模块综合检测(B)2
高中语文模块综合检测部编版选择性必修上册

模块综合检测(时间:150分钟满分:150分)一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一谈到科学技术对经济发展的贡献,自然科学好像比较容易量化。
但是,反过来,如果没有人文社会科学,自然科学不可能转化为生产力。
因为科学转变为技术,技术转变为产品,这需要社会的动力、机制和资源的配置。
一种产品能不能生产,在什么地方生产,以多大规模生产,生产的动机和动力是什么,这些问题解决不好,任何技术都不可能转化为产品。
做一张桌子,要用到物理的、化学的、数学的知识,但是,这张桌子做成什么款式、什么风格能反映出美学观点、审美情趣、文化传统,这就体现了人文精神,是人文社会科学的范畴,而不是自然科学技术本身的问题。
中国要解决的环境问题,光有自然科学知识不行,还要有人文社会科学方面的知识。
而光有人文社会科学方面的知识,没有自然科学知识同样解决不了。
任何一种实际问题都是多个学科综合起来解决。
科学转变为技术,技术转变为产品,是一步一步投入人文社会科学怀抱的过程。
人文社会科学对自然科学技术起到导向和支撑作用。
如果没有正确的价值导向、价值判断,自然科学技术不一定是第一生产力,它完全可能是第一破坏力,完全可能祸害人类。
比如核技术、克隆技术,如果没有价值判断,没有正确的人文科学理论和价值导向来引导它,科学家完全可能变成疯子,完全可能祸害人类。
正如爱因斯坦讲过的那样:“科学虽然伟大,但它只能回答‘世界是什么’的问题,‘应当如何’的价值目标,却在它的视野和职能范围之外。
”(《人大校长:我国人文社会科学受到挤压》)材料二在人文科学中重要的是正确处理科学与价值的关系问题。
在自然科学中,当然也存在科学与价值的关系,因为自然科学既具有人文价值又具有社会价值。
但就自然科学知识的客观性而言,价值是中立的,价值观属于科学研究的主体。
自然科学学者的理想与信仰、爱国主义感情和对科学成果及效用的人文关怀,与自然科学知识的真理性无直接关联。
模块综合试卷(二)

模块综合试卷(二)(满分:100分)一、单项选择题:共11题,每题4分,共44分。
每题只有一个选项最符合题意。
1.2022年,神舟十三号、十四号、十五号接力腾飞,中国空间站全面建成,可有多名宇航员长期驻留,并开展一系列的实验研究。
下列情景可以在空间站中实现的是()A.如图甲所示,燃烧的火焰呈球状B.如图乙所示,用弹簧测力计测量重力C.如图丙所示,小球抛出后做平抛运动D.如图丁所示,滴管中滴出的水滴呈水滴状2.(2023·全国乙卷)小车在水平地面上沿轨道从左向右运动,动能一直增加。
如果用带箭头的线段表示小车在轨道上相应位置处所受合力,下列四幅图可能正确的是()3.无缝钢管的制作原理如图所示,竖直平面内,管状模型置于两个支承轮上,支承轮转动时通过摩擦力带动管状模型转动,铁水注入管状模型后,由于离心作用,铁水紧紧地覆盖在模型的内壁上,冷却后就得到无缝钢管。
已知管状模型内壁半径为R,重力加速度为g,则下列说法正确的是()A.铁水是由于受到离心力的作用才覆盖在模型内壁上的B.模型各个方向上受到的铁水的作用力大小相等C.若最上部的铁水恰好不离开模型内壁,此时仅重力提供向心力D.管状模型转动的角速度最大为g R4.某种太阳能无人驾驶试验汽车上安装有太阳能电池板、蓄能电池和电动机。
在某次启动中,汽车以恒定的功率P启动,所受阻力与速度成正比,比例系数为k,经时间t汽车的速度达到最大值,对这个过程下列说法正确的是()A.汽车的合外力不变B.汽车的牵引力增大C.汽车合外力做的功等于PtD.汽车达到的最大速度为P k5.2022年10月31日,“梦天”实验舱在文昌航天发射场发射,成功和“天和”核心舱对接,并保持轨道半径不变,离地约400 km。
“梦天”实验舱完成“T”字基本构型后,“神舟十四号”航天员乘组在“梦天”实验舱内完成了货包整理、设备安装等工作,彰显了中国独自组建空间站的航天实力。
下列说法正确的是()A.“梦天”实验舱从高轨向低轨完成对接,加速运动就可完成对接任务B.“梦天”实验舱与“天和”核心舱对接后,核心舱向心加速度变大C.“梦天”实验舱发射速度必须小于第二宇宙速度D.对接后“梦天”实验舱的角速度大小比同步卫星小6.如图所示,A、B为两个相邻的试验平台,两平台高度差为80 cm,平台B的长度为2 m。
2020-2021学年外研版(三起)五年级英语上册 Module 2模块综合检测卷 (含答案)

Module2 模块综合检测听力部分一、根据录音,选出听到的图片。
( ) 1. A. B.( ) 2. A. B.( ) 3. A. B.( ) 4. A. B.( ) 5. A. B.二、听录音,选出听到的问句的答语。
( ) 1. A. We went to the supermarket. B We watch TV at home. ( ) 2. A. Yes, we did. B. Yes, we do.( ) 3. A. I visited lots of places. B. I bought lots of food and fruit. ( ) 4. A. Six bottles, please. B. Six, please.( ) 5. A. Half a kilo, please. B. They are ten yuan.三、根据录音把对话中的句子补充完整。
shopping list how many how much kilo need supermarket do for cheese noodlesA: Let’s go to the ________, Lingling. We ________ food ________ our picnicB: OK. Let’s go.A: Can you read the ________ to me, please?B: The first thing is bananas. ________ do you want?A: Six, please. Amy and Sam like bananas. ________ you like bananas.B: Yes, I do.A: Good! What’s next?B: Cheese. ________ cheese do we need?A: Half a ________ please. Do you like ________?B: No, I don’t like cheese. I like ________.A: Let’s buy one kilo of noodles.B: Great!笔试部分一、选出不同类的单词。
Module 2 Public holidays模块综合检测(含答案)

Module 2 Public holidays模块综合检测(含答案)单项选择1. A lot of green trees ______on each side of the street.A. developB. increaseC. plantD. grow2. All living things ______the sun for their growth.A. depend ofB. fill withC. full ofD. depend on3.—Do you know when he ______tomorrow?—Don’t worry. I think as soon as he ______, he will give you a call.A. will come; will comeB. will come; comesC. comes; will comeD. comes; comes4.—Hey, man. You can’t cross the street now. You have t o wait ______the traffic lights turn green.—Oh, sorry and thank you.A. whenB. afterC. untilD. while5.—How old is your daughter?—______. We had a special party for her ______birthday yesterday.A. Nine; nineB. Nine; ninthC. Ninth; ninth6.—I will go to Harbin for my summer vacation. What about you?—I haven’t decided where ______.A. goB. wentC. goingD. to go7. —Do you know when the USA ______?—In 1776.A. foundB. was foundC. was foundedD. founded8. Mr. Yang never plays video games in his free time, ______?A. is heB. isn’t heC. does heD. doesn’t he9. —Haven’t you finished your homework?—______. We finished it two hours ago.A. Yes, we haven’tB. No, we haveC. Yes, we haveD. No, we haven’t10. —Our team has just won the game. We all feel so excited now.—______.A. Good luckB. Enjoy yourselvesC. Well doneD. And anything special完形填空In the US, Mother’s Day is a holiday on the second Sunday in May. It is a day when child ren give their 1 cards, presents and flowers.One of the best ways to celebrate Mother’s Day is to give your mother the day off. Let her have a good rest while other members of the family do the 2 .Many families begin Mother’s Day with 3 in bed. Usually dad and the children will let mum 4 late as they go into the kitchen(厨房)and get ready 5 her favorite meal. A Mother’s Day breakfast can make anything your mum likes.After the food is cooked, keep everything nicely on a plate. Don’t forget to put the bottle 6 only one flower. It’s spring here, the children can pick the nicest7 from the garden outside. When everything is ready,carefully carry the plate and mum’s favorite books and newspapers up to her bedroom. Cards and small presen ts from the children can be put on the plate 8 it is given to mum in bed.Many families take mum out to her favorite restaurant for a meal. It is a good day to let your mum 9 and let her see what a wonderful 10 she has.1. A. mothers B. parents C. teachers D. friends2. A. housework B. washing C. work D. shopping3. A. breakfast B. lunch C. supper D. dinner4. A. eat B. sleep C. wash D. cook5. A. to B. for C. with D. by6. A. in B. on C. with D. of7. A. plate B. flower C. bottle D. food8. A. after B. when C. if D. before9. A. sleep B. eat C. cook D. rest10. A. family B. job C. restaurant D. flower阅读理解On Thanksgiving Day, about 88 percent Americans will eat turkey. But one lucky turkey not only will not be eaten but also will become famous! Every year, turkey farmers present a turkey to the US president. But instead of eating this turkey, the president gives it a “pardon”. The turkey is flown to Florida for a Thanksgiving Pa rade. Then it lives on a farm for the rest of its life.Turkeys come from America and have been part of American culture for centuries. Benjamin Franklin even wanted the turkey to be America’s national bird.Turkeys that are kept on farms are large, awkward birds that can not fly. But wild turkeys are quite fast. They can fly at speeds up to 88 kilometers per hour. They can also run at 40 kilometers per hour.Turkeys don’t have ears. They hear by using a growth above their beaks. But their hearing is fiv e times better than human hearing.Turkeys are such interesting birds—no wonder Benjamin Franklin wanted them to be America’s national birds!1. ______ people eat turkey on Thanksgiving Day.A. A fewB. SomeC. MostD. All2. The underlined word“pardon”means ______.A. 赦免B. 赐死C. 礼物D. 原谅3. A wild turkey can fly at the speed of ______.A. 88 kilometers per hourB. 40 kilometers per hourC. as fast as a kept oneD. five times faster than man4. The turkey doesn’t have ______.A. eyesB. earsC. a mouthD. wings5. What’s the best title for this passage?A. The turkey on the farmB. The history of the turkeyC. How to keep the turkeyD. The star of thanksgiving词汇运用(Ⅰ)根据句意及首字母或汉语提示完成单词1. There is a big star and four smaller stars in our national f __________.2. There are four s __________in a year: spring, summer, autumn and winter.3. Tree Planting Day comes on the T __________of March.4. The singer was standing __________(在……之中)his fans.5. We are having a party to celebr ate Betty’s __________(第二十个)birthday.(Ⅱ)用所给词的适当形式填空6. My uncle __________(teach)in this school since he was twenty years old.7. While __________(dance)on the stage, Amy felt very happy.8. I was just leaving when someone __________(knock)at the door.9. It’s silly of you __________(copy)others’ homework.10. With the boy __________(lead)the way, we found the house easily.Ⅵ. 完成句子1.我们只可以休一天假吗?Shall we have only __________ __________ __________?2. 水上乐园是旅游度假的好地方。
【步步高】2021学年高中数学 模块综合检测(B)新人教A版选修1-1(1)

模块综合检测(B)(时刻:120分钟 总分值:150分)一、选择题(本大题12小题,每题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,若是“p 且q ”与“非q ”同时为假命题,那么知足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分没必要要条件 B .必要不充分条件 C .充要条件D .既不充分也没必要要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,那么双曲线的离心率是( ) A.2 B.3 C.5 D .24.已知双曲线的离心率为2,核心是(-4,0),(4,0),那么双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=1 5.已知△ABC 的极点B 、C 在椭圆x 23+y 2=1上,极点A 是椭圆的一个核心,且椭圆的另外一个核心在BC边上,那么△ABC 的周长是( )A .23 B .6 C .43 D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1C.y 24-x 22=1D.y 22-x 24=1 7.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -5 8.函数f (x )=x 2-2ln x 的单调递减区间是( ) A .(0,1] B .[1,+∞) C .(-∞,-1],(0,1) D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,那么以(1,1)为中点的弦的长度为( ) A .32 B .23 C.303 D.32610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,那么a 等于( )A .2 B.12 C .-12D .-211.假设函数y =f (x )的导函数在区间[a ,b ]上是增函数,那么函数y =f (x )在区间[a ,b ]上的图象可能是( ) 12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .113.已知双曲线x 2-y 23=1,那么它的核心到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,那么P 到直线y =x -2的距离的最小值是________. 15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“假设x ≥3且y ≥2,那么x -y ≥1”为假命题.③若p ∧q 为假命题,那么p ,q 均为假命题. 其中正确说法的序号为________. 16.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个核心F 1、F 2,假设P 为双曲线上一点,且|PF 1|=2|PF 2|,那么双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.假设“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个核心,Q 是椭圆上任意一点,从任一核心向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)假设r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x 2a 2+y 2b 2=1 (a >b >0)的一个极点为A (0,1),离心率为22,过点B (0,-2)及左核心F 1的直线交椭圆于C ,D 两点,右核心设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积.21.(12分)已知函数f (x )=x 3+bx 2+cx +d 的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为6x -y +7=0.(1)求函数y =f (x )的解析式; (2)求函数y =f (x )的单调区间.22.(12分)已知f (x )=23x 3-2ax 2-3x (a ∈R ),(1)假设f (x )在区间(-1,1)上为减函数,求实数a 的取值范围; (2)试讨论y =f (x )在(-1,1)内的极值点的个数. 模块综合检测(B) 答案 1.D2.A [因为|a |>0⇔a >0或a <0,因此a >0⇒|a |>0,但|a |>0 a >0,因此“a >0”是“|a |>0”的充分没必要要条件.]3.C4.A [由题意知c =4,核心在x 轴上, 又e =ca=2,∴a =2,∴b 2=c 2-a 2=42-22=12, ∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一核心为F ,由椭圆的概念知 |BA |+|BF |=23,且|CF |+|AC |=23,因此△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=43.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 因此所求的双曲线方程为y 22-x 24=1.]7.B [y ′=3x 2-6x ,∴k =y ′|x =1=-3, ∴切线方程为y +1=-3(x -1), ∴y =-3x +2.]8.A [由题意知x >0,若f ′(x )=2x -2x =2x 2-1x≤0,那么0<x ≤1,即函数f (x )的递减区间是(0,1].]9.C [令直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21+2y 21=4 ①x 22+2y 22=4 ②①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0, 即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB |=⎝ ⎛⎭⎪⎫1+1k 2y 1-y 22=303.] 10.D [y =x +1x -1,∴y ′|x =3=-2x -12|x =3=-12. 又∵-a ×⎝ ⎛⎭⎪⎫-12=-1,∴a =-2.]11.A [依题意,f ′(x )在[a ,b ]上是增函数,那么在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观看四个选项中的图象,只有A 知足.]12.C [f (x )=x 4-2x 2+c . 因为过点(0,-5),因此c =-5.由f ′(x )=4x (x 2-1),得f (x )有三个极值点,列表判定±1均为极小值点,且f (1)=f (-1)=-6.] 13.3解析 核心(±2,0),渐近线:y =±3x , 核心到渐近线的距离为2332+1=3.14.2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),那么通过该点的切线的斜率为k =2x 0-1x 0,依照题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,现在y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2=2.15.①②解析 对①,a ,b ,c ,d 成等比数列,那么ad =bc ,反之不必然,故①正确;对②,令x =5,y =6,那么x -y =-1,因此该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m , 则2a =||PF 1|-|PF 2||=m , 2c =|F 1F 2|≤|PF 1|+|PF 2|=3m . ∴e =c a =2c2a ≤3,又e >1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧Δ=m 2-4>0m >0⇔m >2.命题q :方程4x 2+4(m -2)x +1=0无实根 ⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0 ⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假, ∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3,解得m ≥3或1<m ≤2. 18.解设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),F 1,F 2是它的两个核心,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,那么P 是F 2H 的中点,且|F 2Q |=|QH |, 因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a , ∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4∈[-2,2],∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立. ∴m ≥2. ①又对∀x ∈R ,s (x )为真命题. ∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ② 故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =ca =22,又∵a 2=b 2+c 2,∴a 2=2. ∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x22+y 2=1,得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, ∴直线与椭圆有两个公共点, 设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1x 2=23,∴|CD |=1+-22|x 1-x 2| =5·x 1+x 22-4x1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象通过P (0,2)知d =2, ∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0, 即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2. (2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0, 即x 2-2x -1=0. 解得x 1=1-2,x 2=1+2.当x <1-2或x >1+2时,f ′(x )>0.当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数, ∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′-1≤0f ′1≤0 得-14≤a ≤14.故a 的取值范围是⎣⎢⎡⎦⎥⎤-14,14.(2)当a >14时,∵⎩⎪⎨⎪⎧f ′-1=4⎝ ⎛⎭⎪⎫a -14>0f ′1=-4⎝ ⎛⎭⎪⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0, ∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0, 即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减, ∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎪⎨⎪⎧f ′-1=4⎝ ⎛⎭⎪⎫a -14<0f ′1=-4⎝ ⎛⎭⎪⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0. ∵f ′(x )=2x 2-4ax -3开口向上, ∴在(-1,x 0)内f ′(x )<0, 在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增, ∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点. 当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.。
高中数学 模块综合检测2(含解析)新人教A版选择性必修第二册-新人教A版高二选择性必修第二册数学试题

模块综合检测(二)(满分:150分 时间:120分钟)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=ln x 2x ,则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =( ) A .-2-ln 2B .-2+ln 2C .2-ln 2D .2+ln 2A [由题意,函数f (x )=ln x 2x , 则f ′(x )=1x ·2x -(2x )′ln x (2x )2=2x -12⎝ ⎛⎭⎪⎫1-12ln x 2x , 则lim Δx →0f ⎝ ⎛⎭⎪⎫12-f ⎝ ⎛⎭⎪⎫12+Δx Δx =-f ′⎝ ⎛⎭⎪⎫12=-2+ln 22×12=-2-ln 2,故选A.] 2.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4C .2D .4C [∵T 13=4T 9,∴a 1a 2…a 9a 10a 11a 12a 13=4a 1a 2…a 9,∴a 10a 11a 12a 13=4.又∵a 10·a 13=a 11·a 12=a 8·a 15,∴(a 8·a 15)2=4,∴a 8a 15=±2.又∵{a n }为递减数列,∴q >0,∴a 8a 15=2.]3.已知公差不为0的等差数列{a n }的前23项的和等于前8项的和.若a 8+a k =0,则k =( )A .22B .23C .24D .25C [等差数列的前n 项和S n 可看做关于n 的二次函数(图象过原点).由S 23=S 8,得S n 的图象关于n =312对称,所以S 15=S 16,即a 16=0,所以a 8+a 24=2a 16=0,所以k =24.]4.已知函数f (x )=(x +a )e x 的图象在x =1和x =-1处的切线相互垂直,则a =( )A .-1B .0C .1D .2A [因为f ′(x )=(x +a +1)e x ,所以f ′(1)=(a +2)e ,f ′(-1)=a e -1=a e ,由题意有f (1)f ′(-1)=-1,所以a =-1,选A.]5.设S n 是公差不为0的等差数列{a n }的前n 项和,S 3=a 22,且S 1,S 2,S 4成等比数列,则a 10=( )A .15B .19C .21D .30B [由S 3=a 22得3a 2=a 22,故a 2=0或a 2=3.由S 1,S 2,S 4成等比数列可得S 22=S 1·S 4,又S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d ,故(2a 2-d )2=(a 2-d )(4a 2+2d ),化简得3d 2=2a 2d ,又d ≠0,∴a 2=3,d =2,a 1=1,∴a n =1+2(n -1)=2n -1,∴a 10=19.]6.若函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,则实数a 的取值X 围是( )A .(-2,+∞)B .⎝ ⎛⎭⎪⎫12,+∞ C .⎝ ⎛⎭⎪⎫-12,+∞ D .(2,+∞)D [因为函数f (x )=ax -ln x 的图象上存在与直线x +2y -4=0垂直的切线,所以函数f (x )=ax -ln x 的图象上存在斜率为2的切线,故k =f ′(x )=a -1x =2有解,所以a =2+1x ,x >0有解,因为y =2+1x ,x >0的值域为(2,+∞).所以a ∈(2,+∞).]7.已知等差数列{}a n 的前n 项为S n ,且a 1+a 5=-14,S 9=-27,则使得S n 取最小值时的n 为( )A .1B .6C .7D .6或7B [由等差数列{a n }的性质,可得a 1+a 5=2a 3=-14⇒a 3=-7,又S 9=9(a 1+a 9)2=-27⇒a 1+a 9=-6⇒a 5=-3,所以d =a 5-a 35-3=2,所以数列{a n }的通项公式为a n =a 3+(n -3)d =-7+(n -3)×2=2n -13,令a n ≤0⇒2n -13≤0,解得n ≤132,所以数列的前6项为负数,从第7项开始为正数,所以使得S n 取最小值时的n 为6,故选B.]8.若方底无盖水箱的容积为256,则最省材料时,它的高为( )A .4B .6C .4.5D .8A [设底面边长为x ,高为h ,则V (x )=x 2·h =256,∴h =256x 2.∴S (x )=x 2+4xh =x 2+4x ·256x 2=x 2+4×256x ,∴S ′(x )=2x -4×256x 2. 令S ′(x )=0,解得x =8,∴当x =8时,S (x )取得最小值.∴h =25682=4.]二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.设数列{}a n 是等差数列,S n 是其前n 项和,a 1>0,且S 6=S 9,则( )A .d <0B .a 8=0C .S 5>S 6D .S 7或S 8为S n 的最大值ABD [根据题意可得a 7+a 8+a 9=0⇒3a 8=0⇒a 8=0,∵数列{}a n 是等差数列,a 1>0,∴公差d <0,所以数列{}a n 是单调递减数列, 对于A 、B ,d <0,a 8=0,显然成立;对于C ,由a 6>0,则S 5<S 6,故C 不正确;对于D ,由a 8=0,则S 7=S 8,又数列为递减数列,则S 7或S 8为S n 的最大值,故D 正确.故选ABD.]10.如图是y =f (x )导数的图象,对于下列四个判断,其中正确的判断是( )A .f (x )在(-2,-1)上是增函数B .当x =-1时,f (x )取得极小值C .f (x )在(-1,2)上是增函数,在(2,4)上是减函数D .当x =3时,f (x )取得极小值BC [根据图象知当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数单调递减; 当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数单调递增.故A 错误;故当x =-1时,f (x )取得极小值,B 正确;C 正确;当x =3时,f (x )不是取得极小值,D 错误.故选BC.]11.已知等比数列{}a n 的公比q =-23,等差数列{}b n 的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( )A .a 9a 10<0B .a 9>a 10C .b 10>0D .b 9>b 10AD [∵等比数列{}a n 的公比q =-23,∴a 9和a 10异号,∴a 9a 10<0 ,故A 正确;但不能确定a 9和a 10的大小关系,故B 不正确;∵a 9和a 10异号,且a 9>b 9且a 10>b 10,∴b 9和b 10中至少有一个数是负数, 又∵b 1=12>0 ,∴d <0,∴b 9>b 10 ,故D 正确,∴b 10一定是负数,即b 10<0 ,故C 不正确. 故选AD.]12.已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A .x 2f (x 1)<x 1f (x 2)B .x 1+f (x 1)<x 2+f (x 2)C .f (x 1)-f (x 2)x 1-x 2<0 D .当ln x >-1时,x 1f (x 1)+x 2f (x 2)>2x 2f (x 1)AD [设g (x )=f (x )x =ln x ,函数单调递增,则g (x 2)>g (x 1),即f (x 2)x 2>f (x 1)x 1,∴x 1f (x 2)>x 2f (x 1),A 正确; 设h (x )=f (x )+x ∴h ′(x )=ln x +2不是恒大于零,B 错误;f (x )=x ln x ,∴f ′(x )=ln x +1不是恒小于零,C 错误;ln x >-1,故f ′(x )=ln x +1>0,函数单调递增.故(x 2-x 1)(f (x 2)-f (x 1))=x 1f (x 1)+x 2f (x 2)-x 2f (x 1)-x 1f (x 2)>0,即x 1f (x 1)+x 2f (x 2)>x 2f (x 1)+x 1f (x 2).f (x 2)x 2=ln x 2>f (x 1)x 1=ln x 1,∴x 1f (x 2)>x 2f (x 1),即x 1f (x 1)+x 2f (x 2)>2x 2f (x 1),D 正确.故选AD.]三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.数列{a n }的前n 项和为S n ,若a n +1=11-a n(n ∈N *),a 1=2,则S 50=________. 25[因为a n +1=11-a n (n ∈N *),a 1=2,所以a 2=11-a 1=-1,a 3=11-a 2=12,a 4=11-a 3=2,∴数列{a n }是以3为周期的周期数列,且前三项和S 3=2-1+12=32, ∴S 50=16S 3+2-1=25.]14.将边长为1 m 的正三角形薄铁皮,沿一条平行于某边的直线剪成两块,其中一块是梯形,记s =(梯形的周长)2梯形的面积,则s 的最小值是________. 3233[设AD =x (0<x <1),则DE =AD =x ,∴梯形的周长为x+2(1-x )+1=3-x .又S △ADE =34x 2,∴梯形的面积为34-34x 2,∴s =433×x 2-6x +91-x 2(0<x <1), 则s ′=-833×(3x -1)(x -3)(1-x 2)2. 令s ′=0,解得x =13.当x ∈⎝ ⎛⎭⎪⎫0,13时,s ′<0,s 为减函数;当x ∈⎝ ⎛⎭⎪⎫13,1时,s ′>0,s 为增函数.故当x =13时,s 取得极小值,也是最小值,此时s 的最小值为3233.]15.设公比为q (q >0)的等比数列{a n }的前n 项和为S n .若S 2=3a 2+2,S 4=3a 4+2,则q =________.32[由S 2=3a 2+2,S 4=3a 4+2相减可得a 3+a 4=3a 4-3a 2,同除以a 2可得2q 2-q -3=0,解得q =32或q =-1.因为q >0,所以q =32.]16.已知函数f (x )是定义在R 上的偶函数,当x >0时,xf ′(x )>f (x ),若f (2)=0,则2f (3)________3f (2)(填“>”“<”)不等式x ·f (x )>0的解集为________.(本题第一空2分,第二空3分)> (-2,0)∪(2,+∞)[由题意,令g (x )=f (x )x ,∵x >0时,g ′(x )=xf ′(x )-f (x )x 2>0.∴g (x )在(0,+∞)单调递增,∵f (x )x 在(0,+∞)上单调递增,∴f (3)3>f (2)2即2f (3)>3f (2).又∵f (-x )=f (x ),∴g (-x )=-g (x ),则g (x )是奇函数,且g (x )在(-∞,0)上递增,又g (2)=f (2)2=0,∴当0<x <2时,g (x )<0,当x >2时,g (x )>0;根据函数的奇偶性,可得当-2<x <0时,g (x )>0,当x <-2时,g (x )<0. ∴不等式x ·f (x )>0的解集为{x |-2<x <0或x >2}.]四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)在等差数列{}a n 中,已知a 1=1,a 3=-5.(1)求数列{}a n 的通项公式;(2)若数列{}a n 的前k 项和S k =-25,求k 的值.[解](1)由题意,设等差数列{}a n 的公差为d ,则a n =a 1+()n -1d ,因为a 1=1,a 3=-5,可得1+2d =-5,解得d =-3,所以数列{}a n 的通项公式为a n =1+()n -1×()-3=4-3n .(2)由(1)可知a n =4-3n ,所以S n =n [1+(4-3n )]2=-32n 2+52n ,又由S k =-25,可得-32k 2+52k =-25,即3k 2-5k -50=0,解得k =5或k =-103,又因为k ∈N *,所以k =5.18.(本小题满分12分)已知函数f (x )=a ln x +12x 2.(1)求f (x )的单调区间;(2)函数g (x )=23x 3-16(x >0),求证:a =1时f (x )的图象不在g (x )的图象的上方.[解](1)f ′(x )=a x +x (x >0),若a ≥0,则f ′(x )>0,f (x )在 (0,+∞)上单调递增;若a <0,令f ′(x )=0,解得x =±-a ,由f ′(x )=(x --a )(x +-a )x >0,得x >-a ,由f ′(x )<0,得0<x <-a .从而f (x )的单调递增区间为(-a ,+∞),单调递减区间为(0,-a ). (2)证明:令φ(x )=f (x )-g (x ),当a =1时,φ(x )=ln x +12x 2-23x 3+16(x >0),则φ′(x )=1x +x -2x 2=1+x 2-2x 3x =(1-x )(2x 2+x +1)x. 令φ′(x )=0,解得x =1.当0<x <1时,φ′(x )>0,φ(x )单调递增;当x >1时,φ′(x )<0,φ(x )单调递减.∴当x =1时,φ(x )取得最大值φ(1)=12-23+16=0,∴φ(x )≤0,即f (x )≤g (x ).故a =1时f (x )的图象不在g (x )的图象的上方.19.(本小题满分12分)已知数列{}a n 的前n 项和为S n ,且2S n =3a n -1.(1)求数列{}a n 的通项公式;(2)若数列{}b n 满足b n =log 3a n +1,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1b n b n +1的前n 项和T n .[解](1)由2S n =3a n -1()n ∈N +得,2S n -1=3a n -1-1()n ≥2.两式相减并整理得,a n =3a n -1()n ≥2.令n =1,由2S n =3a n -1()n ∈N +得,a 1=1.故{}a n 是以1为首项,公比为3的等比数列,因此a n =3n -1()n ∈N +.(2)由b n =log 3a n +1,结合a n =3n -1得,b n =n .则1b n b n +1=1n ()n +1=1n -1n +1 故T n =1b 1b 2+1b 2b 3+…+1b n b n +1=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+1n -1n +1=n n +1. 20.(本小题满分12分)某旅游景点预计2019年1月份起前x 个月的旅游人数的和p (x )(单位:万人)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).已知第x 个月的人均消费额q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 35-2x (x ∈N *,且1≤x ≤6),160x (x ∈N *,且7≤x ≤12).(1)写出2019年第x 个月的旅游人数f (x )(单位:万人)与x 的函数关系式;(2)问2019年第几个月旅游消费总额最大?最大月旅游消费总额为多少元?[解](1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)x (41-2x )=-3x 2+40x ,验证x =1也满足此式,所以f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)第x 个月旅游消费总额(单位:万元)为g (x )=⎩⎨⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12). (i)当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5或x =1409(舍去).当1≤x <5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125.(ii)当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,∴当x =7时,g (x )max =g (7)=3 040.综上,2019年5月份的旅游消费总额最大,最大旅游消费总额为3 125万元.21.(本小题满分12分)已知数列{a n }的通项公式为a n =3n -1,在等差数列{b n }中,b n >0,且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n b n }的通项公式;(2)求数列{a n b n }的前n 项和T n .[解](1)∵a n =3n -1,∴a 1=1,a 2=3,a 3=9.∵在等差数列{b n }中,b 1+b 2+b 3=15,∴3b 2=15,则b 2=5.设等差数列{b n }的公差为d ,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,∴(1+5-d )(9+5+d )=64,解得d =-10或d =2.∵b n >0,∴d =-10应舍去,∴d =2,∴b 1=3,∴b n =2n +1.故a n b n=(2n+1)·3n-1.(2)由(1)知T n=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①3T n=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②①-②,得-2T n=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)×3n =3+2×(3+32+33+…+3n-1)-(2n+1)×3n=3+2×3-3n1-3-(2n+1)×3n=3n-(2n+1)×3n=-2n·3n.∴T n=n·3n.22.(本小题满分12分)设函数f (x)=x3-6x+5,x∈R.(1)求f (x)的极值点;(2)若关于x的方程f (x)=a有3个不同实根,某某数a的取值X围;(3)已知当x∈(1,+∞)时,f (x)≥k(x-1)恒成立,某某数k的取值X围.[解](1)f ′(x)=3(x2-2),令f ′(x)=0,得x1=-2,x2= 2.当x∈(-∞,-2)∪(2,+∞)时,f ′(x)>0,当x∈(-2,2) 时,f ′(x)<0,因此x1=-2,x2=2分别为f (x)的极大值点、极小值点.(2)由(1)的分析可知y=f (x)图象的大致形状及走向如图所示.要使直线y=a 与y=f (x)的图象有3个不同交点需5-42=f (2)<a<f (-2)=5+4 2.则方程f (x)=a有3个不同实根时,所某某数a的取值X围为(5-42,5+42).(3)法一:f (x)≥k(x-1),即(x-1)(x2+x-5)≥k(x-1),因为x>1,所以k≤x2+x-5在(1,+∞)上恒成立,令g(x)=x2+x-5,由二次函数的性质得g(x)在(1,+∞)上是增函数,所以g(x)>g(1)=-3,所以所求k的取值X围是为(-∞,-3].法二:直线y=k(x-1)过定点(1,0)且f (1)=0,曲线f (x)在点(1,0)处切线斜率f ′(1)=-3,由(2)中图知要使x∈(1,+∞)时,f (x)≥k(x-1)恒成立需k≤-3.故实数k的取值X围为(-∞,-3].。
2024-2025学年模块综合检测卷-【勤径学升】高中化学必修第一册同步练测(人教版2019)
2024-2025学年模块综合检测卷-【勤径学升】高中化学必修第一册同步练测(人教版2019)1.下列各组物质按照单质、化合物、混合物顺序排列的是A.石墨、Fe(OH) 3胶体、澄清石灰水B.氮气、干冰、冰水混合物C.液态氧、CuSO 4 ·5H 2 O、浓盐酸D.硫粉、碘酒、含氧40%的氧化镁2.下列说法正确的是()A.金属钠能导电,所以钠是电解质B.碱性氧化物一定是金属氧化物C.“农夫山泉”矿泉水,外包装上印有:从不添加任何人工矿物质,从不使用任何添加剂。
由此说明农夫山泉里面装的是纯净物D.FeO通常是白色固体物质3.用光洁的铂丝蘸取某无色溶液在无色火焰上灼烧,直接观察时看到火焰呈黄色,下列判断正确的是A.只含Na +B.可能含有Na +,可能还含有K +C.既含有Na +,又含有K +D.一定含Na +,可能含有K +4.下列有关化学用语表示正确的是( )A.的结构示意图:B.质子数为53、中子数为78的碘原子:C.N 2的结构式:N≡ND.H 2 O 2的电子式:5.下列说法正确的是A.常温常压下,将20gNaOH溶于500mL水中,所得溶液物质的量浓度约为1.0mol·L -1B.石墨和金刚石均互为同位素C.相同物质的量的D 2 O和H 2 O含有的电子数之比为1:1D.12 C和14 C互为同位素,化学性质不同,但物理性质几乎完全相同6.下列方框中的物质或溶液之间发生的反应分别是①②③④,下列有关这些反应的说法错误的是A.①置换反应,反应的离子方程式为B.②是复分解反应,反应的离子方程式为C.③是化合反应,但不是离子反应D.④中反应的离子方程式可能是7.“嫦娥五号”成功着陆月球,用增强铝基材料钻杆“挖土”,并于2020年12月17日带回月球土壤样品,实现了中国首次月球无人采样返回。
下列有关说法错误的是A.月壤中含有的,其质子数为3B.制作钻杆用的金属铝,分别等量地放入足量的溶液、溶液中,放出氢气的物质的量之比为C.制作钻杆用的为共价化合物D.运载火箭用的液氧-液氢推进剂在工作时发生氧化还原反应8.某溶液中含有较大量的Cl-、、OH-三种阴离子,如果只取一次该溶液就能够分别将3种阴离子依次检验出来。
《金版教程(物理)》2024导学案选择性必修第一册人教版新模块综合测评含答案
《金版教程(物理)》2024导学案选择性必修第一册人教版新模块综合测评模块综合测评本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间75分钟。
第Ⅰ卷(选择题,共50分)一、选择题(本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~10题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分)1.下列说法正确的是()A.物体做受迫振动时,驱动力频率越高,受迫振动的物体振幅越大B.医生利用超声波探测病人血管中血液的流速应用了多普勒效应C.两列波发生干涉,振动加强区质点的位移总比振动减弱区质点的位移大D.一列波通过小孔发生了衍射,波源频率越大,观察到的衍射现象越明显答案 B解析物体做受迫振动的频率等于驱动力的频率,当驱动力的频率等于系统的固有频率时,振幅达到最大,这种现象称为共振,A错误;医院检查身体的彩超仪是通过测量反射波的频率变化来确定血流的速度,显然是运用了多普勒效应原理,B正确;两列波发生干涉,振动加强区质点的振幅比振动减弱区质点的振幅大,不能说振动加强区质点的位移总比振动减弱区质点的位移大,C错误;一列波通过小孔发生了衍射,如果孔的尺寸大小不变,使波源频率增大,因为波速不变,知,波长减小,衍射现象变得不那么明显了,D错误。
根据λ=vf2.关于光,下列说法正确的是()A.光在水中的传播速度大于在空气中的传播速度B.树荫下的太阳光斑大多呈圆形是因为光的衍射C.透过竖直放置的肥皂膜看竖直的日光灯,能看到彩色干涉条纹D.当光在水面上发生反射时,反射光是偏振光答案 D解析由v=c可知,光在水中的传播速度小于在空气中的传播速度,A错误;树荫下的太阳光n斑大多是由小孔成像形成的,故呈圆形,B 错误;薄膜干涉条纹的产生是由于光线在薄膜前后两表面反射形成的两列光波叠加,而不是透过了薄膜,C 错误;当光在水面上发生反射时,反射光是偏振光,D 正确。
2023年春学期外研版八年级英语下册Module 2 模块综合测试卷附答案
2023年春学期八年级英语下册Module2模块综合测试卷(满分100分)一、单项选择(20分)()1.I have to well prepare for the math test tomorrow because it30%of the final exam.A.sets upB.puts upes upD.makes up()2.---Have you been to the museum?---Yes.I have been there twice.A.stillB.everC.yetD.never()3.---Is this new car yours?---No,I can't afford to pay for this kind of car.(选出可以代替划线部分的选项)A.is too poor toB.is able toC.is rich enough toD.doesn't want to()4.I am writing some emails,and I will them to my friends in England.A.sendB.takeC.bringD.give()5.You can't miss the Dahua Hotel.It's next to the library.(选出可以代替划线部分的选项)A.fail to seeB.loseC.feel sadD.find()6.He England and he will be back next month.A.has gone toB.has been toC.has gone inD.has been on()7.—I tried to pass the driving test,but I failed.—________.Good luck to you next time.A.That's greatB.It's interestingC.That's a pityD.Glad to hear that()8.My uncle left for England last year and we them so far.A.don't hear fromB.didn't hear fromC.haven't heard fromD.won't hear from()9.---you ever in a local hospital?---Yes,I have.I think it's a good experience for me.A.Do;workB.Did;workC.Will;workD.Have;worked()10.---How do you like the play Home with Kids?---Very good!I such a wonderful play before.A.don't seeB.never seeC.have never seenD.hadn't seen二、完形填空(10分)When I was15,my family left China.And a year later,we1to New York.Unluckily,my fathercouldn't2any food for my family.So I decided to3my family.I looked through the ads(广告) every morning and later found a4at Waterbury Hospital Health Centre.There I had to sweep floors.I smiled5remembered my father's advice.“Be proud6what you do,”my father said,“whether you're a boss or not.”So even if my job was the lowest,I felt7to do it.Each morning,I cleaned toilets,swept floors and did some other8work.And after meals I had to clean the plates and bowls.I worked hard because I wanted people to9“That young man does a nice job.”Through eleven jobs I've held,my10wise(明智的)words have stayed with me.I have swept floors, and I've been the manager.I think Dad would be proud.()1.A.moved B.ran C.entered D.sent()2.A.cook B.decide C.try D.buy()3.A.hold B.help C.miss D.count()4.A.dream B.work C.job D.mark()5.A.and B.but C.or D.so()6.A.in B.with C.of D.at()7.A.bored B.excited C.afraid D.nervous()8.A.easy B.difficult C.clean D.dirty()9.A.say B.speak C.tell D.talk()10.A.teacher's B.friend's C.father's D.mother's三、阅读理解(20分)ATony Wheeler was born to travel.His father worked for an airline.For the first16years of his life,Wheeler and his family lived in many different countries.In the early1970s,Tony met a young woman named Maureen.They soon married.Before getting jobs, Tony and Maureen wanted to travel.They took a yearlong trip from England,through Asia,to Australia.On the trip,they visited places like Iran,India,and so on.When Tony and Maureen arrived in Australia,people asked many questions about their trip.To answer these questions,Wheeler wrote a book called Across Asia on the Cheap.The book told people about different countries'weather,customs,and places to see.But unlike other travel books then,Tony Wheeler's book also talked about places that most tourists did not go to.He also wrote about unusual things to see and do.The book was very popular.Tony and Maureen started a company called Lonely Planet.They continued travelling.They wrote books for each place they visited.Today,800people work for Lonely Planet.The company has over650books.TonyWheeler,the great traveller,still writes about travels to many places and will bring us more surprises.()1.Tony Wheeler and his wife ended the year-long trip in________.A.EnglandB.IranC.IndiaD.Australia()2.Tony Wheeler wrote the book Across Asia on the Cheap to________.A.make money for his next tripB.tell people about his new companyC.draw people's attention to his familyD.answer people's question about his trip()3.How was the book Across Asia on the Cheap different from other travel books then?A.It was longer and more popular.B.It was the first travel book in the world.C.It talked about places that most tourists did not go to.D.It talked about a country's weather and customs.()4.Which of the following is TRUE about Tony Wheeler's company?A.His father started it.B.It is an airline company.C.Hundreds of people work for it.D.It has no books about travelling.()5.The passage mainly talks about________.A.a great traveller and his booksB.a tour of different countriesC.a great writer and his familyD.different kinds of companiesBAs a volunteer teacher,I travelled a long way to a small village school in Longzhou,Guangxi.On my way there,I thought about the village,the school,and the children there.However,my heart sank when I arrived there.It wasn't what I expected.It didn't look like a school at all.The school had only3rooms,one for Grades 1,2and3,and another for Grades4,5and6.There was a third one for me.The children welcomed me warmly on my first day.They asked me a lot of questions,and I told them stories and my life in Shanghai.The next day,I gave them a test to find out their level.To my surprise,although the test was very easy,over half of them failed it,yet they all wanted to learn new things.I knew they needed me.I am busy preparing lessons,and reading test papers every night.I enjoyed teaching these lovely andhardworking children,and I could see that they were making progress with my help.I have also learned a lot from them.I under stand their lives better and we are now good friends.I have worked in Longzhou for a year now.I'm very happy,and the experience has been very useful for me.I love the small village and the children.In fact,I would like to continue working here.()6.The writer found there were only rooms in that school.A.twoB.threeC.sixD.one()7.In the passage,"my heart sank..."means that the writer.A.felt excitedB.was happyC.felt sadD.was angry()8..The writer found the students'level was she expected after the first test.A.just asB.higher thanC.lower thanD.as low as()9.What does the writer think of her experience in Longzhou?A.It is boring.B.It is silly.C.It is meaningless.D.It is useful.()10.Which of the following statements is not true?A.Both the volunteer teacher and the students are working so hard.B.The volunteer teacher doesn't like to work there any longer.C.The students became better and better with the help of the volunteer teacher.D.The experience in Longzhou is useful for the volunteer teacher.四、根据句意及汉语意思填写单词(5分)1.We will go to________(法国)on holiday this year.2.There are many________(古老的)buildings in this village.3.Lucy entered three________(比赛)at school last term.4.Tom________(邀请)his friends to his father’s birthday party yesterday.5.He is the twentieth________(国王)in the country?五、根据汉语意思完成句子(10分)1.到目前为止,我们已为希望工程筹了十万元。
10-模块综合检测高中政治必修二人教版
√A.①③
B.①④
C.②③
D.②④
【解析】 材料中指出中国航天科技集团在党中央的领导下克服了难题, 完成了多项突破,这体现了国有资本投向关键科技领域,服务国家的战略 目标,国有企业是我们党执政兴国的重要支柱和依靠力量,①③正确。应 增强国有经济的控制力,而不是简单地增加其比重,②排除。我国毫不动 摇巩固和发展公有制经济,毫不动摇鼓励、支持、引导非公有制经济发展, ④错误。
5.“饭圈”是一个网络用语,是粉丝圈子的简称。控评、人肉……方法简单,
手段粗暴,有些“饭圈”正歪歪扭扭走向“怪圈”,其背后根源在于行业资本
控盘,流量经济作祟。针对这一乱象,我国相关部门紧急出台规范管理明
星艺人流量造假和诱导粉丝消费的禁令以及惩治条例。禁令和惩治条例的
颁布( D )
①旨在更好地发挥政府的监管作用 ②是弥补市场调节自发性的重要举措
点。从大国重器接连问世到“卡脖子”技术相继攻克,从传统产业“焕新”到
新兴产业“拔节”,实体经济新进展可圈可点。材料表明(
)
①我国努力推进实体经济产业升级,实力更强、活力更足、体质更优
②不断扩大实体经济的规模,才能筑牢中国式现代化的物质技术基础
③中国制造在供需两端具有强大优势,在全球产业格局中居于领先地位
成,50%为临界值,大于50%时,表明经济状况处于景气状态。
据此,以下分析正确的是(
)
①民营经济发展稳中有进,优于其他所有制经济 ②民营经济景气指数逐
季上升,呈恢复向好态势 ③民营经济在国民经济中的比重和地位不断提
升 ④需大力优化营商环境,提振民营企业发展信心
A.①②
B.①③
√C.②④
D.③④
【解析】 材料和表格信息反映出湖北省民营经济景气指数逐季上升,呈恢 复向好态势,但景气指数超出临界值不多,还需继续优化营商环境,提振民 营企业发展信心,②④符合题意。材料反映了民营经济发展稳中有进,但未 对民营经济和其他所有制经济进行比较,并且各种所有制经济在市场经济中 地位平等,①排除。民营经济属于非公有制经济,是社会主义市场经济的重 要组成部分,在国民经济中的比重和地位不断提升说法不妥,③错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( )A .0B .1C .2D .42.设函数,则f (1f (3))的值为( ) A.127128 B .-127128C.18D.1163.若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( ) A .[0,1] B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( )A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( )A .2B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( )A .y =e x +1-1(x >0)B .y =e x -1+1(x >0)C .y =e x +1-1(x ∈R )D .y =e x -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <54D .-54<a <-1 10.设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2)C .(2,3)D .(3,4)11.下列4个函数中:①y =2 008x -1;②y =log a 2 009-x 2 009+x(a >0且a ≠1); ③y =x 2 009+x 2 008x +1; ④y =x (1a -x -1+12)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( )A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-12,0,12,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-12,0,12,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好..经过Q 中两个点的函数的个数是( ) A .4 B .6C .8D .10二、填空题(13.计算:0.25×(-12)-4+lg 8+3lg 5=________. 14.若规定=|ad -bc |,则不等式l <0的解集是________.15.已知关于x 的函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是________.16.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=1-2-x ,则不等式f (x )<-12的解集是________.三、解答题(本大题共6小题,共70分)17.(10分)已知一次函数f (x )满足:f (1)=2,f (2)=3,(1)求f (x )的解析式;(2)判断函数g (x )=-1+lg f 2(x )在区间[0,9]上零点的个数.18.(12分)已知f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数,试判断它的单调性,并证明你的结论.19.(12分)若非零函数f (x )对任意实数a ,b 均有f (a +b )=f (a )·f (b ),且当x <0时,f (x )>1;(1)求证:f (x )>0;(2)求证:f (x )为减函数;(3)当f (4)=116时,解不等式f (x 2+x -3)·f (5-x 2)≤14.20.(12分)我市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.某公司准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.(1)设在甲家租一张球台开展活动x 小时的收费为f (x )元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g (x )元(15≤x ≤40),试求f (x )和g (x );(2)选择哪家比较合算?为什么?21.(12分)已知函数y=f(x)的定义域为D,且f(x)同时满足以下条件:①f(x)在D上是单调递增或单调递减函数;②存在闭区间[a,b]D(其中a<b),使得当x∈[a,b]时,f(x)的取值集合也是[a,b].那么,我们称函数y=f(x)(x∈D)是闭函数.(1)判断f(x)=-x3是不是闭函数?若是,找出条件②中的区间;若不是,说明理由.(2)若f(x)=k+x+2是闭函数,求实数k的取值范围.(注:本题求解中涉及的函数单调性不用证明,直接指出是增函数还是减函数即可) 22.(12分)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=a x-1.其中a>0且a≠1.(1)求f(2)+f(-2)的值;(2)求f(x)的解析式;(3)解关于x的不等式-1<f(x-1)<4,结果用集合或区间表示.模块综合检测(B)1.D [∵A ∪B ={0,1,2,a ,a 2},又∵A ∪B ={0,1,2,4,16},∴⎩⎪⎨⎪⎧ a =4,a 2=16,即a =4.否则有⎩⎪⎨⎪⎧a =16a 2=4矛盾.] 2.A [∵f (3)=32+3×3-2=16,∴1f (3)=116, ∴f (1f (3))=f (116)=1-2×(116)2=1-2256=127128.] 3.B [由题意得:⎩⎪⎨⎪⎧0≤2x ≤2x ≠1,∴0≤x <1.] 4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.]7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.] 8.D [∵函数y =1+ln(x -1)(x >1),∴ln(x -1)=y -1,x -1=e y -1,y =e x -1+1(x ∈R ).]9.C [∵f (x )=x 2-2ax +1,∴f (x )的图象是开口向上的抛物线.由题意得:⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0.即⎩⎪⎨⎪⎧ 1>0,1-2a +1<0,4-4a +1>0,解得1<a <54.] 10.B [由题意x 0为方程x 3=(12)x -2的根, 令f (x )=x 3-22-x ,∵f (0)=-4<0,f (1)=-1<0,f (2)=7>0,∴x 0∈(1,2).]11.C [其中①不过原点,不可能为奇函数,也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.]12.B [当a =-12,f (x )=log 2(x -12)+b ,∵x >12, ∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(12,-1),(1,0), f (x )=log 2x +1经过(12,0),(1,1); 当a =1时,f (x )=log 2(x +1)+1经过(-12,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0);当a =12时,f (x )=log 2(x +12)经过(0,-1),(12,0) f (x )=log 2(x +12)+1经过(0,0),(12,1).]13.7解析 原式=0.25×24+lg 8+lg 53=(0.5×2)2×22+lg(8×53)=4+lg 1 000=7.14.(0,1)∪(1,2)解析 ⎪⎪⎪⎪⎪⎪1 11 x =|x -1|,由log 2|x -1|<0,得0<|x -1|<1, 即0<x <2,且x ≠1.15.(1,2)解析 依题意,a >0且a ≠1,∴2-ax 在[0,1]上是减函数,即当x =1时,2-ax 的值最小,又∵2-ax 为真数,∴⎩⎪⎨⎪⎧ a >12-a >0,解得1<a <2. 16.(-∞,-1)解析 当x >0时,由1-2-x <-12,(12)x >32,显然不成立. 当x <0时,-x >0.因为该函数是奇函数,所以f (x )=-f (-x )=2x -1.由2x -1<-12,即2x <2-1,得x <-1. 又因为f (0)=0<-12不成立, 所以不等式的解集是(-∞,-1).17.解 (1)令f (x )=ax +b ,由已知条件得⎩⎪⎨⎪⎧a +b =22a +b =3,解得a =b =1, 所以f (x )=x +1(x ∈R ).(2)∵g (x )=-1+lg f 2(x )=-1+lg (x +1)2在区间[0,9]上为增函数,且g (0)=-1<0, g (9)=-1+lg 102=1>0,∴函数g (x )在区间[0,9]上零点的个数为1个.18.解 ∵f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数, ∴f (0)=0,即0+a 02+0+1=0,∴a =0. 又∵f (-1)=-f (1),∴-12-b =-12+b, ∴b =0,∴f (x )=x x 2+1. ∴函数f (x )在[-1,1]上为增函数.证明如下:任取-1≤x 1<x 2≤1,∴x 1-x 2<0,-1<x 1x 2<1,∴1-x 1x 2>0.∴f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1x 22+x 1-x 21x 2-x 2(x 21+1)(x 22+1)=x 1x 2(x 2-x 1)+(x 1-x 2)(x 21+1)(x 22+1)=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0, ∴f (x 1)<f (x 2),∴f (x )为[-1,1]上的增函数.19.(1)证明 f (x )=f (x 2+x 2)=f 2(x 2)≥0,又∵f (x )≠0,∴f (x )>0.(2)证明 设x 1<x 2,则x 1-x 2<0,又∵f (x )为非零函数,∴f (x 1-x 2)=f (x 1-x 2)·f (x 2)f (x 2)=f (x 1-x 2+x 2)f (x 2)=f (x 1)f (x 2)>1,∴f (x 1)>f (x 2),∴f (x )为减函数. (3)解 由f (4)=f 2(2)=116,f (x )>0, 得f (2)=14. 原不等式转化为f (x 2+x -3+5-x 2)≤f (2),结合(2)得:x +2≥2,∴x ≥0,故不等式的解集为{x |x ≥0}.20.解 (1)f (x )=5x,15≤x ≤40;g (x )=⎩⎪⎨⎪⎧90, 15≤x ≤3030+2x , 30<x ≤40. (2)①当15≤x ≤30时,5x =90,x =18,即当15≤x <18时,f (x )<g (x );当x =18时,f (x )=g (x );当18<x ≤30时,f (x )>g (x ).②当30<x ≤40时,f (x )>g (x ),∴当15≤x <18时,选甲家比较合算;当x =18时,两家一样合算;当18<x ≤40时,选乙家比较合算.21.解 (1)f (x )=-x 3在R 上是减函数,满足①; 设存在区间[a ,b ],f (x )的取值集合也是[a ,b ],则⎩⎪⎨⎪⎧-a 3=b -b 3=a ,解得a =-1,b =1, 所以存在区间[-1,1]满足②,所以f (x )=-x 3(x ∈R )是闭函数.(2)f (x )=k +x +2是在[-2,+∞)上的增函数,由题意知,f (x )=k +x +2是闭函数,存在区间[a ,b ]满足② 即:⎩⎨⎧ k +a +2=a k +b +2=b. 即a ,b 是方程k +x +2=x 的两根,化简得,a ,b 是方程x 2-(2k +1)x +k 2-2=0的两根.且a ≥k ,b >k .令f (x )=x 2-(2k +1)x +k 2-2,得⎩⎪⎨⎪⎧ f (k )≥0Δ>02k +12>k ,解得-94<k ≤-2, 所以实数k 的取值范围为(-94,-2]. 22.解 (1)∵f (x )是奇函数,∴f (-2)=-f (2),即f (2)+f (-2)=0.(2)当x <0时,-x >0,∴f (-x )=a -x -1. 由f (x )是奇函数,有f (-x )=-f (x ),∵f (-x )=a -x -1,∴f (x )=-a -x +1(x <0).∴所求的解析式为f (x )=⎩⎪⎨⎪⎧a x -1 (x ≥0)-a -x +1 (x <0). (3)不等式等价于⎩⎪⎨⎪⎧ x -1<0-1<-a -x +1+1<4 或⎩⎪⎨⎪⎧ x -1≥0-1<a x -1-1<4, 即⎩⎪⎨⎪⎧ x -1<0-3<a -x +1<2或⎩⎪⎨⎪⎧ x -1≥00<a x -1<5. 当a >1时,有⎩⎪⎨⎪⎧ x <1x >1-log a 2或⎩⎪⎨⎪⎧x ≥1x <1+log a 5,注意此时log a 2>0,log a 5>0, 可得此时不等式的解集为(1-log a 2,1+log a 5). 同理可得,当0<a <1时,不等式的解集为R . 综上所述,当a >1时,不等式的解集为(1-log a 2,1+log a 5); 当0<a <1时,不等式的解集为R .。