检验

显著性检验T检验零假设,也称稻草人假设,如果零假设为真,就没有必要把X纳入模型,因此如果X确定属于模型,则拒绝零假设Ho,接受备择假设H1,(Ho:B2=0 H1:B2≠0)假设检验的显著性检验法:t=(b2-B2)/Se(b2)服从自由度为(n-2)的t分布,如果令Ho:B2=B2*,B2*是B2的某个数值(若B2*=0)则t=(b2-B2*)/Se(b2)=(估计量—假设值)/假设量的标准误。

可计算出的t值作为检验统计量,它服从自由度为(n-2)的t分布,相应的检验过程称为t检验。

T检验时需知:①,对于双变量模型,自由度为(n-2);②,在检验分析中,常用的显著水平α有1%,5%或10%,为避免选择显著水平的随意性,通常求出p值,p值充分小,拒绝零假设;③可用半边或双边检验。

双边T检验:若计算的ItI超过临界t值,则拒绝零假设。

显著性水平临界值t0.01 3.3550.05 2.3060.10 1.860单边检验:用于B2系数为正,假设为Ho:B2<=0, H1:B2>0显著性水平临界值t0.01 2.8360.05 1.8600.10 1.397F检验(多变量)(联合检验)F=[R2/(k-1)]/(1-R2)(n-k)=[ESS(k-1)]/RSS(n-k).n为观察值的个数,k 为包括截距在内的解释变量的个数,ESS(解释平方和)= ∑y^i2RSS(残差平方和)= ∑ei2TSS(总平方和)= ∑yi2=ESS+RSS.判定系数r2=ESS/TSSF与R2同方向变动,当R2=0(Y与解释变量X不想关),F为0,R2值越大,F值也越大,当R2取极限值1时,F值趋于无穷大。

F检验(用于度量总体回归直线的显著性)也可用于检验R2的显著性—R2是否显著不为0,即检验零假设式(Ho:B2=B3=0)与检验零假设R2为0是等价的。

虚拟变量虚拟变量即定性变量,通常表明具备或不具备某种性质,虚拟变量用D表示。

第七章 平均数差异的显著性检验


n
——第一个与第二个变量的总体方差; r——两个变量的相关系数 n——样本的容量(n对相关样本)
2 12 2
10
第一节 平均数差异显著性检验的基本原理
二、平均数之差的标准误 平均数之差的标准误——两个总体标准差已知 2、独立样本——
D

2 1
n1


2 2
n2
n1、n2——第一个与第二个样本的容量
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: 分别用平均数差异的标准误的三种不同形式计算t值: ①用D计算
t
D
D D
2
n( n 1)
( D ) / n
2
19
第二节 相关样本平均数差异的显著性检验
一、配对组的情况 例1: 检验的步骤: ②用总体标准差估计值S计算
23
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 32人的射击小组经过三天集中训练,训练前后分数如表, 问三天集训有无明显效果?
检验的步骤:
(1)提出假设
H0:μ1≤μ2(或μD≤0) H1:μ1>μ2(或μD>0)
24
第二节 相关样本平均数差异的显著性检验
二、同一组对象的情况 例1 检验的步骤: (2)选择检验统计量并计算其值 ——假定训练前后射击得分是从两个正态总体抽出的相关样 本,那么它们差数的总体也呈正态分布; ——而差数的总体标准差σD未知, ——于是样本的差数平均数与差数的总体平均数的离差统计 量呈t分布。 ——但因差数的数目n=32>30,t分布接近正态,也可以用 Z检验近似处理。
25
第二节 相关样本平均数差异的显著性检验

4样本均数的显著性检验

一、方差的同质性检验
方差的同质性是样本均数检验的前提; 方差的同质性检验,就是要以样本的方
差的关系来推断其总体方差是否同质;
1.单个样本方差的同质性检验
例4.1. 一个混杂的小麦品种,株高的标准差σ0 = 14cm,经一定的方法提纯后,随机从提纯后的 群体中抽取10株,测得株高(cm)分别为: 90,105,101,95,100,101,105,93,97,100 问:提纯后的群体是否比原群体整齐?
df e 查临界tα值,利用误差均方 S xi. x j. 计算均数
差异标准误 MSe ,因而又不同于每次利用两组数 据进行多个平均数两两比较的检验法。
➢LSD法适用于各处理组与对照组比较而处理组间不进
行比较的比较形式。
(2)最小显著极差法
(LSR法 ,Least significant ranges)
一个整体看待,把观测值总变异的平方和 及自由度按照变异原因,分解为处理效应 和实验误差的平方和及自由度,进而获得 处理效应和实验误差的总体方差估计值; 然后在一定概率意义上对处理效应与实验 误差的总体方差的估计值进行显著性比较, 检验各样本所属总体平均数是否相等,从 而找出影响总变异的主要因素。
表1 k个处理每个处理有n个观测值的数据模式
方差分析中总变异的分解
总变异平方和
(
x ij
)2用SS
T
(
x ij
)2估计,可分解为:
(1)处理效应的平方和
:
(i
)2, 用SS
t
( xi
x )2估计
(2)试验误差的平方和
:
(
x ij
)2用SS
i.
e
(
x ij
x )2估计 i.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
值之差的抽样分布 需考虑的问题:
– 相关样本还是独立样本 – 两总体方差σ12和σ22是否已知;如果未知, 是 否满足σ12 = σ22 ; – 两总体是否正态分布; – 两样本为大样本还是小样本。
两样本均数之差的抽样分布
• 总体正态,方差已知,样本均数之差服从 正态分布。 • 总体正态,方差未知,且方差齐,样本均 数之差服从df=(n1+n2-2)的t分布;方差 不齐,则近似服从t’分布。 • 总体非正态,大样本时,样本均数之差近 似服从正态分布。 • 样本均数之差的平均数等于总体平均数之 差,其方差的计算依独立(相关),方差 齐(不齐)而定。
两相关样本平均数差异的 显著性检验
• 如果两个样本是相关样本,则有
t
( X1 X 2 ) D Di / n i 1 i 1 n(n 1)
n 2 i n 2
其中D=X1-X2
例题(P126)
• 为了比较两种不同教学法的效果,随机 抽取了10名小学生,记录下他们使用两 种教学法的成绩如下。问两种教学法有 无显著差异?
例题6-9(P123)
• 为了比较两种教学法的效果,对照组和 实验组各20名学生,记录下他们的成绩。 问两种教学法有无显著差异?
两独立样本均值之差的抽样分布 2 2 σ1 和σ2 未知,且 不等
• 若两个总体均为正态分布总体,但是两 总体方差未知,且知道σ12≠σ22 ,则有:
t'
( X 1 X 2 ) ( 1 2 ) S S n1 n2
样本均值的抽样分布 2 ——正态总体、σ 未知时
X t ~ t n 1 S/ n
2 ( X X ) i i 1 n
S
n 1
t 分布的特征
• t 分布与正态分布的相似之处: – t 分布基线上的t值从-∞~+∞;
– 从平均数等于0处,左侧 t 值为负,右侧 t 值为正;
– 曲线以平均数处为最高点向两侧逐渐下降,尾部 无限延伸,永不与基线相接,呈单峰对称形。 • 区别之处在于: – t 分布的形态随自由度( df=n-1 )的变化呈一簇 分布形态(即自由度不同的 t 分布形态也不同)。 – 自由度逐渐增大时,t 分布逐渐接近正态分布。
例题(P117)
• 已知总体标准差为3.5。N=40,平均分为 79,总体分布为负偏。试估计总体平均 的99%置信区间。
例题(P118)
• 采用新教法的全班n=26,平均数为74, 估计的标准差为10。全年级的平均分为 70.问新教法是否提高了教学效果。
例题(P119)
• 全省物理竞赛成绩,总平均为61。某市 学生168人,平均为59.4,估计标准差为 18.7。问该市平均与全省平均有无差异。
两独立样本均值之差的抽样分布 σ12和σ22已知
• 若 X 1 是独立地抽自总体X1~N(μ1,σ12)的一个容 量为n1的样本的均值, X 2 是独立地抽自总体 X2~N(μ2,σ22)的一个容量为n2的样本的均值, 则有:
X1 X 2 ~ N , 1 2 n1 n2
2 1 2 2
~ t df '
非正态总体,大样本时
( X 1 X 2 ) ( 1 2 ) S S n1 n2
2 1 2 2
Z'
相关样本
• 两个样本内个体之间存在着一一对应的关系, 这两个样本称为相关样本。 • 常见的两种情况:
– 用同一测验对同一组被试在试验前后进行两次测 验 , 所 获 得 的 两 组 测 验 结 果 ; ----repeated measures design – 根据某些条件基本相同的原则,把被试一一匹配 成对,然后将每对被试随机地分入实验组和对照 组,对两组被试施行不同的实验处理之后,用同 一测验所获得的测验结果。----matched-group design
例题(P114)
• 锻炼时间。n=61,平均数为26,估计总 体方差为25。试估计全校学生的平均锻 炼时间。
例题(P115)
• 高二年级英语水平测试。12人成绩分别 为83,91,62,50,74,68,70,65,85,71,58,63。试 估计该年级考生测试成绩的平均数。 • 总体平均数的95%C.I为[62.42,77.58] • 已知去年学生的平均分为65,问今年学 生的平均分与去年学生有无差异?
例题(P115)
• 高二年级英语水平测试。12人成绩分别 为83,91,62,50,74,68,70,65,85,71,58,63。试 估计该年级考生测试成绩的平均数。
样本均值的抽样分布 ——总体非正态时
• 总体非正态、总体方差已知时 大样本时,样本均数近似服从正态分布 • 总体非正态、总体方差σ2未知时 当总体为非正态分布时,若总体方差未 知,样本为大样本,可以利用 t 分布或 正态分布近似求解;样本为小样本时无 解。
• 甲省是否高于乙省?
两独立样本均值之差的抽样分布 2 2 σ1 和σ2 未知,且相等
• 如果σ12=σ22 ,则有:
t
( X 1 X 2 ) ( 1 2 ) (n1 1) S (n2 1) S 1 1 ( ) n1 n2 2 n1 n2
2 1 2 2
~ tn1 n2 2
第六章 平均数的参数估计与 显著性检验
样本平均数的抽样分布特点
• 样本平均数的平均数等于总体平均数, 样本平均数的方差等于总体方差除以n • 总体正态,方差已知,样本均数服从正态 • 总体正态,方差未知,样本均数服从df=n1的t分布 • 总体非正态,方差已知,大样本时样本均 数近似服从正态 • 总体非正态,方差未知,大样本时样本均 数近似服从df=n-1的t分布,或近似服从正 态
2 1 2 2
Z
( X 1 X 2 ) ( 1 2 )

2 1
n1


2 2
~ N (0,1 )
2
n2
例题6-7(P122)
• 甲乙两校100名16岁男生的智商。平均分 分别为115和111。总体标准差为15. • 两校学生智商是否有差异?
例题6-8(P122)
• 一年级语文。甲省抽180人,平均分为82, 总体标准差为11.5;乙省抽160人,平均 分为78.42,总体标准差为10.5. • 两省成绩有无显著差异?
学生号 A法成绩 B法成绩 1 2 3 4 83 83 5 79 85 6 94 87 7 74 57 8 77 49 82 58 88 72 61 69
相关文档
最新文档