一次函数的图像的应用面积问题

合集下载

一次函数中的面积问题

一次函数中的面积问题

一次函数中的面积问题(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--设L: y= kx11113232BOC AOB S OB C D S ∆∆=⋅⋅==所以1C D =1,C1(-1 , y ) ,代入y=x+3 , y = 2所以C1(-1 , 2 ) 同理:C2(-2 , 1)3、如图,已知直线PA :)0(>+=n n x y 与x 轴交于A,与y 轴交于Q,另一条直线x n m m x y 与)(2>+-=轴交于B,与直线PA 交于P 求: (1)A,B,Q,P 四点的坐标(用m 或n 表示)(2)若AB=2,且S 四边形PQOB=65,求两个函数的解析式.主要练习用字母表示其它的量,建立方程的思想。

两点间的距离公式: AB=A B x x -或 AB=A By y -AB=A Bx x -=()2mn --=2再根据四边形面积公式建立等式。

求解m ,n4、已知直线2+-=x y 与x 轴、y 轴分别交于A 点和B 点,另一条直线 b kx y +=)0(≠k 经过点)0,1(C ,且把AOB ∆分成两部分 (1)若AOB ∆被分成的两部分面积相等,则k 和b 的值(2)若AOB ∆被分成的两部分面积比为1:5,则k 和b 的值答案:(1)2,2=-=b k (2)①32,32=-=b k ②2,2-==b k5、已知一次函数332y x =-+的图象与y 轴、x 轴分别交于点A 、B ,直线y kx b =+经过OA 上的三分之一点D ,且交x 轴的负半轴于点C ,如果AOB DOC S S ∆∆=,求直线y kx b =+的解析式.二、利用解析式求面积1、直线b kx y +=过点A (-1,5)和点)5,(-m B 且平行于直线x y -=,O 为坐标原点,求AOB ∆的面积.2、 如图,所示,一次函数b kx y +=的图像经过A ,B 两点,与x 轴交于C 求:(1)一次函数的解析式; (2)AOC ∆的面积3、已知,直线y=2x+3与直线y=-2x-1.(1)求两直线交点C 的坐标;(2)求△ABC 的面积.(3)在直线BC 上能否找到点P,使得S △APC =6, 若能,请求出点P 的坐标,若不能请说明理由。

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。

,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。

6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。

,把厶AoB的面积分为2:1的两部分,求直线I的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧
解决一次函数与面积结合的问题需要掌握一些基本的数学技巧和思维方法。

一次函数通常表示为y = mx + c的形式,其中m和c 分别代表斜率和截距。

面积问题涉及到计算图形的面积,可以是矩形、三角形、梯形等各种形状的图形。

首先,对于一次函数与面积结合的问题,我们通常需要确定函数的表达式,并根据具体问题建立函数与图形面积之间的关系。

例如,如果要计算一次函数与x轴之间的面积,可以通过积分或几何方法求解。

对于矩形面积问题,可以利用一次函数的性质建立函数与矩形的关系,进而求解面积。

其次,要注意利用一次函数的性质来简化面积计算。

例如,对于一次函数y = mx + c,可以利用其斜率m的正负来判断图形在x 轴上方还是下方,从而简化面积计算的步骤。

另外,利用一次函数的对称性和平移性也能够简化面积计算的过程。

另外,对于特定形状的图形,可以利用一次函数的性质建立函数与图形面积之间的方程,然后通过方程求解面积。

例如,对于三角形,可以利用一次函数的性质建立直线与x轴之间的关系,然后
计算三角形的面积。

对于梯形,可以利用一次函数的性质建立两条直线与x轴之间的关系,然后计算梯形的面积。

总之,解决一次函数与面积结合的问题需要灵活运用一次函数的性质和面积计算的方法,建立函数与图形面积之间的关系,并通过方程求解面积。

同时,需要注意简化计算步骤,利用一次函数的对称性和平移性,以及对特定形状图形的特殊处理,来提高解题效率。

希望以上技巧对你有所帮助。

一次函数与面积问题

一次函数与面积问题

一次函数常与三角形或四边形的面积相结合进行考查,两种类型的题目比较常见:(1)由函数图像求面积;(2)由面积求点坐标。

遇到第一种类型题目时,找准三角形的底和高是解题的关键,特别是遇到钝角三角形。

如果无法直接求解,可以利用割补法、铅锤法等方法进行转化。

遇到第二种类型题目时,要特别注意,很容易出错,不要忘记使用绝对值。

01类型一:由函数图像求图形面积例题1:如图,直线l1:y=-3x+3与x轴交于点A,直线l2经过点B(4,0),C(3,-1.5),并与直线l2交于点D.(1)求直线l2的函数解析式;(2)求△ABD的面积.分析:求l2的函数解析式,利用待定系数法,已知点B(4,0)、点C (3,-1.5),代入解析式中求出K、b得值即可得到一次函数解析式。

求△ABD的面积,三角形有一边在x轴上,求三角形的面积可直接利用三角形的面积公式,选择x轴上的线段AB为底,那么点D纵坐标的绝对值即为三角形的高,因此需要求出点B坐标。

点B是两直线的交点,联立方程组即可求得点B坐标。

本题主要是有函数图像求得三角形的面积,属于基础题。

02类型二:由面积求点坐标例题2:如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2).(1)求直线AC的表达式;(2)求△OAC的面积;(3)动点M在线段OA和射线AC上运动,是否存在点M,使△OMC 的面积是△OAC的面积的14?若存在,求出此时点M的坐标;若不存在,请说明理由.分析:(1)由点C和点A的坐标,利用待定系数法即可求得函数的解析式;(2)求△AOC的面积,由题可知该三角形可选OC作为底,点A的横坐标的绝对值即为该三角形的高,点A与点C坐标已知,可通过三角形的面积公式直接求出。

(3)当△OMC的面积是△OAC的面积的1/4时,根据面积公式即可求得M的横坐标的绝对值,然后代入解析式即可求得M的坐标.由面积求点坐标时,一定要注意绝对值的使用,注意分情况进行讨论。

一次函数图象中的面积问题

一次函数图象中的面积问题

例 4 已知直线 Y :一 +2与 轴 、 Y轴分别交于点 A、 点 B, 另一直线 Y=k x+b ( k ≠0 ) 经过点 C ( 1 , 0 ) 与直


s ∞ = + S A A o B  ̄ - 了 1
S A A C D: c・ DE, A C =I , DE =y 0 ,
・ . .
即(

・ .
+v / 芝

) < 8
> 0, 点评此题 中用 Nhomakorabea 替 换
T, 缩小分 母 , 放 大分
数, 问题获解.


_ 『< = z / Y


总之 , 利用放缩法 解题 时 , 应 把握 住放 缩 的 目标 和 放缩 的适度 , 问题才能得到合理解决. ) 放
k+b=0,
4 了 2)

/ c E A\

‘ ・
i 争 号 . 解 之 尼 2 ,
T— z / h - - -  ̄= 1的大小.
√n
( 上接 6 6页 )
应 用相 关知识使问题迅速获解.
≠ 丽 , 于是 ( 丽


。 . ‘ o ≠b , . ・ . 丽 r ) > O .
) 并
点评
大为 ( 丽
解 题 的关键 是 将 (
+ 丽 ) +( 丽




\/ B

其坐标为 ( ‰, Y o ) .
・ . ’
点A 、 点 B是 直线 Y= 一 + 2与 轴 、 Y轴 的交
点,
‘ . .
点A ( 2 , 0 ) , 点n ( o , 2 ) .

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例

北师大版八年级数学上册4.3一次函数图象与面积问题优秀教学案例
(四)反思与评价
1.引导学生对自己在学习过程中的思考、方法、结果进行反思,培养学生自我评价的能力。
2.组织学生进行小组内、小组间的评价,让学生在评价中相互学习、共同进步。
3.教师要关注学生的学习过程,从多维度、多角度评价学生的学习成果,给予肯定和鼓励。
4.引导学生将所学知识与实际生活相结合,进行拓展应用,提高学生的数学素养。
2.讲解一次函数图象与面积问题的解决方法,如利用图象交点、解析几何方法等。
3.通过例题演示,让学生跟随教师一起解决一次函数图象与面积问题,活中的应用价值。
(三)学生小组讨论
1.设计具有探究性、挑战性的问题,让学生在小组内进行讨论交流。
针对这一问题,我设计了本节课的教学案例,旨在通过引导学生观察、思考、探究,使他们在解决实际问题的过程中,体会一次函数图象与面积问题的联系,提高解决问题的能力。教学案例围绕一个实际问题展开,让学生在解决问题的过程中,自然而然地涉及到一次函数图象与面积问题的知识点。通过案例的引导,使学生能够将所学知识与实际问题紧密结合,提高他们的数学应用能力。
2.鼓励每个小组成员积极发表自己的观点,共同探讨问题的解法。
3.教师在讨论过程中,关注每个小组的学习进展,及时给予指导和鼓励。
(四)总结归纳
1.让学生用自己的语言总结一次函数图象与面积问题的解法及注意事项。
2.教师对学生的总结进行点评,纠正错误,完善归纳。
3.引导学生将所学知识进行整合,形成体系,提高学生的数学素养。
4.教师在问题导向过程中,要善于启发、点拨,引导学生发现规律,归纳总结。
(三)小组合作
1.合理划分学习小组,培养学生团队合作、互助学习的意识。
2.设计具有探究性、挑战性的学习任务,激发学生合作学习的动力。

一次函数与二次函数的面积问题

一次函数与二次函数的面积问题

一次函数与二次函数的面积问题一、引言在高中数学中,我们学习了一次函数和二次函数,它们是数学中非常重要的概念。

本文将探讨一次函数与二次函数的面积问题,通过几个具体的例子,帮助读者理解并解决这类问题。

二、一次函数的面积一次函数又称为线性函数,其代数表达式为$y=ax+b$。

为了计算一次函数在特定区间上的面积,我们可以使用定积分的方法。

2.1一次函数的几何图像一次函数的几何图像是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与$y$轴的交点。

2.2一次函数的面积计算我们考虑一次函数$y=ax+b$在区间$[x_1,x_2]$上的面积。

首先,我们需要确定该函数在该区间上的单调性。

如果$a>0$,则函数是递增的,如果$a<0$,则函数是递减的。

接下来,我们使用定积分的定义来计算面积。

一次函数的面积可以表示为$$S=\i nt_{x_1}^{x_2}(a x+b)dx$$根据定积分的性质,我们可以求解出这个积分。

2.3一次函数面积的例子让我们通过一个具体的例子来解决一次函数的面积问题。

例子:计算函数$y=2x+1$在区间$[1,3]$上的面积。

解:首先,确定函数是递增的,因为斜率$a=2$是正数。

然后,我们计算积分:$$S=\i nt_{1}^{3}(2x+1)dx$$将积分求解出来,得到$S=8$。

因此,函数$y=2x+1$在区间$[1,3]$上的面积为8。

三、二次函数的面积二次函数的代数表达式为$y=a x^2+bx+c$。

与一次函数类似,我们也可以使用定积分的方法计算二次函数在特定区间上的面积。

3.1二次函数的几何图像二次函数的几何图像是一条抛物线,其开口方向由二次系数$a$的正负决定,顶点决定了抛物线的最低(或最高)点。

3.2二次函数的面积计算我们考虑二次函数$y=ax^2+b x+c$在区间$[x_1,x_2]$上的面积。

与一次函数类似,我们先确定函数在该区间上的单调性。

接着,我们使用定积分的定义来计算面积。

一次函数图象中的面积问题(初二)

一次函数图象中的面积问题(初二)

一次函数图象中的面积问题(初二)在函数图象面积问题中,要理解函数的原理和定义,才能更有效地计算函数图象的面积。

函数是用来表示定义域和值域之间一对一关系的经典数学工具。

一般来说,函数定义域被称为“自变量”,值域被称为“因变量”。

在函数图象中,通常情况下我们可以利用自变量和因变量之间的函数关系来计算函数图象中的面积。

计算函数图象面积有多种方法可选,分为定积分法和分段法。

定积分法是最常用的一种计算方法,涉及到用定积法来求解,主要在求解积分上应用。

它利用定积分的概念,将要求的面积分解成无数个小的长方形,它们的横轴代表自变量,纵轴代表因变量,面积的总和就是我们要求的函数图象的面积。

一般当函数为直线时,定积分法容易计算,因此称为简化积分法。

另外,还有一种计算方法叫做分段法,它要求我们将函数图象分成若干段,然后分别求解每一段的函数图象面积。

这里分段的方法有以下几种:①直接分段法,即在边界点处断开函数;②折线法,即将把函数分解成连续的折线;③隐式分段法,即将函数定义上的定义域和值域都分成若干段。

经过上述分段后,对每一段具体函数图象面积可以用定积分法或其他方法来计算,最后将每一段面积求和即为整体函数图象面积。

总之,函数图象面积计算一般常用的方法有定积分法和分段法,各有优缺点。

由于定积分法要求将函数面积分解成无限小的矩形块,对于函数的连续性要求非常高,而分段法需要把函数分解成若干段,并且需要精细分析函数的上升段,下降段等,但同时也可以在给定的范围内计算函数的面积,从而获得较精确的结果,可以根据具体情况取舍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、P(a,b)是第一象限内在直线y=x-3上一点,已 知A(0,4),三角形AOP的面积为S,(1)用b表示a , (2)写出S关于b的解析式;(3)若三角形AOP的
面积为10,求点P的坐标
D
C
o
A
E
B
x
F
变式:
如图:正方形ABCD边长为4,将此正方形置于坐标系
中点A的坐标为(1,0)。(1)过点C的直线
y
4 3
x
8 3
与X轴交与E, 求 S AE(CD2)若直线l经过点E且将正方形
ABCD分成面积相等的两部分,求直线l的解析式。
Y
D C
A
B
E
综合练习
1已知一次函数y=kx+b的图像与反比例函数 y=a/x相交于A(2,4)B(-4,m)两点,(1)求两个 函数解析式。(2)求三角形AOB的面积。(3) 当一次函数的值大于反比例函数的值时,x的取值
(3,0)且平行于y轴的两条直线所围成的梯形 ABCD的面积为 1 6 ,求y=kx+4的解析式。
3
y
2 y x4
3
A oD
B Cx
2、直线 l1:y=kx+b过点B(-1,0)与y轴交于点C,
直线
l
:y=mx+n与l
2
1
交于点P(2,5)且过点A
(6,0),过点C与 l平2 行的直线交X轴于点D
y 2x 2
与y轴所围成的图形的面积
1、已知直线 y x m与直1线 3
的交点A在第四象限
y2 x 7m 39
(1)求正整数m的值; m=1
(2)求交点A的坐标; ( 5 ,- 1 ) 33
(3)求这两条直线与x轴所围成的三角形的面积
S 1 36
2、如例图2所示:直线y=kx+b经过点(B0,23 ) 与点C(-1,3)
且与x轴交与点A,经过点E(-2,0)的 直线与OC平行,并且
与直线y=kx+b交与点D,
(1)求BC所在直线的函数解析式;(2)求点D的坐标; (3)求四边形CDEO的y面积。
D
C B
E
A O
x
总结
1、解题策略:画图像,看图 像,求交点,分解图形
2、数学思想:数形结合思想。
练习与提高:
1:如图,由x轴,直线y=kx+4及分别过(1,0)
一次函数的图像的应用 (面积问题练习)
已知直线L经过点(-2,4),且与坐标轴围成一 个等腰三角形, (1)求直线的函数的解析式 (2)求所得三角形的周长及面积
注意:用坐标值表示线段长时要加上绝对值符号,以防漏解
练习:
1、在直角坐标系中, 一次函数的图像与直线 y 2平x 行3,且图像与两坐标轴围成的三角形 面积等于4,求一次函数的 解析式。
y 2x 4或y 2x 4
2、已知正比例函数和一次函数的图像如 图所示,其中交点A(3,4),且OA=1/2OB. y
求(1)正比例函数和一次函数解析式(2)

三角形AOB的面积。
O
(1)y 4 x、y 14 x 10
3
3
1 (2)S AOB 2 •10• 3 15
A X
B
求直线 y 1 x和 4 2
(1)求直线CD的函数解析式;
(2)求四边形APCD的面积
Y
P
C
B
D
O
A X
3、如图,已知长方形ABCD的边长AB=9,AD=3,现 将此长方形置于坐1 标系中,使AB在x轴的正半轴上, 经F。过(点1C)的求直点y线E,B2,Dx ,A2的与坐x标轴;交(与2点)E求,四与边Y轴形交A与EC点D 的面积。 y
相关文档
最新文档