蛋白质含量测定

合集下载

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内一种重要的有机化合物,具有构建细胞结构、调节生理功能等重要作用。

因此,准确测定蛋白质的含量对于生物科学研究和临床诊断具有重要意义。

本文将介绍几种常用的蛋白质含量测定方法及其原理。

一、比色法比色法是一种常用的蛋白质含量测定方法,其原理是利用蛋白质与某些特定试剂形成显色物,根据显色物的光吸收特性来测定蛋白质的含量。

1. 低里氏法低里氏法是一种经典的蛋白质含量测定方法,其原理是利用试剂双硫苏三唑酮(DTNB)与蛋白质中的半胱氨酸残基反应产生黄色的二硫苏三唑,然后通过分光光度计测定其在412nm处的吸光度,根据标准曲线计算出蛋白质的含量。

2. 伯杰法伯杰法是一种基于酪蛋白与浊度试剂金霉素的显色反应来测定蛋白质含量的方法。

酪蛋白与金霉素结合形成沉淀,通过比色法测定沉淀的光吸收度,再根据标准曲线计算出蛋白质的含量。

3. 白蛋白-酷伊斯基(BCA)法BCA法是一种常用的高灵敏度蛋白质测定方法,其原理是在碱性条件下,蛋白质与BCA试剂中的铜离子络合生成紫色的离子螯合物,通过比色法测定在562nm处的光吸收度,再根据标准曲线计算出蛋白质的含量。

二、光谱法光谱法是一种基于蛋白质在特定波长下的吸收特性来测定蛋白质含量的方法。

1. 紫外吸收法紫外吸收法根据蛋白质中的芳香族氨基酸(如酪氨酸、酪氨酸和色氨酸)在紫外光区域(200-400nm)的吸收特性来测定蛋白质含量。

通过分光光度计测定蛋白质溶液在280nm处的吸光度,再根据标准曲线计算出蛋白质的含量。

2. 近红外光谱法近红外光谱法是一种无损、非破坏性的蛋白质含量测定方法,其原理是利用蛋白质溶液在近红外光区域(700-2500nm)的吸收特性与其含量之间的关系。

通过近红外光谱仪获取蛋白质溶液的光谱图像,然后利用化学计量学方法建立标准模型,通过光谱图像预测蛋白质的含量。

三、生化分析法生化分析法是一种利用生化技术和仪器设备来测定蛋白质含量的方法。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内重要的基础结构和功能分子,其含量的测定对于生物学和医学研究具有重要意义。

目前常用的蛋白质含量测定方法主要包括生物化学法、生物物理法和免疫学法等。

下面将对这几种方法的原理进行详细介绍。

1. 生物化学法:生物化学法通过酶促反应或化学反应,将蛋白质转化成可以测定的可溶物或在一定条件下呈现特定吸光度的产物,从而测定蛋白质的含量。

常用的生物化学法有Lowry法、Bradford法和BCA法。

(1) Lowry法:Lowry法是1969年由Lowry等人开发的一种蛋白质定量方法。

该方法利用蛋白质与Folin-Ciocalteu试剂在碱性条件下发生氧化反应,生成具有最大吸收峰的蓝色产物,通过测定产物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。

(2) Bradford法:Bradford法是Bradford于1976年提出的一种测定蛋白质含量的方法。

该方法基于蛋白质与染料(Coomassie Brilliant Blue G-250)之间的特异结合,蛋白质和染料形成一个蛋白质-染料复合物,该复合物的吸光度变化与蛋白质的浓度呈正相关。

通过测定复合物的光密度与一系列标准溶液进行比较,来确定蛋白质的含量。

(3) BCA法:BCA法是一种在碱性条件下,将蛋白质还原成具有强吸收的蓝色离子的方法。

BCA试剂(含有琥珀酸铜II配合物和增强剂)能与蛋白质中的酸性氨基酸残基(尤其是含有两个以上连续胺基的肽键)发生氧化还原反应,生成具有强吸收的蓝色离子。

利用光密度测定产生的蓝色离子与一系列标准溶液进行比较,即可确定蛋白质的含量。

2. 生物物理法:生物物理法是通过光学原理,利用蛋白质溶液对光的吸收、散射或旋光等性质进行测定,来间接推算蛋白质的含量。

常用的生物物理法有紫外吸收光谱法、比色法和荧光法等。

(1) 紫外吸收光谱法:紫外吸收光谱法是通过蛋白质在紫外光区域的吸收特性来测定蛋白质的含量。

蛋白质含量的测定测定蛋白质含量的方法

蛋白质含量的测定测定蛋白质含量的方法

科学研究中的应用
在科学研究中,蛋白质含量的测定是 研究营养学、生物化学和食品科学等 领域的重要手段之一。通过蛋白质含 量测定,可以深入了解食物中蛋白质 的生物活性、功能和作用机制等方面 ,为相关领域的研究提供有力支持。
VS
此外,蛋白质含量测定还可以用于生 物医学和临床研究中,例如评估营养 状况、诊断疾病和监测治疗效果等。
试剂准备
根据实验要求,准备适量的试剂,如硫酸铜 、硫酸钾、硫酸铁等,确保试剂的质量和纯 度。
实验操作步骤
样品称量
按照实验要求称取一定量的样 品,记录数据。
消化处理
将称量好的样品放入消化管中 ,加入适量的浓硫酸进行消化 ,使蛋白质分解为氨基酸。
蒸馏处理
将消化后的样品进行蒸馏,使 氨基酸与硫酸分离。
测定吸光度
缺点
对某些特定类型的蛋白质( 如血红蛋白)可能会产生干 扰。
荧光光谱法
01
原理
利用荧光物质标记蛋白质后发出 的荧光强度与蛋白质含量成正比 的原理进行蛋白质含量的测定。
03
优点
灵敏度高,可用于测定低浓度样 品中的蛋白质含量。
02
步骤
将荧光物质标记在蛋白质上,通 过荧光光谱仪测定荧光强度,根 据标准曲线计算蛋白质含量。
注意样本保存条件
样本的保存条件对蛋白质含量的测定结果有很大影响 ,应严格按照规定进行保存。
THANKS
感谢观看
、样品不均匀等。
误差评估
02
对误差进行定量评估,了解误差的大小和影响程度。
减小误差
03
针对误差来源采取相应措施,如校准仪器、规范操作、增加平
行实验等,以减小误差对测定结果的影项与建议
实验安全注意事项

测蛋白质含量方法

测蛋白质含量方法

测蛋白质含量方法测定蛋白质含量是生物化学和生物技术研究中常用的实验手段之一。

蛋白质是生物体内重要的组成部分,其含量的准确测定对于研究细胞功能、药物筛选和疾病诊断具有重要意义。

本文将介绍几种常用的测定蛋白质含量的方法。

一、比色法比色法是一种常用的测定蛋白质含量的方法。

其基本原理是利用蛋白质与染色剂之间的化学反应,通过比色计测量吸光度来确定蛋白质的含量。

常用的染色剂有布拉德福试剂、伯胺蓝试剂和康氏试剂等。

比色法测定蛋白质含量的优点是操作简单、结果准确,但对于一些特定蛋白质可能存在一定的误差。

二、生物素标记法生物素标记法是一种利用生物素与蛋白质之间的亲和性进行测定的方法。

生物素通过共价结合到蛋白质上,形成生物素标记的蛋白质。

然后利用生物素与亲和素结合的特异性,使用亲和素结合物进行测定。

这种方法的优点是具有高灵敏度和高特异性,可以测定低浓度的蛋白质。

三、Western blottingWestern blotting是一种常用的蛋白质检测方法。

它通过将蛋白质样品进行电泳分离,然后转移到膜上,并使用特异性抗体与目标蛋白质结合,最后利用染色剂可视化目标蛋白质。

这种方法可以检测特定蛋白质的存在和相对含量,并且可以检测蛋白质的修饰状态,如磷酸化、乙酰化等。

四、质谱法质谱法是一种高灵敏度的蛋白质检测方法。

它通过将蛋白质进行消化,得到肽段,然后利用质谱仪进行分析。

质谱法可以用于鉴定未知蛋白质的结构和确定蛋白质的修饰位点,同时也可以测定蛋白质的相对含量。

测定蛋白质含量的方法有很多种,每种方法都有其特点和适用范围。

在选择方法时,需要根据实验目的、样品的性质和实验条件等因素进行综合考虑。

此外,根据实验的要求和需求,也可以结合多种方法进行蛋白质含量的测定,以提高结果的准确性和可靠性。

蛋白质含量测定实验报告

蛋白质含量测定实验报告

一、实验目的1. 理解并掌握考马斯亮蓝法测定蛋白质含量的原理和操作步骤。

2. 学习使用分光光度计进行比色分析。

3. 通过实验,掌握蛋白质含量测定的实际操作,提高实验技能。

二、实验原理考马斯亮蓝法是一种快速、简便的蛋白质定量方法。

该法基于蛋白质与考马斯亮蓝G-250染料的结合,蛋白质含量与染料结合程度呈线性关系。

通过测定溶液在特定波长下的吸光度,可以计算出蛋白质的含量。

实验原理:蛋白质分子中的肽键在碱性条件下能与考马斯亮蓝G-250染料发生结合,形成有色的复合物。

该复合物在特定波长下有特征性吸收峰,其吸光度与蛋白质含量呈线性关系。

三、实验材料1. 蛋白质标准品(如牛血清白蛋白)。

2. 考马斯亮蓝G-250染料。

3. 6.0mol/L NaOH溶液。

4. 双蒸水。

5. 分光光度计。

6. 试管、移液器、吸管等实验器材。

四、实验步骤1. 标准曲线制作:将不同浓度的蛋白质标准品配制成溶液,分别加入考马斯亮蓝G-250染料,在特定波长下测定吸光度,绘制标准曲线。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

五、实验结果与分析1. 标准曲线制作:根据实验数据,绘制标准曲线,得出线性方程。

2. 样品处理:取待测样品,按照一定比例稀释,加入考马斯亮蓝G-250染料,在特定波长下测定吸光度。

3. 数据处理:根据标准曲线,计算待测样品中的蛋白质含量。

实验结果显示,待测样品中的蛋白质含量为XX g/L。

六、实验讨论1. 实验过程中,应注意操作规范,避免污染和误差。

2. 在制作标准曲线时,应选择合适的浓度范围,保证线性关系良好。

3. 待测样品的稀释倍数应根据实际浓度选择,以保证在检测范围内。

4. 在测定吸光度时,应注意仪器校准和操作,避免误差。

七、实验总结本次实验通过考马斯亮蓝法测定了待测样品中的蛋白质含量,实验结果准确可靠。

6种方法测定蛋白质含量

6种方法测定蛋白质含量

一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:NH2 CH2 COOH+3H2 场―2CO2+3SO2+4H2O+NH3(1)2NH3+H2 SO4(NH4)2 SO4(2)(NH4)2 SO4+2NaOH2H2 O+Na2 SO4+2NH3(3反应⑴、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入CuSO4乍催化剂,K2SO4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(NH3CONHCON是3两个分子脲经180C左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与CuSO形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理

蛋白质含量的测定方法及原理蛋白质是生物体内一类重要的有机化合物,它参与了生物体内的许多重要生命活动,因此对蛋白质含量的测定具有重要的科学意义。

蛋白质的含量测定方法种类繁多,本文将介绍几种常用的蛋白质含量测定方法及其原理。

首先,常用的蛋白质含量测定方法之一是比色法。

比色法是利用蛋白质与某些特定试剂发生显色反应,通过测定显色溶液的吸光度来间接测定蛋白质含量的方法。

其中,最常用的是布拉德福法,它是利用菲罗明染色法来测定蛋白质含量的方法。

布拉德福法的原理是,在酸性条件下,蛋白质中的酪氨酸、苯丙氨酸和色氨酸与菲罗明反应生成蓝色产物,通过测定蓝色产物的吸光度来测定蛋白质含量。

其次,还有显微法。

显微法是利用显微镜观察蛋白质的沉淀现象来测定蛋白质含量的方法。

在显微法中,首先将待测蛋白质与沉淀试剂混合,然后在显微镜下观察沉淀的形态和数量,通过比较标准曲线来测定蛋白质的含量。

显微法适用于蛋白质含量较低的样品。

另外,还有光度法。

光度法是利用蛋白质与特定试剂发生显色反应后,通过测定显色溶液的吸光度来测定蛋白质含量的方法。

光度法具有操作简便、灵敏度高的特点,适用于大批量样品的测定。

此外,还有氨基酸分析法。

氨基酸分析法是利用氨基酸的特性来测定蛋白质含量的方法。

在氨基酸分析法中,首先将蛋白质水解成氨基酸,然后利用氨基酸分析仪来测定氨基酸的含量,通过氨基酸含量来间接测定蛋白质含量。

综上所述,蛋白质含量的测定方法种类繁多,每种方法都有其独特的原理和适用范围。

在实际应用中,可以根据样品的特性和实验要求选择合适的蛋白质含量测定方法。

希望本文介绍的内容对您有所帮助。

蛋白质含量测定方法及优缺点

蛋白质含量测定方法及优缺点

蛋白质含量测定方法及优缺点嘿,咱先说说凯氏定氮法吧!这方法就是把蛋白质里的氮给测出来,然后再换算成蛋白质含量。

步骤呢,先把样品消解,让蛋白质里的氮变成铵盐,再用碱把铵盐变成氨气,用硼酸吸收氨气,最后用酸滴定硼酸里的氨。

哇塞,听起来是不是超厉害?注意事项嘛,消解的时候一定要小心,别让样品溅出来烫伤自己。

这方法安全不?只要操作得当,还是挺安全的。

稳定性也不错,只要仪器状态好,结果就比较准。

那它应用场景可多了去了,像食品检测、饲料分析啥的都能用。

优势就是比较经典,大家都认可。

比如说检测牛奶的蛋白质含量,用凯氏定氮法就很靠谱,结果准确得很呢!再讲讲双缩脲法。

这方法是利用蛋白质和双缩脲试剂反应产生颜色变化来测含量。

步骤就是把样品和双缩脲试剂混合,然后看颜色深浅。

简单吧?注意不能有干扰物质哦,不然颜色就不准了。

安全性那是杠杠的,没啥危险。

稳定性也还行,只要试剂没问题。

应用场景呢,像生物制品检测就常用。

优势就是快速方便呀!想象一下,这就像你一下子找到了宝藏,又快又准。

比如检测蛋白质溶液,双缩脲法几分钟就能出结果,多爽!最后说说考马斯亮蓝法。

这个是靠蛋白质和考马斯亮蓝结合变色来测。

把样品加进考马斯亮蓝溶液里,颜色一变就知道含量了。

注意溶液的浓度要合适哦。

安全得很,没啥风险。

稳定性也不错。

应用在生物化学实验里很多。

优势就是特别灵敏。

这就好比你有一双超级厉害的眼睛,啥都能看得清清楚楚。

比如检测蛋白质提取物,考马斯亮蓝法能检测出微量的蛋白质,厉害吧!总之,不同的蛋白质含量测定方法都有自己的特点和优势,咱得根据实际情况选择合适的方法,这样才能准确又高效地测出蛋白质含量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

食品中蛋白质含量测定(凯氏定氮法)
一、实验目的
1.学习凯氏定氮法测定蛋白质的原理。

2.掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。

二、实验原理
蛋白质是含氮的化合物。

食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。

因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。

1.消化:有机物中的胺根在强热和CuSO4/K2SO4,浓H2SO4 作用下,消化生成
(NH4)2SO4;
2NH3+H2S04+2H+=(NH4)2S04(其中CuSO4做催化剂)
2.蒸馏:在凯氏定氮器中与碱作用,通过蒸馏释放出NH3,收集于H3BO3溶液中;
(NH4)2SO4+2NaOH=2NH3+2H2O+Na2SO4
2NH3+4H3BO3=(NH4)2B4O7+5H2O
3.滴定:用已知浓度的HCl标准溶液滴定,根据HCI消耗的量计算出氮的含量,然后乘以相应的换算因子,既得蛋白质的含量。

(NH4)2B4O7+2HCl+5H2O=2NH4Cl+4H3BO3
三、仪器与试剂
(一)试剂
1.硫酸铜(CuSO4·5H2O)(催化剂)
2.硫酸钾(提高沸点)
3.浓硫酸(A.R)
4.硼酸溶液(2%):称量2g硼酸(H3BO3)粉末溶于蒸馏水100mL,(容量瓶)定容100 mL。

5.氢氧化钠溶液(30%):30克氢氧化钠溶于蒸馏水,(容量瓶)定容100 mL。

6.0.01mol/L盐酸标准滴定溶液。

7.混合指示试剂:0.1%甲基红乙醇溶液1份,与0.1%溴甲酚绿乙醇溶液5份临用时混合。

0.1%的甲基红乙醇溶液:0.1g甲基红指示剂溶于100 mL 60%乙醇中;
0.1%的溴甲酚绿乙醇溶液:0.1g溴甲酚绿指示剂溶于100mL 20%乙醇中。

四、实验步骤
1.样品消化
称取面粉1.00g (±0.001g ),用称量纸卷好小心的送入干燥消化管底部,切勿粘在瓶口或瓶颈。

向另一消化管中加入1ml 蒸馏水做空白试验。

在每个消化管中加入0.2g 硫酸铜和6g 硫酸钾,两颗玻璃珠,稍摇匀后瓶口放一小漏斗,加入20mL 浓硫酸,将消化管分别放入消化架各个孔内,然后置于消化炉上,在通风橱中加热消化,接通电源,在加热初始阶段注意防止样品飞溅。

消化炉温度起先控制在200℃左右(待内容物全部炭化,泡沫停止后),20min 后可以再设定至450℃以上。

消化终点是以消化液的颜色来判定的,当消化液呈浅蓝绿色的透明状时,再继续加热沸腾10min ,然后结束消化过程。

取下放冷,小心加20mL 水(注意慢加,边加边摇),放冷后,无损地转移到100mL 容量瓶中,加水定容至刻度,混匀备用,即为消化液。

2.碱化蒸馏
蒸馏器中,碱液及蒸馏水采用电磁泵加入,NaOH 、H 2O 注入接口用橡胶管套入后分别置入自备的容器中,加液时按面板上相应开关,液体由泵吸入消化管内。

按面板上硼酸开关,量取硼酸试剂20mL 于三角瓶中,加入混合指示剂2~3滴,准确吸取10.0mL 样品消化液,由小漏斗流入消化管,并以10mL 蒸馏水洗涤进样口流入反应室,棒状玻塞塞紧。

再按面板上碱液开关,使10mL 30%氢氧化钠溶液倒入消化管,然后按面板上蒸馏开关,就开始蒸馏。

从指示剂开始变色时计时,通入蒸汽蒸腾10min 后,移动接收瓶,液面离开凝管下端,再蒸馏2min 。

然后用少量水冲洗冷凝管下端外部,取下三角瓶,准备滴定。

同时吸取10.0mL 试剂空白消化液按上法蒸馏操作。

3.样品滴定
以0.01mol/L 盐酸标准溶液滴定由绿变为淡紫色或灰色,即为终点。

五、结果计算
100101000140.0)(21⨯⨯⨯⨯⨯-=
F m c V V X 式中 X ——样品蛋白质含量(g/100g ); V 1——样品滴定消耗盐酸标准溶液体积(mL );
V 2——空白滴定消耗盐酸标准溶液体积(mL );
c ——盐酸标准滴定溶液浓度(mol/L );
0.0140 ——1.0mL 盐酸]/000.1)([L mol HCl c =标准滴定溶液相当的氮的质量(g ); m ——样品的质量(g );
F ——氮换算为蛋白质的系数,一般食物为6.25;乳制品为6.38;面粉为5.70;
高梁为6.24;花生为5.46;米为5.95;大豆及其制品为5.71;肉与肉制品为
6.25;大麦、小米、燕麦、裸麦为5.83;芝麻、向日葵5.30。

计算结果保留三位有效数字。

六、注意事项及说明
(1)样品应是均匀的。

固体样品应预先研细混匀,液体样品应振摇或搅拌均匀。

(2)样品放入定氮瓶内时,不要沾附颈上。

万一沾附可用少量水冲下,以免被检样消化不完全,结果偏低。

(3)硝化时如不容易呈透明溶液,可将定氮瓶放冷后,慢慢加入30%过氧化氢(H2O2)2-3ml,促使氧化。

(4)在整个消化过程中,不要用强火。

保持和缓的沸腾,使火力集中在凯氏瓶底部,以免附在壁上的蛋白质在无硫酸存在的情况下,使氮有损失。

(5)如硫酸缺少,过多的硫酸钾会引起氨的损失,这样会形成硫酸氢钾,而不与氨作用。

因此,当硫酸过多的被消耗或样品中脂肪含量过高时,要增加硫酸的量。

(6)加入硫酸钾的作用为增加溶液的沸点,硫酸铜为催化剂,硫酸铜在蒸馏时作碱性反应的指示剂。

(7)混合指示剂在碱性溶液中呈绿色,在中性溶液中呈灰色,在酸性溶液中呈红色。

如果没有溴甲酚绿,可单独使用0.1%甲基红乙醇溶液。

(8)氨是否完全蒸馏出来,可用pH试纸试馏出液是否为碱性。

(9)吸收液也可以用0.01当量的酸代表硼酸,过剩的酸液用0.01N碱液滴定,计算时,A为试剂空白消耗碱液数,B为样品消耗碱液数,N为碱液浓度,其余均相同。

(10)以硼酸为氨的吸收液,可省去标定碱液的操作,且硼酸的体积要求并不严格,亦可免去用移液管,操作比较简便。

(11)向蒸馏瓶中加入浓碱时,往往出现褐色沉淀物,这是由于分解促进碱与加入的硫酸铜反应,生成氢氧化铜,经加热后又分解生成氧化铜的沉淀。

有时铜离子与氨作用,生成深l蓝色的结合物[Cu(NH3)4]2+
(12)这种测算方法本质是测出氮的含量,再作蛋白质含量的估算。

只有在被测物的组成是蛋白质时才能用此方法来估算蛋白质含量。

相关文档
最新文档