雨水情监测系统

雨水情监测系统
雨水情监测系统

系统建设原则

(1)实用、可靠,山洪灾害水雨情监测站的运行环境条件恶劣,监测人员的技术水平参差不齐,系统选用的监测方法、技术、设备应注重实用性与可靠性,并符合山洪灾害监测预警的实际需求。

(2)突出重点,合理布设监测站网。山洪灾害分布面广,应优先考虑在对人民生命财产危害严重的山洪灾害多发区建立监测系统。在现有的气象及水文站网基础上,充分考虑地理条件、受山洪灾害威胁程度,以及暴雨分布特点,合理布设水雨情监测站网。

(3)简易监测为主,简易监测与自动监测相结合。根据山洪灾害点多面广的特点,以简易监测为主,因地制宜地建设适量的自动监测站。

(4)因地制宜地选择信息传输通信组网方式,信息传输通信组网应根据山洪灾害防御信息传输实际需求,结合山洪灾害防治区的地理环境、气候条件、现有通信资源、供电情况、居民居住分布等实际情况,因地制宜地选择与确定通信方式,以保证信息传输的可能性、实时性与可靠性。充分利用现有的通信资源,节省系统建设、管理及运行的投资。

建设依据

?《水情自动化测报系统规范》(SL61-94);

?《水文情报预报规范》(Sl250-2000);

?《水文站、网规划技术导则》(SL34-92);

?《水情自动测报系统设计规定》(DL/T5051-1996);

?《水情自动测报系统设备基本技术条件》(SL/T102-1995);

?《水情自动测报系统设备—遥测终端机》(SL/T180-1996);

?《水情自动测报系统设备—中继机》(SL/T181-1996);

?《水情自动测报系统设备—前置通信控制中心》(SL/T182-1996);

设备安装调试

1)自动雨量站的安装调试

快速安装

安装一体化支架

打开一体化支架包装箱 ,取出一体化支架,放置在事先预埋的混凝土基桩上,拧紧四个平垫、弹垫、螺母固定于基座上即可,如图:

B B B

安装终端机

打开终端机箱,取出终端机。用十字螺丝刀拧开固定终端机箱盖四周的4个螺钉,向上提起终端机箱盖,用螺栓、垫片从终端机内部向下穿过4个底板固定孔,用螺母进行第一次固定,然后将终端机底板上边4个螺栓长出的部分插入一体化支架的法兰盘上,用螺母将终端机与法兰盘拧紧固定,在将终端机箱盖盖回原处并用4个螺钉拧紧固定。

机箱底板固定与一体化支架实际效果图:

安装雨量计

从雨量计箱中取出雨量计,拧开桶身上的3个内六角螺母,然后向上提起桶身,将桶身先放置一边。将终端机顶部引出的雨量线从雨量筒底部的电缆护套穿入雨量筒内部,并用螺丝刀将雨量线的地线接入接线座的公用地线端子,然后将信号线接入信号线端子,将2个端子拧紧。将雨量筒的三个地脚,放入终端机顶部的三个底脚螺栓中,用螺母固定,拧紧,最后将雨量筒底座下多余的雨量线用尼龙扎带绑在底脚上。

上述工作完成后,调试雨量筒水平,然后将雨量筒盖上,用内六角螺母拧紧。

测试

安装测试:安装完毕后用标准量杯向雨量计注入10mm水, 查询数据中心就是否收到等量的雨量数据,以检查安装质量。

安装整体结构图

水资源在线监控

水资源在线监控 ---系统目标--- 水资源是指水圈内水量的总体。包括经人类控制并直接可供灌溉、发电、给水、航运、养殖等用途的地表水和地下水,以及江河、湖泊、井、泉、潮汐、港湾和养殖水域等。从狭义上来说是指逐年可以恢复和更新的淡水量。水资源是发展国民经济不可缺少的重要自然资源。在世界许多地方,对水的需求已经超过水资源所能负荷的程度,同时有许多地区也濒临水资源利用之不平衡,所以建设水资源在线监控系统迫在眉睫。 ---系统概述--- 水资源在线监控系统适用于水务部门对地下水、地表水的水量、水位和水质进行监测,有助于水务局掌握本区域水资源现状、水资源使用情况、加强水资源费回收力度、实现对水资源正确评价、合理调度及有效控制的目的。 ---系统特点--- ◆专业性强:通过水资源/水文相关行业规约、产品标准检测并获得相应产品资质,包括:水资源监测数据传输规约(SZY206-2012)、水资源监控设备基本技术条件(SL426-2008);水文监测数据传输规约(SL651-2014)、水文遥测终端机(SLT180-1996); 特殊区域水文、水资源数据安全采集系统RTU追加测试; 获得“全国工业产品生产许可证”; 获得“水资源实时监控管理系统”软件著作权证书。 ◆实用性高:水务部门可实时掌控本地区水资源状况,加强水资源费回收力度,合理调度使用水资源。 ◆灵活性好:针对不同的需求选择软件功能模块、测控终端、计量测量设备。 ◆稳定可靠:该系统专门为水务部门设计,在各全国各地已有大量使用案例,具有很高的稳定性、可靠性。 ◆技术先进:该系统集计算机技术、软件技术、IC卡技术、GPRS通信技术、测控技术、计量技术于一体,处于国内领先水平。 ---系统组成--- ◆监控中心: 主要硬件:服务器、数据专线、路由器等。 主要软件:操作系统软件、数据库软件、DATA86水资源在线监控系统软件、防火墙软件◆通信网络:中国移动公司GPRS无线网络。 ◆终端设备:DATA86水资源测控终端、无线抄表器。

智能交通事件检测系统方案

智能交通事件检测系统方案 1.1系统概述 目前,以检测道路交通异常事件、事故为目标的视频交通事件检测系统,正在被广泛应用于高速公路、城市道路的路面、隧道、桥梁等重要交通场合。该系统可对异常停车、排队超限、车辆逆行、低速车流、路面遗撒、行人穿越等常见的交通事件和事故隐患进行实时检测、实时报警、实时记录;其实时数据、报警信息可与上端交通综合管控平台实时联动、自动控制,使传统闭路监视系统彻底摆脱“监而不可控”的尴尬局面。 1.2建设原则 本系统建设以“统一标准、技术先进、稳定可靠、信息安全、方便实用、便捷扩容、易于维护”为原则,以相关行业标准作为设计依据,结合我国道路特点,同时综合考虑交通事件检测技术的发展趋势,确保系统的设计和建设满足当今高速公路管理部门对交通事件检测系统的应用和扩展需求: 1、统一标准:本系统的数据格式严格按照相关的标准规范要求进行设计,所有数据格式与接口均符合国家标准,并提供功能定制以适应地方应用差异。 2、技术先进:充分利用科技进步成果,采用当今先进成熟的技术,在相当长的时间内保持国内外先进水准。 3、稳定可靠:本系统具有防盗、耐高温、抗寒、散热排风等功能设计,使用的各类电气接线端子、过载、漏电及断路保护装置、避雷装置等装置均符合国家有关电气安全标准要求,保证系统能够可靠地、连续地运行。 4、信息安全:系统具有防非法接入、防误操作、防病毒等特性,通过合理的硬件结构设计、有效的外场保护措施以及完善的内部管理机制有效避免系统遭到

恶意攻击和数据被非法提取的现象出现,保障系统的信息安全。 5、方便实用:系统提供清晰、简洁、友好的中文操作界面,操控简便、灵活,易学易用,便于管理和维护,能自动纠错和系统恢复,整个系统的操作简单、快捷、环节少,以保证不同的操作者都能熟练操作系统,具有高度友好的界面和使用性。 6、便捷扩容:随着业务的拓展以及技术的进步,用户的需求将会不断增加,系统的规模也将随之扩大,故在设计时,既应保证技术的先进性,又要兼顾与原有系统的兼容。因此,我们采用模块化结构设计,系统接口具备良好的扩展性,能够很好的完成系统的平滑升级,实现软硬件产品升级的系列化和模块化。 出现故障时能在最短时间内恢复运行。系统具备设备日志记录、远程维护与管理、故障及时告警等功能,以方便日常维护。 1.3建设依据 ●《道路交通安全违法行为图像取证技术规范》(GA/T832-2014) ●《交通信息采集视频车辆检测器》(GB/T 24726-2009) ●《公安交通指挥系统工程建设通用程序和要求》(GA/T651-2006) ●《公安交通管理外场设备基础施工通用要求》(GA/T652-2006) ●《安全防范工程技术规范》(GB50348-2004) ●《报警图像信号有线传输装置》(GBJ115-87) ●《民用闭路电视监控系统工程技术规范》(GB50198-94) ●《计算机信息系统安全保护等级划分准则》(GB17859-1999) ●《建筑物电子信息系统防雷技术规范》(GB50343-2004) ●《安全防范系统雷电浪涌防护技术要求》(GA/T 670-2006) ●《交通电视监视系统工程验收规范》(GA/T 514-2004) ●《安全防范工程程序与要求》(GA/T75-1994) ●《视频安防监控系统技术要求》(GA/T367-2001)

中石化云计算平台建设总体技术方案

中石化 云计算平台工程技术方案 二O一六年四月

目录第1章.基本情况6 1.1.项目名称6 1.2.业主单位6 1.3.项目背景6 1.3.1.XX技术发展方向6 1.3. 2.有关XX公开的相关要求7 1.4.建设规模7 1.5.投资概算10 1.6.设计依据10 1.7.设计范围10 1.8.设计分工11 第2章.现状及需求分析11 2.1.项目意义及建设必要性11 2.2.现状分析13 2.3.需求分析13 2.3.1.长期需求13 2.3.2.本期需求14 第3章.总体设计16 3.1.建设目标16 3.1.1.预期总目标16 3.1.2.阶段性目标17

3.2.建设内容18 3.3.系统的总体结构18 3.3.1.设计原则18 3.3.2.XX本土化战略错误!未定义书签。 3.3.3.建设思路20 3.3. 4.总体拓扑结构22 3.4.信息的分类编码体系25 3.5.质量保证体系26 第4章.建设方案27 4.1.网络资源池28 4.1.1.组网物理拓扑图28 4.1.2.网络负载均衡设计30 4.1.3.网络虚拟化设计32 4.1.4.IP地址及DNS规划36 4.1. 5.网络端口资源估算41 4.2.计算资源池41 4.2.1.计算资源池架构41 4.2.2.应用系统分析42 4.2.3.计算资源池建议配置与选型建议44 4.2.4.计算资源池部署47 4.2. 5.虚拟化软件选型分析48 4.3.云计算管理平台51

4.3.1.云资源管理平台建设方案52 4.3.2.云运营管理平台建设方案61 4.4.云计算安全防护方案71 4.4.1.云计算平台安全威胁71 4.4.2.云计算平台安全防护目标73 4.4.3.云计算平台安全架构74 4.4.4.IaaS层安全74 4.4. 5.PaaS层安全89 4.4.6.SaaS层安全90 4.4.7.公共安全92 4.4.8.安全管理制度98 4.4.9.云安全服务100 4.5.机房方案100 4.5.1.机房设备集中管理100 4.5.2.布线系统101 4.5.3.机房系统102 4.5.4.UPS配置方案104 4.6.标准化工作109 4.6.1.标准规范建设的原则109 4.6.2.标准规范的总体框架110 第5章.设备配置要求112 第6章.项目实施与运行维护117

交通道路标志牌检测与识别综述.

交通道路标志牌检测与识别综述 一、背景综述 随着社会科技不断发展和进步,车辆已经普及到国内大部分家庭。汽车的普及极大方便了人们的出行、生活和工作,同时也不可避免的产生了很多的交通问题。据公安部交通管理局统计,2014年1月至10月,全国共发生道路交通事故426378起,造成87218人死亡、391752人受伤,直接财产损失20.2亿元。交通安全问题成为人们日常生活中最常见的问题之一,受到了政府、科研机构以及汽车生产厂家的高度重视。 解决交通安全问题的途径之一是准确、有效地设立道路交通标志,为驾驶员提供丰富的禁令、警告、指示等信息,从而起到减少交通事故的作用。为了确保交通标志的信息能够及时、准确地传达,交通标志自动识别系统(Traffic Sign Recognition,TSR)受到了各国学者的关注,其主要功能表现在以下几个方面: (1)用于驾驶辅助。交通标志识别的概念最早就是作为驾驶辅助工具被提出的。TSR系统在识别出交通标志后,可对驾驶员进行语音或视频等方式的提醒,甚至可以在必要的时候对车辆驾驶系统直接做出控制,从而确保驾驶安全。 (2)用于交通标志维护。由于交通标志通常放置于室外环境中,受自然环境(如风吹雨淋)及人为因素(如涂抹)影响,难免出现褪色、变形甚至坠落失踪现象,需要进行定期检查维护。通常,这一工作需安排专人专岗,工作量巨大且很难保证实时性和准确性。显然,一个有效的TSR系统是完成这一工作的理想方案。 (3)用于无人驾驶技术。无人驾驶汽车在近年来受到了越来越多的关注。从上世纪90年代起,国内外相继研发出了一系列无人驾驶汽车,其智能化逐渐提高,能够自动规划路线,避让障碍物等。使无人驾驶汽车具备辨认交通标志的能力显然是使其实用化的一个重要步骤。 TSR在计算机领域中是一个非常重要的分支研究领域,而图像检测以及处理是其主要手段,这是一个难度比较大的实景图形识别问题。在车载视觉系统中,如何有效地识别道路交通标志是一个非常重要的研究课题。 TSR包括三个重要模块:图像复原、标志检测、标志分类。交通标志的外观

智能交通交通事件检测系统方案

浙江大华交通事件检测系统方案 编号修订内容简述修订日期修订后版本号修订人 1 创建2013-6-2 2 V1.0 胡明舒 2 1).明确交通事件检测平 2013-9-10 V1.1 陈志华台通过IPSAN扩展报警录 像和图片的存储空间; 2).明确视频管理平台支 持带智能规则的录像信息 存储和回放功能 浙江大华技术股份有限公司 解决方案部

目录 浙江大华交通事件检测系统方案 (1) 第一章.方案需求分析 (3) 1.1概况 (3) 第二章.方案特点 (4) 方案简介 (4) 方案功能特性 (4) 检测指标 (6) 第三章.方案架构 (7) 方案拓扑 (7) 3.1.1中心检测方式-方案拓扑 (7) 3.1.2前端检测方式-方案拓扑 (9) 第四章.交通事件检测系统-管理平台介绍 (12) 管理平台介绍 (12) 方案总体优势 (12) 第五章.推荐设备 (14) 事件检测智能盒-DH-IVS-T3001 (14) 事件检测服务器-DH-IVS-T7000 (16) 交通事件检测平台-DSS-T8130 (17)

第一章. 方案需求分析 1.1概况 高速公路和城市道路是承担我国公路运输和城市道路运输的主要道路,具有车速快、流量大等特点,一旦发生交通事件,极易引发交通事故,严重影响道路的通行能力和运营效率。在日常的交通运行和交通管理中,如果仅仅依靠人眼查看的方法发现交通事件,不但浪费人力和时间,而且不够全面及时,不利于快速解决异常事件。 视频交通事件自动检测系统是利用安装在(高速)道路和隧道内的摄像机采集的视频图像作为输入,通过对视频图像的处理分析,在图像的覆盖范围内,能够进行交通参数的检测及各种交通事件、事故的自动检测,包括车辆事故,车辆停驶、交通拥堵、车辆慢行、车辆遗弃物,烟气和火灾检测等。 系统应能够实时地快速报警,为道路的交通安全管理和道路的运行提供极大的帮助。

传感器技术在交通检测中的应用

传感器技术在交通检测中的应用 传感器技术在交通检测领域的应用交通信息是城市交通规划和交通管理的重要基础信息,通过全面、丰富、实时的交通信息不但可以把握城市道路交通的发展现状,而且可以对未来发展进行预测。因此,交通信息采集与处理技术无论对城市的规划、路网建设、交通管理,还是对未来智能交通系统功能的实现都非常重要。 动态交通信息采集系统的目标是全面、自动、连续地从路网上获得不同地点和路段上的交通流信息。而要实现这一目标,就离不开信息传感器。 一、传感器的涵义及组成国家标准(GB7665—1987)对传感器下的定义是:能感受到规定的被测量的量,并依据一定的规律转换成可用于输出信号的器件或装置。在现代科学技术的发展过程中,非电量(例如压力、力矩、应变、位移、速度、流量、液位等)的测量技术(传感技术)已经成为各领域的重要组成部分,但传感技术最主要的应用领域是自动检测和自动控制,它将诸如温度、压力、流量等非电量变化为电量,然后通过电的方法进行测量和控制。因此,传感器是一种获得信息的手段,它获得的信息正确与否,关系到整个测量系统的精度。传感器一般是利用物理、化学、生物等学科的某些反应或原理,按照一定的制造工艺研制出来的。因此,传感器的组成将随不同的情况而有较大

差异。但是,总的来说,传感器是由敏感元件、传感元件、信号调节与转换电路和辅助电路组成。敏感元件是直接感受非电量,并按一定规律转换成与被测量有确定关系的其他量(一般仍为非电量)的元件。传感元件又称变换器,一般情况下,它不直接感受被测量,而是将敏感元件输出的量转换成为电量输出。这种划分并无严格的界限,并不是所有的传感器都必须包含敏感元件和传感元件。如果敏感元件直接输出的是电量,它同时兼作为传感元件。信号调节与转换电路一般是指把传感元件输出的电信号转换成为便于显示、记录、处理和控制的有用信号的电路。辅助电路通常包括电源,有些传感器系统采用电池供电。 二、交通检测中常见的传感器技术 1、红外线传感器红外传感器是波束检测装置的一种,有主动和被动两种形式。主动式发射器和接收器分别为半导体激光器和光电二极管,将两者对中,水平安装在车道旁边。无车通过时,接收器接收细束线状红外光,有信号输出;车辆通过时,遮断光束,接收器无输出,通-断转换是对车辆的检测信号。新型主动反射式红外检测器的原理为:在相同的红外光辐射下,反射物的大小、材料和结构不同,反射能量就不一样。 被动式红外检测没有发射器,只有接收器。接收器感受路面和车辆以红外波长为主的辐射能量。路面和车体的材料温度和表面光洁度都不一样,它们的辐射能量也必然不相等。现代红外测温的分辨率已达到0、1%℃,因此区分道路和车辆己不存在困难。

最新版云计算平台系统建设项目设计方案

云计算平台系统建设项目 设计方案

1.1设计方案 1.1.1平台架构设计 **高新区云计算平台将服务器等关键设备按照需要实现的功能划分为两个层面,分别对应业务层和计算平台层。 业务层中,功能区域的划分一般都是根据安全和管理需求进行划分,各个部门可能有所不同,云数据中心中一般有公共信息服务区(DMZ区)、运行管理区、等保二级业务区、等保三级业务区、开发测试区等功能区域,实际划分可以根据业务情况进行调整,总的原则是在满足安全的前提下尽量统一管理。 计算平台层中分为计算服务区和存储服务区,其中计算服务区为三层架构。计算服务区部署主要考虑三层架构,即表现层、应用层和数据层,同时考虑物理和虚拟部署。存储服务区主要分为IPSAN、FCSAN、NAS 和虚拟化存储。 云计算平台中计算和存储支持的功能分区如下图所示:

图云计算平台整体架构 图平台分层架构

基础架构即服务:包括硬件基础实施层、虚拟化&资源池化层、资源调度与管理自动化层。 硬件基础实施层:包括主机、存储、网络及其他硬件在内的硬件设备,他们是实现云服务的最基础资源。 虚拟化&资源池化层:通过虚拟化技术进行整合,形成一个对外提供资源的池化管理(包括内存池、服务器池、存储池等),同时通过云管理平台,对外提供运行环境等基础服务。 资源调度层:在对资源(物理资源和虚拟资源)进行有效监控管理的基础上,通过对服务模型的抽取,提供弹性计算、负载均衡、动态迁移、按需供给和自动化部署等功能,是提供云服务的关键所在。 平台即服务:主要在IaaS基础上提供统一的平台化系统软件支撑服务,包括统一身份认证服务、访问控制服务、工作量引擎服务、通用报表、决策支持等。这一层不同于传统方式的平台服务,这些平台服务也要满足云架构的部署方式,通过虚拟化、集群和负载均衡等技术提供云状态服务,可以根据需要随时定制功能及相应的扩展。 软件即服务:对外提供终端服务,可以分为基础服务和专业服务。基础服务提供统一门户、公共认证、统一通讯等,专业服务主要指各种业务应用。通过应用部署模式底层的稍微变化,都可以在云计算架构下实现灵活的扩展和管理。 按需服务是SaaS应用的核心理念,可以满足不同用户的个性化需求,如通过负载均衡满足大并发量用户服务访问等。 信息安全管理体系,针对云计算平台建设以高性能高可靠的网络安

地表水水质自动监测系统简介

地表水水质自动监测系统简介 随着水质自动监测技术的不断改进,地表水水质自动监测系统在我国地表水监测中得到了广泛的应用,并取得了较大的进展。地表水水质自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术、自动控制技术、计算机应用技术以及相关的专用分析软件和通讯网络所组成的一个综合性的在线自动监测系统,可统计、处理监测数据;打印输出日、周、月、季、年平均数据以及日、周、月、季、年最大值、最小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储指定的监测数据及各种运行资料、环境资料以备检索。系统具有监测项目超标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动回复功能;远程故障诊断,便于理性维修和应急故障处理等功能。 实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及时掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。 1、地表水水质自动监测系统的选址: 地表水水质自动监测系统所选择的水域首先要有明确的水域功能,具有反映水环境质量状况的空间与时间代表性,满足环境管理的需要。 2、地表水水质自动监测系统建设需考虑: 必须保证电力供应、通讯畅通、自来水供应。 站房设计建设时要考虑站房内的监测仪器和其他辅助设备的安全。 周围环境的交通便利。 站点建设费用较大,在选址是考虑长期使用性。 3、地表水水质自动监测系统基本功能: 仪器基本参数和监测数据的贮存、断电保护和自动恢复 时间设置功能、设定监测频次。

云计算平台详细方案设计

云计算平台详细方案设计

第1章数据中心云平台设计 1.1云平台总体架构设计 基于当前IT基础架构的现状,未来云平台架构必将朝着开放、融合的方向演进,因此,云平台建议采用开放架构的产品。目前,越来越多的云服务提供商开始引入Openstack,并投入大量的人力研发自己的openstack版本,如VMware、华三等,各厂商基于Openstack架构的云平台其逻辑架构都基本相同,具体参考如下: 图2-1:云平台逻辑架构图 从上面的云平台的逻辑架构图中可以看出,云平台大概分为三层,即物理资源池、虚拟抽象层、云服务层。 1、物理资源层 物理层包括运行云所需的云数据中心机房运行环境,以及计算、存储、网络、安全等设备。 2、虚拟抽象层

资源抽象与控制层通过虚拟化技术,负责对底层硬件资源进行抽象,对底层硬件故障进行屏蔽,统一调度计算、存储、网络、安全资源池。 3、云服务层 云服务层是通过云平台Portal提供IAAS服务的逻辑层,用户可以按需申请相关的资源,包括:云主机、云存储、云网络、云防火墙与云负载均衡等。 基于未来云平台的发展趋势及华北油田数据中心云平台的需求,华北油田的云平台应具备异构管理能力,能够对多种虚拟化平台进行统一的管理、统一监控、统一运维,同时,云平台能够基于业务的安全需要进行安全防护,满足监控部门提出的安全等级要求。下面是本次云平台架构的初步设计,如下图所示: 图2-2:云平台总体架构图 1.2资源池总体设计 从云平台的总体架构可以看出,资源池是云平台的基础。因此,在构建云平台的过程中,资源的池化迈向云的是第一步。

目前,计算资源的池化主要包括两种,一种是X86架构的虚拟化,主要的虚拟化平台包括VMware、KVM、Hyper-V等;另一种是小型机架构的虚拟化,主要的虚拟化平台为PowerVM,这里主要关注基于X86架构的虚拟化。 存储资源的池化也包括两种,一种是当前流行的基于X86服务本地磁盘实现的分布式存储技术,如VMware VSAN、华为FusionStorage、华三vStor等;另一种是基于SAN 存储实现的资源池化,实现的方式是利用存储虚拟化技术,如EMC VPLEX、华为VIS(虚拟化存储网关型)和HDS VSG1000(存储型)等。这两种方式分别适用于不同的场景,对于普通的数据存储可以尝试使用分布式存储架构,如虚拟机文件、OLAP类数据库等,而对于关键的OLTP类数据库则建议采用基于SAN存储的架构。 网络资源池化也包括两种,一种是基于硬件一虚多技术实现的网络资源池,如华为和华三的新型的负载均衡、交换机、防火墙等设备;另一种是基于NFV技术实现的网络资源池。这两种方式分别适用于不同的场景,对于南北向流量的网络服务建议采用基于硬件方式实现的网络资源池化,而对于东西向流量的网络服务建议采用基于NFV技术实现的网络资源池化。 图2-2-1:华北油田资源池总体设计示例

CITILOG视频事件检测系统V6.0.

CITILOG视频事件检测系统V6.0 一.概述: 法国 Citilog 公司的视频检测系统,它采用国际先进的车辆跟踪检测的技术实现交通事件检测的功能,比其它所有国内外厂家的虚拟线圈检测技术有革命性的改进,而且由于系统能提供强大的系统管理和检测数据输出功能,为管理者对道路的交通安全管理提供了强有力的帮助。 该系统为全天候、智能化、实时自动检测所有输入的视频图像信号,根据不同的地点、位置检测各种交通事件,特别是可以实现对PTZ 遥控摄像机的交通事件检测 最重要的是 Citilog 提供全球化的标准来解决这一问题:包括简体中文的多国语言的全套系统界面、全球化开发、全球化技术支持、基于以太网( TCP/IP 的外部数据交换接口,使得该系统非常容易地集成到各种交通监控系统中。 系统所提供的这些强大的交通事件检测和系统管理功能,在国内外处于绝对领先地位。 二.基本功能: 1.可用的视频图像信号 ? PTZ 可遥控或固定式摄像机 ?黑白或彩色摄像机信号 ? 1 Vp-p / 75? ?模拟 25 帧 / 秒的视频图像 ? PAL 或 NTSC 制式

? CCIR 标准 录像播放画质为D1 说明:就是说基本道路监控使用的任何图像都可以用来做交通事件检测 2.系统功能 2.1 交通事件报警 (检测条件:固定光照下,视频信号质量满足测量要求 分析仪产生 3 种警报,传送至数据服务器,转发到管理器。 2.1 .1 交通事件事故检测报警 具备2个有针对性的版本 ( 1 VisioPad针对云台摄像机,可移动摄像机的版本。是全球唯一可用于可移动的摄像机上的视频检测软件。 分析仪自动检测下列事件事故: ?车辆停驶 >98% ( 2 MediaRoad 和 MediaTunnel 针对固定摄像头 分析仪自动检测下列事件事故: 在每个车道类型(行车道、紧急道、停车道、匝道和任何交通设置(流动、拥堵、停 / 开等: ?车辆停驶检测率≥98%; ?交通拥堵检测率≥95%; ?车辆慢行检测率≥95%;

道路交通检测技术与应用

交通大学 学生课程报告 实验课程名称道路交通检测技术与应用 报告名称道路交通检测技术在匝道控制中的应用 学院交通运输学院年级2010级专业班信控一班 学生姓名x 学号x 学生姓名x 学号x 学生姓名x 学号x 学生姓名x 学号x 学生姓名x 学号x 开课时间2012 至2013 学年第 2 学期

一、道路交通检测技术概述 交通信息是城市交通规划和交通管理的重要基础信息,全面、丰富、准确、实时的交通信息不但可以把握城市道路交通的发展现状,而且可以对未来交通发展进行预测,为道路交通规划和交通管理部门的正确决策提供科学依据。同时未来智能交通系统中交通信息服务系统和动态交通诱导功能的实现都要以城市交通系统中实时的交通信息为基础提前,这些都需要先进的交通信息检测技术去进行信息采集。因此,交通检测技术是城市交通规划和道理交通科学管理的最重要的基础和前提。 道路交通检测技术的定义分狭义和广义两种。狭义的道路交通检测技术是指利用各种检测设备来获取道路交通参数,监视交通状况的技术,即利用车辆检测器采集交通信息的技术。而广义的道路交通检测技术是指在交通管理实践过程中研究交通参数的测量方法、交通检测装置及检测系统构成等有关技术的学科。 道理交通检测技术的核心器件是交通检测器,其大致分为两类:一类是用于检测车辆的存在、速度、流量、车道占有率等交通参数,以便实施有效的交通控制和管理;另一类是用来检测和交通有关的环境条件以及驾驶员的身体状况,其目的是在有害的环境条件出现,发出警告或进行必要的干预或控制。 交通检测器主要由5部分组成:检测探头(即传感器)、检测电路(包括放大、计数、处理电路)、微处理器(计算、处理)、显示装置(指示仪、记录仪、数字显示器)、电源。如图1所示。 图1 交通检测器结构图 检测探头——直接用来检测车辆的传感器; 检测电路——处理检测探头采集来的信号,即车辆信号放大整形成标准数字信号; 微处理器——对检测电路送来的信号进行处理,并将结果进行进行存储、显示、打印或形成文件;

云计算平台设计参考架构

云计算平台设计参考架构 在私有云当中,主要包含以下几个组件:物理基础架构、虚拟化层、服务自动化层、服务门户、安全体系、云API和可集成的其它功能。(如图私有云参考架构) 图3.4 私有云参考架构 a) 物理基础架构 物理架构的定义是组成私有云的各种计算资源,包括存储、计算服务器、网络,无论是云还是传统的数据中心,都必须基于一定的物理架构才能运行。

在私有云参考架构中的物理基础架构其表现形式应当是以资源池模式出现,也就是说,所有的物理基础架构应当是统一被管,且任一设备可以看成是无状态,或者说并不与其它的资源,或者是上层应用存在紧耦合关系,可以被私有云根据最终用户的需求,和预先定制好的策略,对其进行改变。 b) 虚拟化层 虚拟化是实现私有云的前提条件,通过虚拟化的方式,可以让计算资源运行超过以前更多的负载,提升资源利用率。虚拟化让应用和物理设备之间采用松耦合部署,物理资源状态的变更不影响到虚拟化的逻辑计算资源。且可以根据物力基础资源变化而动态调整,提升整体的灵活性。 c) 服务自动化层 服务自动化层实现了对计算资源操作的自动化处理。它可以集中的监控目前整体计算资源的状态,比如性能、可用性、故障、事件汇总等等,并通过预先定义的自动化工作流进行

相关的处理。 服务自动化层是计算资源与云计算服务门户相关联的重要部件,服务自动化层拥有自动化配置和部署功能,可以进行服务模板的制定,并将服务内容和选择方式在云计算服务门户上注册,用户可以通过服务门户上的服务目录来选择相应的计算资源请求,由服务自动化层实现服务交付。 d) 云API 云应用开发接口提供了一组方法,让云服务门户和不同的服务自动化层进行联系,通过云API,可以在一个私有云当中接入多个不同地方的计算资源池,包括不同架构的计算资源,并通过各自的服务自动化体系去进行服务交互。 e) 云服务门户 云服务门户是用户使用私有云计算资源的接口,云服务门户上提供了所有可用服务的目录,并提供了完善的服务申请流程,用户可以执行申请、变更、退回等计算资源使用服务。

交通安全设施检测指南

交通安全设施试验检测指南(线) 1、交通标志检测 道路交通标志产品检验规则包括出厂检验、型式检验、抽样方法、判定规则四部分内容,检验方法依据标准《道路交通标志板和支撑件》GB/T23827-2009,具体检测项目如下:1)钢构件防腐层质量,满足《高速公路交通工程钢构件防腐技术条件》(GB/T18226-2000)2)材料力学性能:铝合金板材力学性能满足《一般工业用铝及铝合金板、带材第2部:力学性能》(GB/T388.2-2012)的规定,高速公路宜采用牌号3003的铝合金板材,多风地 段采用牌号3004的铝合金板材;标志底板碳素结构钢满足《碳素结构钢冷轧薄钢板及钢带》(GB/T11253-2007)或《连续热镀锌钢板及钢带》(GB/T2518-2008)的有关标准;合成树 脂类板材用于底板时,满足相关标准要求;立柱、横梁、法兰盘、抱箍、紧固件等支撑件 满足《结构无缝钢管》(GB/T8162-2008)/《直缝电焊钢管》(GB/T13792-2008)/《碳素结构钢》(GB/T700-2006)及有关设计要求 3)标志板面色度性能:非反光型标志板面普通材料色应满足《安全色》(GB2893-2008)的要求;反光型标志板面的逆反射材料色应符合《道路交通反光膜》(GB/T18833-2012)中表面色和逆反射色的要求; 4)反光型标志面板的光度性能,标志板面为反光膜时,逆反射系数值不应低于《道路交通反光膜》(GB/T18833-2012)的相关规定; 5)标志板抗冲击性能,抗冲击试验后,标志板在冲击点外,不应出现裂缝、层间脱落或其他损坏; 6)耐盐雾腐蚀性能,试验后,标志板及支撑构件不应有变色或被侵蚀等破坏痕迹;

视频交通事件检测器系统方案汇总

VTD3000视频交通事件检测系统应用方案深圳市哈工大交通电子技术有限公司

目录 1. 概述 (3) 2. 视频交通事件检测系统的组成结构 (4) 2.1 系统组成结构 (4) 2.2系统组成特点 (4) 2.3 摄像机 (5) 2.4 视频信号传输与分配系统 (5) 2.5 VTD3000视频交通事件检测器 (5) 2.6 视频交通事件数据服务器 (6) 2.7 以太网交换机 (6) 2.8 管理客户端 (6) 3.1 VTD3000视频交通事件检测器简介 (7) 3.2 VTD3000视频交通事件检测器的功能 (7) 3.2.1 交通事件检测与报警功能 (7) 3.2.2 交通事件图像自动录像功能 (8) 3.2.3 交通参数异常报警功能 (8) 3.2.4 设备工作状态自检测和报警功能 (8) 3.2.5 交通参数检测与统计功能 (8) 3.3 VTD3000视频交通事件检测器的产品规格 (9) 3.4 VTD3000视频交通事件检测器的性能指标 (10) 3.4.1 交通流检测指标 (10) 3.4.2 交通事件检测性能 (10) 3.4.3 压缩和存储 (11) 3.4.4 视频信号输入 (11) 3.4.5 数据输出 (11) 3.5 VTD3000视频交通事件检测器的特点 (11) 3.5.1 结构特点 (11) 3.5.2 技术特点 (11) 3. 客户端管理软件 (13) 4.1 客户端的运行环境要求 (13) 4.1.1 客户端的硬件要求 (13) 4.1.2 客户端的配套软件要求 (13) 4.2 客户端管理软件的功能 (13) 4.2.1 客户端管理软件的界面表现形式 (14) 4.2.1.1 电子地图显示方式 (14) 4.2.1.2 虚拟大屏显示方式 (14) 4.2.2 视频交通事件检测器工作参数设置 (15) 4.2.3 交通事件报警响应和处理 (16) 4.2.4 人工录像操作 (17) 4.2.5 交通事件录像的查询和回放 (17) 4.2.6 交通事件录像的存储 (17) 4.2.7 交通流参数统计与图表显示 (17) 4.2.8 日志管理与远程维护 (18)

云计算平台设计方案

国家质检中心郑州综合检测基地云计算平台建设项目(招标编号:豫财招标采购-2015-112) 云计算平台设计方案 二〇一五年二月

目录 第一章项目概述与背景 .................................. 错误!未定义书签。第二章现状与需求分析 .................................. 错误!未定义书签。 2.1各业务系统现状.................................. 错误!未定义书签。 2.2.本期项目主要需求.............................. 错误!未定义书签。 ............................................................. 错误!未定义书签。 ............................................................. 错误!未定义书签。 ............................................................. 错误!未定义书签。 ............................................................. 错误!未定义书签。 ............................................................. 错误!未定义书签。第三章设计原则与目标 .................................. 错误!未定义书签。 3.1设计原则.............................................. 错误!未定义书签。 3.2建设目标.............................................. 错误!未定义书签。第四章质监云计算平台设计 .......................... 错误!未定义书签。 4.1总体设计思想...................................... 错误!未定义书签。 4.2总体架构设计...................................... 错误!未定义书签。 4.3计算虚拟化.......................................... 错误!未定义书签。 4.4网络虚拟化.......................................... 错误!未定义书签。 4.5存储虚拟化.......................................... 错误!未定义书签。 ............................................................. 错误!未定义书签。 ............................................................. 错误!未定义书签。 4.6云资源自动调度设计.......................... 错误!未定义书签。

水情信息服务系统建设方案

水情信息服务系统建设方案 2010-3

目录 1.项目定义 (3) 1.1项目开发背景 (3) 1.2系统建设目标 (3) 1.3系统建设思想 (3) 2.技术策略 (4) 2.1系统建设原则 (4) 2.1.1实用性 (4) 2.1.2整体性 (4) 2.1.3高效性 (4) 2.1.4友好性 (4) 2.1.5可管理性 (4) 2.1.6可靠性 (5) 2.1.7安全性 (5) 2.2技术标准 (5) 3.系统总体结构 (5) 3.1系统建设内容 (5) 3.1.1表现层设计 (6) 3.1.2逻辑层设计 (6) 3.1.3数据层设计 (6) 3.2系统工作内容 (6) 3.2.1信息收集汇总部分 (6) 3.2.2数据分析管理部分 (6) 3.2.3结果输出显示部分 (7) 3.3系统功能组成 (7) 3.3.1数据自动汇总 (7) 3.3.2数据查询 (7) 3.3.3自动比对 (7) 3.3.4数据更新 (7) 3.3.5网络传输与数据共享 (7) 3.3.6用户管理 (8) 4.系统应用模块 (8) 4.1雨情信息 (8) 4.2水情信息 (8) 4.3气象信息 (9) 4.4简报发布 (9) 4.5上报文件 (9) 4.6短信系统 (9) 5.费用预算 (10) 6.进程安排 (10)

1.项目定义 1.1项目开发背景 河北省地处半湿润半干旱地区,全省多年平均降水量为541mm。由于自然条件和气候的差异,导致降水量时空分布不均,年际变化较大,全年降水量的70~80%集中在汛期。河北历史上,特别是近代史上,洪、涝等自然灾害十分严重,是全国水旱灾害最频繁的省份之一。为了减少水旱灾害的损失,加强防汛抗旱指挥的科学性,提高信息的时效性和准确性,必须建设快速雨水情信息服务系统,以满足水情工作的需要。水情信息服务系统的建设,将大大简化实时雨水情基础数据的处理工作,为提高水情信息服务质量提供有力的技术支持。 水情信息服务系统以实时水情计算机网络、实时水情数据库和历史水文数据库为基础,以信息服务为导向,以防汛抗旱、水资源开发利用、水环境保护的需求为重点,达到信息传输网络化、信息处理标准化、水情分析科学化的目的,为实现水情工作现代化奠定坚实的基础。 1.2系统建设目标 建设一个高效、便捷、全面集成化信息服务系统,为迅速、及时、准确地掌握全省及相关地区雨情、水情信息等各种防汛抗旱基础资料,为防汛抗旱调度决策提供有力技术支持和科学依据。 具体内容包括: (1)充分利用现有水情数据库,提高数据存储、数据共享和网络互联能力; (2)建设面向空间层次体系的数据结构,为多维信息复合奠定基础; (3)提供多种实时天气、雨情、水情信息,包括实时天气形势、长中短期天气预报、实时雨情、实时水情以及各种专业业务报表等信息; (4)功能强大的信息查询。系统有机融合各种信息数据,可通过多种方式查询相关信息,浏览对象包括图形、图表、图像、单/多记录、文字等以信息可视化方式显现各种防汛抗旱信息; (5)综合全面的信息分析处理,对实时雨情、水情等各种信息从空间上和时间上进行多维的对比分析处理; (6)使用Web方式,为水情工作人员提供工作平台; (7)方便灵活的输出功能,可打印部分查询和分析结果; (8)完善的数据库维护功能,提供通用的数据库维护功能和安全机制。 1.3系统建设思想 在系统设计过程中,采用系统集成的方式,充分吸收利用多年来防汛抗旱相关系统开发应用的成果基础,并按以下要求进行: (1)系统建设必须与用户需求紧密结合,以使用为第一要求,力求通过本系统的开发,能为防汛抗旱决策提供有力的技术支持和科学依据,在实际工作中

基于视频技术的直接交通事件检测

基于视频技术的直接交通事件检测高速公路和城市快速路是承担我国公路运输和城市道路运输的主要道路,具有车速快、流量大等许多特点,一旦发生突发交通事件,极易引发交通事故,严重影响道路的通行能力和运营效率。在日常的交通运行和交通管理中,如果仅仅依靠人工报告,电视监视等非自动检测方法发现交通事件,不但浪费大量的资源,而且不全面及时,给交通安全带来了隐患。因此,交通事件自动检测技术越发成为智能交通的研究热点,旨在第一时间快速发现交通事件的地点,利于及时处理交通事件。 交通事件指偶发性交通事故、车辆抛锚、恶劣天气、货物散落、道路养护、体育赛事、规模集会等交通情况。高速公路和城市快速路上发生的停车、逆行、慢行、拥堵、行人穿越、交通事故是需要重点管控的交通事件。当发现这些交通事件时,交通事件自动检测系统能够立刻报警,自动记录违章违法依据,同时快速处置交通事件,消除安全隐患、减少交通事件的损失。例如,图1(a)为行人穿越高速公路交通事件,图1(b)为高速公路车辆拥堵交通事件。

交通事件的视频检测技术研究概述 交通事件自动检测方法 图2为交通事件检测研究方法结构示意图,分为自动和非自动检测方法,其中非自动技术主要包括人工报告,电视监视等,自动技术主要有直接和间接检测法。直接检测法是一种基于视频的处理方法,通过交通事件视频检测算法,直接检测交通事件。间接检测法是一种基于交通流参数的处理方法,通过模式识别、数学统计、交通模型、人工智能等方法,融合交通流数据检测交通事件。直接法和间接法的特点可总结如下: 1、由于交通系统具有很强的非线性、模糊性、不确定性,研究表明间接法有许多不足之处,不但安装麻烦,而且费用较高,在交通流密度高时,间接法具有较好的检测效果,在交通密度低时检测效果不好。 2、由于直接法是根据视频图像内容,直接判断是否有交通事件发生,研究表明直接法的判别速度上远远胜于间接法,即使交通流量很低,也能对交通事件进行良好的判断。 鉴于交通事件的直接检测法的快速判断能力和其广泛交通的实用性,本文主要涉及基于视频的直接交通事件检测方法的研究和应用情况。 国外研究状况 由于模式识别、图像处理、计算机视觉、人工智能等技术的快速发展,国外开展交通事件的视频技术研究较早,而且技术也比较成熟。目前,国外已经研究出多种交通事件视频检测系统,如Autoscope、Siemens、Traficon、Videotrack等。这些系统基本能够实现平均队列长度、平均车速、车头时距、事故检测、拥挤度检测、车辆跟踪等功能。Autoscope交通事件视频检测系统目前已经成功应用于美国乔治亚洲运输部出行向导、北京四环路交通量检测、韩国奥林匹克交通信息系统、纽约高速公路事故管理系统、香港隧道事故检测信息系统等。 国内研究状况

上海交通大学《检测技术》习题集

《检测技术》习题集 第二章 测试系统 2-1 对于二阶装置,为何要取阻尼比 7 060..-=ξ? 2-2 解释下列概念:频率特性、频响函数和工作频带。 2-3 一个优良的测量装置或系统,当测取一个理想的三角波时,也只能作到工程意义上的不失真测量,为什么? 2-4 某动压力测量时,所采用的压电式压力传感器的灵敏度为Mpa 0nc 90/.,将它与增益为 ) /(.nC 005V 0的电荷放大器相连,然后将其输出送入到一台笔式记录仪,记录仪的灵敏度为V 20mm /, 试计算系统的总灵敏度。又当压力变化5MPa 3.时,记录笔在记录纸上的偏移量多少? 2-5 用某一阶装置测量频率为100Hz 的正弦信号,要求幅值误差限制在%5以内,问其时间常数应取多少?如果用具有该时间常数的同一装置测量频率为50Hz 的正弦信号,试问此时的幅值误差和相角差分别为多少? 2-6 设用一个时间常数为1s 0.=τ的一阶装置测量输入为2sin40t 0sin4t t x .)(+=的信号,试求其输出 ) (t y 的表达式。设静态灵敏度1K =。 2-7 某1s 0.=τ的一阶装置,当允许幅值误差在%10以内时,试确定输入信号的频率范围。 2-8 两环节的传递函数分别为 ) ./(.55s 351+和 )./(2n n 2 2n s 41s 41ωωω++,试求串联后所组成装置的灵敏度。(提示:先将传递函数化成标准形式。) 2-9 设一力传感器为二阶分系统。已知其固有频率为800Hz ,阻尼比为 14 0.=ξ,当测频率为400Hz 变化的力参量时,其振幅比)(ωA 和相位差)(ωφ各为多少?若使该装置的阻尼比 7 0.=ξ,则)(ωA 和) (ωφ又为多少? 2-10 对某二阶装置输入一单位阶跃信号后,测得其响应中数值为1.5的第一个超调量峰值。同时测得其振荡周期为28s 6.。若该装置的静态灵敏度3K =,试求该装置的动态特性参数及其频率响应函数。 第三章 信号及其描述 3-1 试分析图3-17中各种信号属于哪类信号? 3-2 将图3-18所示的周期信号展开成三角形式和指数形式的傅里叶级数。 3-3 某电压波形如图3-19所示,该电压由周期性等边三角形所组成。试确定其傅里叶复系数,并绘制其幅度频谱和相位频谱图。 3-4 对于图3-20所示的周期矩形信号,给定5kHz f 10V E s 20===,,μτ,如使用中心频率可变的

相关文档
最新文档