模块综合检测
高中数学人教A版选修1-1模块综合检测及答案

高中数学人教A 版选修1-1模块综合检测(A)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.命题“若A ⊆B ,则A =B ”与其逆命题、否命题、逆否命题这四个命题中,真命题的个数是( )A .0B .2C .3D .42.已知命题p :若x 2+y 2=0 (x ,y ∈R ),则x ,y 全为0;命题q :若a >b ,则1a <1b .给出下列四个复合命题:①p 且q ;②p 或q ;③綈p ;④綈q .其中真命题的个数是( )A .1B .2C .3D .43.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( ) A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=14.已知a >0,则x 0满足关于x 的方程ax =b 的充要条件是( )A .∃x ∈R ,12ax 2-bx ≥12ax 20-bx 0B .∃x ∈R ,12ax 2-bx ≤12ax 20-bx 0C .∀x ∈R ,12ax 2-bx ≥12ax 20-bx 0D .∀x ∈R ,12ax 2-bx ≤12ax 20-bx 05.已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .椭圆B .圆C .双曲线的一支D .线段6.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 7.已知a >0,函数f (x )=x 3-ax 在区间[1,+∞)上是单调递增函数,则a 的最大值是( ) A .1 B .3 C .9 D .不存在8.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A .10B .8C .6D .49.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为( )A. 6B. 5C.62D.5210.若当x =2时,函数f (x )=ax 3-bx +4有极值-43,则函数的解析式为( )A .f (x )=3x 3-4x +4B .f (x )=13x 2+4 C .f (x )=3x 3+4x +4 D .f (x )=13x 3-4x +411.设O 为坐标原点,F 1、F 2是x 2a 2-y 2b 2=1(a >0,b >0)的焦点,若在双曲线上存在点P ,满足∠F 1PF 2=60°,|OP |=7a ,则该双曲线的渐近线方程为( )A .x ±3y =0 B.3x ±y =0 C .x ±2y =0 D.2x ±y =012.若函数f (x )=x 2+ax (a ∈R ),则下列结论正确的是( ) A .∀a ∈R ,f (x )在(0,+∞)上是增函数 B .∀a ∈R ,f (x )在(0,+∞)上是减函数 C .∃a ∈R ,f (x )是偶函数 D .∃a ∈R ,f (x )是奇函数 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知p (x ):x 2+2x -m >0,如果p (1)是假命题,p (2)是真命题,那么实数m 的取值范 围是 ________________________________________________________________.14.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________________________________________________________________________.15.若AB 是过椭圆x 2a 2+y 2b 2=1 (a >b >0)中心的一条弦,M 是椭圆上任意一点,且AM 、BM 与坐标轴不平行,k AM 、k BM 分别表示直线AM 、BM 的斜率,则k AM ·k BM =________.16.已知f (x )=x 3+3x 2+a (a 为常数)在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :2x 2-9x +a <0,q :⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,且綈q 是綈p 的必要条件,求实数a 的取值范围.18.(12分)设P 为椭圆x 2100+y 264=1上一点,F 1、F 2是其焦点,若∠F 1PF 2=π3,求△F 1PF 2的面积.19.(12分)已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN →||MP→|+MN →·NP →=0,求动点P (x ,y )的轨迹方程.20.(12分)已知函数f (x )=ax 2-43ax +b ,f (1)=2,f ′(1)=1. (1)求f (x )的解析式;(2)求f (x )在(1,2)处的切线方程.21.(12分)已知直线y =ax +1与双曲线3x 2-y 2=1交于A ,B 两点. (1)求a 的取值范围;(2)若以AB 为直径的圆过坐标原点,求实数a 的值.22.(12分)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ).(1)当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)当a ≤12时,讨论f (x )的单调性.答案1.B [原命题为假,故其逆否命题为假;其逆命题为真,故其否命题为真;故共有2个真命题.]2.B [命题p 为真,命题q 为假,故p ∨q 真,綈q 真.]3.D [双曲线x 24-y 212=-1,即y 212-x 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.]4.C [由于a >0,令函数y =12ax 2-bx =12a (x -b a )2-b 22a ,此时函数对应的图象开口向上,当x =b a 时,取得最小值-b 22a ,而x 0满足关于x 的方程ax =b ,那么x 0=b a ,y min =12ax 20-bx 0=-b 22a ,那么对于任意的x ∈R ,都有y =12ax 2-bx ≥-b 22a =12ax 20-bx 0.]5.A [∵P 为MF 1中点,O 为F 1F 2的中点,∴|OP |=12|MF 2|,又|MF 1|+|MF 2|=2a ,∴|PF 1|+|PO |=12|MF 1|+12|MF 2|=a .∴P 的轨迹是以F 1,O 为焦点的椭圆.]6.D [∵y =4e x +1,∴y ′=-4e x (e x +1)2.令e x +1=t ,则e x =t -1且t >1,∴y ′=-4t +4t 2=4t 2-4t .再令1t =m ,则0<m <1,∴y ′=4m 2-4m =4(m -12)2-1,m ∈(0,1). 容易求得-1≤y ′<0,∴-1≤tan α<0,得34π≤α<π.]7.B [因为函数f (x )在区间[1,+∞)上单调递增,所以有f ′(x )≥0,x ∈[1,+∞),即3x 2-a ≥0在区间[1,+∞)上恒成立,所以a ≤3x 2.因为x ∈[1,+∞)时,3x 2≥3,从而a ≤3.] 8.B [由抛物线的定义, 得|AB |=x 1+x 2+p =6+2=8.]9.D [由题意知,过点(4,-2)的渐近线方程为y =-b a x ,∴-2=-ba ×4,∴a =2b ,设b =k ,则a =2k ,c =5k ,∴e =c a =5k 2k =52.] 10.D [因为f (x )=ax 3-bx +4, 所以f ′(x )=3ax 2-b .由题意得⎩⎪⎨⎪⎧f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13b =4,故所求函数解析式为f (x )=13x 3-4x +4.]11.D [如图所示,∵O 是F 1F 2的中点,PF 1→+PF 2→=2PO →,∴(PF 1→+PF 2→)2=(2PO →)2.即 |PF 1→|2+|PF 2→|2+2|PF 1→|·|PF 2→|·cos 60°=4|PO →|2. 又∵|PO |=7a ,∴ |PF 1→|2+|PF 2→|2+|PF 1→||PF 2→|=28a 2. ① 又由双曲线定义得|PF 1|-|PF 2|=2a , ∴(|PF 1|-|PF 2|)2=4a 2.即|PF 1|2+|PF 2|2-2|PF 1||PF 2|=4a 2. ② 由①-②得|PF 1|·|PF 2|=8a 2, ∴|PF 1|2+|PF 2|2=20a 2.在△F 1PF 2中,由余弦定理得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|, ∴8a 2=20a 2-4c 2.即c 2=3a 2. 又∵c 2=a 2+b 2,∴b 2=2a 2. 即b 2a 2=2,ba = 2.∴双曲线的渐近线方程为2x ±y =0.]12.C [f ′(x )=2x -ax 2,故只有当a ≤0时,f (x )在(0,+∞)上才是增函数,因此A 、B 不对,当a =0时,f (x )=x 2是偶函数,因此C 对,D 不对.]13.[3,8)解析 因为p (1)是假命题,所以1+2-m ≤0, 即m ≥3.又因为p (2)是真命题,所以4+4-m >0, 即m <8.故实数m 的取值范围是3≤m <8. 14.x 24-y 212=1解析 由双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的一条渐近线方程为y =3x 得ba =3,∴b =3a . ∵抛物线y 2=16x 的焦点为F (4,0),∴c =4. 又∵c 2=a 2+b 2,∴16=a 2+(3a )2, ∴a 2=4,b 2=12.∴所求双曲线的方程为x 24-y 212=1.15.-b 2a 2解析 设A (x 1,y 1),M (x 0,y 0), 则B (-x 1,-y 1),则k AM ·k BM =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21=⎝⎛⎭⎫-b 2a 2x 20+b 2-⎝⎛⎭⎫-b 2a 2x 21+b 2x 20-x 21=-b 2a 2. 16.57解析 f ′(x )=3x 2+6x ,令f ′(x )=0, 得x =0或x =-2.又∵f (0)=a ,f (-3)=a , f (-2)=a +4,f (3)=54+a ,∴f (x )的最小值为a ,最大值为54+a . 由题可知a =3,∴f (x )的最大值为57.17.解 由⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0,得⎩⎨⎧1<x <32<x <4,即2<x <3.∴q :2<x <3.设A ={x |2x 2-9x +a <0},B ={x |2<x <3}, ∵綈p ⇒綈q ,∴q ⇒p ,∴B ⊆A . 即2<x <3满足不等式2x 2-9x +a <0. 设f (x )=2x 2-9x +a ,要使2<x <3满足不等式2x 2-9x +a <0, 需⎩⎪⎨⎪⎧ f (2)≤0f (3)≤0,即⎩⎪⎨⎪⎧8-18+a ≤018-27+a ≤0. ∴a ≤9.故所求实数a 的取值范围是{a |a ≤9}. 18.解 如图所示,设|PF 1|=m ,|PF 2|=n ,则S △F 1PF 2=12mn sin π3=34mn .由椭圆的定义知 |PF 1|+|PF 2|=20,即m +n =20. ① 又由余弦定理,得|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos π3 =|F 1F 2|2,即m 2+n 2-mn =122. ②由①2-②,得mn =2563.∴S △F 1PF 2=643 3.19.解 设 P =(x ,y ),则 MN →=(4,0),MP →=(x +2,y ), NP →=(x -2,y ).∴ |MN →|=4,|MP →|=(x +2)2+y 2, MN →·NP →=4(x -2),代入 |MN →|·|MP →|+MN →·NP →=0, 得4(x +2)2+y 2+4(x -2)=0, 即(x +2)2+y 2=2-x , 化简整理,得y 2=-8x .故动点P (x ,y )的轨迹方程为y 2=-8x .20.解 (1)f ′(x )=2ax -43a ,由已知得⎩⎨⎧f ′(1)=2a -43a =1f (1)=a -43a +b =2,解得⎩⎨⎧a =32b =52,∴f (x )=32x 2-2x +52.(2)函数f (x )在(1,2)处的切线方程为 y -2=x -1,即x -y +1=0.21.解 (1)由⎩⎪⎨⎪⎧y =ax +1,3x 2-y 2=1消去y ,得(3-a 2)x 2-2ax -2=0.依题意得⎩⎪⎨⎪⎧3-a 2≠0,Δ>0,即-6<a <6且a ≠±3.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.∵以AB 为直径的圆过原点,∴OA ⊥OB ,∴x 1x 2+y 1y 2=0,即x 1x 2+(ax 1+1)(ax 2+1)=0, 即(a 2+1)x 1x 2+a (x 1+x 2)+1=0.∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0, ∴a =±1,满足(1)所求的取值范围. 故a =±1.22.解 (1)当a =-1时,f (x )=ln x +x +2x -1, x ∈(0,+∞),所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -(ln 2+2)=x -2,即x -y +ln 2=0.(2)因为f (x )=ln x -ax +1-ax -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞). 令g (x )=ax 2-x +1-a ,x ∈(0,+∞).①当a =0时,g (x )=-x +1,x ∈(0,+∞), 所以当x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;当x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. ②当a ≠0时,由f ′(x )=0,即ax 2-x +1-a =0,解得x 1=1,x 2=1a -1. a .当a =12时,x 1=x 2,g (x )≥0恒成立,此时f ′(x )≤0,函数f (x )在(0,+∞)上单调递减.b .当0<a <12时,1a -1>1, x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减;x ∈⎝⎛⎭⎫1,1a -1时,g (x )<0, 此时f ′(x )>0,函数f (x )单调递增;x ∈⎝⎛⎭⎫1a -1,+∞时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减.c .当a <0时,由于1a -1<0. x ∈(0,1)时,g (x )>0,此时f ′(x )<0,函数f (x )单调递减; x ∈(1,+∞)时,g (x )<0,此时f ′(x )>0,函数f (x )单调递增. 综上所述:当a ≤0时,函数f (x )在(0,1)上单调递减, 在(1,+∞)上单调递增;当a =12时,函数f (x )在(0,+∞)上单调递减;当0<a <12时,函数f (x )在(0,1)上单调递减,在⎝⎛⎭⎫1,1a -1上单调递增,在⎝⎛⎭⎫1a -1,+∞上单调递减.模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.已知命题“p :x ≥4或x ≤0”,命题“q :x ∈Z ”,如果“p 且q ”与“非q ”同时为假命题,则满足条件的x 为( )A .{x |x ≥3或x ≤-1,x ∉Z }B .{x |-1≤x ≤3,x ∉Z }C .{-1,0,1,2,3}D .{1,2,3}2.“a >0”是“|a |>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知2x +y =0是双曲线x 2-λy 2=1的一条渐近线,则双曲线的离心率是( ) A. 2 B. 3 C. 5 D .24.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为( ) A.x 24-y 212=1 B.x 212-y 24=1 C.x 210-y 26=1 D.x 26-y 210=15.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .126.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D.y 22-x 24=17.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( ) A .y =3x -4 B .y =-3x +2 C .y =-4x +3 D .y =4x -5 8.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1],(0,1)D .[-1,0),(0,1] 9.已知椭圆x 2+2y 2=4,则以(1,1)为中点的弦的长度为( ) A .3 2 B .2 3C.303D.32 610.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( )A .2 B.12 C .-12 D .-211.若函数y =f (x )的导函数在区间[a ,b ]上是增函数,则函数y =f (x )在区间[a ,b ]上的图象可能是( )12.已知函数f (x )的导函数f ′(x )=4x 3-4x ,且f (x )的图象过点(0,-5),当函数f (x )取得极小值-6时,x 的值应为( )A .0B .-1C .±1D .1题号1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知双曲线x 2-y 23=1,那么它的焦点到渐近线的距离为________.14.点P 是曲线y =x 2-ln x 上任意一点,则P 到直线y =x -2的距离的最小值是________. 15.给出如下三种说法:①四个实数a ,b ,c ,d 依次成等比数列的必要而不充分条件是ad =bc . ②命题“若x ≥3且y ≥2,则x -y ≥1”为假命题. ③若p ∧q 为假命题,则p ,q 均为假命题. 其中正确说法的序号为________.16.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的两个焦点F 1、F 2,若P 为双曲线上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为________.三、解答题(本大题共6小题,共70分)17.(10分)命题p :方程x 2+mx +1=0有两个不等的负实数根,命题q :方程4x 2+4(m -2)x +1=0无实数根.若“p 或q ”为真命题,“p 且q ”为假命题,求m 的取值范围.18.(12分)F 1,F 2是椭圆的两个焦点,Q 是椭圆上任意一点,从任一焦点向△F 1QF 2中的∠F 1QF 2的外角平分线引垂线,垂足为P ,求点P 的轨迹.19.(12分)若r (x ):sin x +cos x >m ,s (x ):x 2+mx +1>0.已知∀x ∈R ,r (x )为假命题且s (x )为真命题,求实数m 的取值范围.20.(12分)已知椭圆x2a2+y2b2=1 (a>b>0)的一个顶点为A(0,1),离心率为22,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.21.(12分)已知函数f(x)=x3+bx2+cx+d的图象过点P(0,2),且在点M(-1,f(-1))处的切线方程为6x-y+7=0.(1)求函数y=f(x)的解析式;(2)求函数y=f(x)的单调区间.22.(12分)已知f(x)=23x3-2ax2-3x (a∈R),(1)若f(x)在区间(-1,1)上为减函数,求实数a的取值范围;(2)试讨论y=f(x)在(-1,1)内的极值点的个数.答案1.D2.A [因为|a |>0⇔a >0或a <0,所以a >0⇒|a |>0,但|a |>0 ⇒a >0,所以“a >0”是“|a |>0”的充分不必要条件.]3.C4.A [由题意知c =4,焦点在x 轴上,又e =c a =2,∴a =2,∴b 2=c 2-a 2=42-22=12,∴双曲线方程为x 24-y 212=1.]5.C [设椭圆的另一焦点为F ,由椭圆的定义知|BA |+|BF |=23,且|CF |+|AC |=23,所以△ABC 的周长=|BA |+|BC |+|AC |=|BA |+|BF |+|CF |+|AC |=4 3.]6.D [与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2.所以所求的双曲线方程为y 22-x 24=1.]7.B [y ′=3x 2-6x ,∴k =y ′|x =1=-3,∴切线方程为y +1=-3(x -1),∴y =-3x +2.]8.A [由题意知x >0,若f ′(x )=2x -2x =2(x 2-1)x ≤0,则0<x ≤1,即函数f (x )的递减区间是(0,1].]9.C [令直线l 与椭圆交于A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 21+2y 21=4 ①x 22+2y 22=4 ②①-②得:(x 1+x 2)(x 1-x 2)+2(y 1+y 2)(y 1-y 2)=0,即2(x 1-x 2)+4(y 1-y 2)=0,∴k l =-12,∴l 的方程:x +2y -3=0,由⎩⎪⎨⎪⎧x +2y -3=0x 2+2y 2-4=0,得6y 2-12y +5=0. ∴y 1+y 2=2,y 1y 2=56.∴|AB |=⎝⎛⎭⎫1+1k 2(y 1-y 2)2=303.] 10.D [y =x +1x -1, ∴y ′|x =3=-2(x -1)2|x =3=-12. 又∵-a ×⎝⎛⎭⎫-12=-1,∴a =-2.] 11.A [依题意,f ′(x )在[a ,b ]上是增函数,则在函数f (x )的图象上,各点的切线的斜率随着x 的增大而增大,观察四个选项中的图象,只有A 满足.]12.C [f (x )=x 4-2x 2+c .因为过点(0,-5),所以c =-5.由f ′(x )=4x (x 2-1),得f (x )有三个极值点,列表判断±1均为极小值点,且f (1)=f (-1)=-6.] 13. 3 解析 焦点(±2,0),渐近线:y =±3x ,焦点到渐近线的距离为23(3)2+1= 3. 14. 2解析 先设出曲线上一点,求出过该点的切线的斜率,由已知直线,求出该点的坐标,再由点到直线的距离公式求距离.设曲线上一点的横坐标为x 0 (x 0>0),则经过该点的切线的斜率为k =2x 0-1x 0,根据题意得,2x 0-1x 0=1,∴x 0=1或x 0=-12,又∵x 0>0,∴x 0=1,此时y 0=1,∴切点的坐标为(1,1),最小距离为|1-1-2|2= 2. 15.①②解析 对①,a ,b ,c ,d 成等比数列,则ad =bc ,反之不一定,故①正确;对②,令x =5,y =6,则x -y =-1,所以该命题为假命题,故②正确;对③,p ∧q 假时,p ,q 至少有一个为假命题,故③错误.16.(1,3]解析 设|PF 2|=m ,则2a =||PF 1|-|PF 2||=m ,2c =|F 1F 2|≤|PF 1|+|PF 2|=3m .∴e =c a =2c 2a ≤3,又e >1,∴离心率的取值范围为(1,3].17.解 命题p :方程x 2+mx +1=0有两个不等的负实根⇔⎩⎪⎨⎪⎧ Δ=m 2-4>0m >0⇔m >2. 命题q :方程4x 2+4(m -2)x +1=0无实根⇔Δ′=16(m -2)2-16=16(m 2-4m +3)<0⇔1<m <3.∵“p 或q ”为真,“p 且q ”为假,∴p 为真、q 为假或p 为假、q 为真,则⎩⎪⎨⎪⎧ m >2m ≤1或m ≥3或⎩⎪⎨⎪⎧m ≤21<m <3, 解得m ≥3或1<m ≤2.18.解 设椭圆的方程为x 2a 2+y 2b 2=1 (a >b >0),F 1,F 2是它的两个焦点,Q 为椭圆上任意一点,QP 是△F 1QF 2中的∠F 1QF 2的外角平分线(如图),连结PO ,过F 2作F 2P ⊥QP 于P 并延长交F 1Q 的延长线于H ,则P 是F 2H 的中点,且|F 2Q |=|QH |,因此|PO |=12|F 1H |=12(|F 1Q |+|QH |)=12(|F 1Q |+|F 2Q |)=a ,∴点P 的轨迹是以原点为圆心,以椭圆半长轴长为半径的圆(除掉两点即椭圆与x 轴的交点).19.解 由于sin x +cos x =2sin ⎝⎛⎭⎫x +π4∈[-2,2], ∀x ∈R ,r (x )为假命题即sin x +cos x >m 恒不成立.∴m ≥ 2. ①又对∀x ∈R ,s (x )为真命题.∴x 2+mx +1>0对x ∈R 恒成立.则Δ=m 2-4<0,即-2<m <2. ②故∀x ∈R ,r (x )为假命题,且s (x )为真命题, 应有2≤m <2.20.解 (1)由题意知b =1,e =c a =22,又∵a 2=b 2+c 2,∴a 2=2.∴椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0,∴直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2), 则⎩⎨⎧ x 1+x 2=-169x 1x 2=23,∴|CD |=1+(-2)2|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2=5·⎝⎛⎭⎫-1692-4×23=1092, 又点F 2到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解 (1)由f (x )的图象经过P (0,2)知d =2,∴f (x )=x 3+bx 2+cx +2,f ′(x )=3x 2+2bx +c .由在点M (-1,f (-1))处的切线方程是6x -y +7=0,知-6-f (-1)+7=0,即f (-1)=1,f ′(-1)=6.∴⎩⎪⎨⎪⎧ 3-2b +c =6,-1+b -c +2=1,即⎩⎪⎨⎪⎧ b -c =0,2b -c =-3, 解得b =c =-3.故所求的解析式是f (x )=x 3-3x 2-3x +2.(2)f ′(x )=3x 2-6x -3,令3x 2-6x -3=0,即x 2-2x -1=0.解得x 1=1-2,x 2=1+ 2.当x <1-2或x >1+2时,f ′(x )>0.当1-2<x <1+2时,f ′(x )<0.故f (x )=x 3-3x 2-3x +2在(-∞,1-2)和(1+2,+∞)内是增函数,在(1-2,1+2)内是减函数.22.解 (1)∵f (x )=23x 3-2ax 2-3x ,∴f ′(x )=2x 2-4ax -3,∵f (x )在区间(-1,1)上为减函数,∴f ′(x )≤0在(-1,1)上恒成立;∴⎩⎪⎨⎪⎧f ′(-1)≤0f ′(1)≤0 得-14≤a ≤14. 故a 的取值范围是⎣⎡⎦⎤-14,14. (2)当a >14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14>0f ′(1)=-4⎝⎛⎭⎫a +14<0,∴存在x 0∈(-1,1),使f ′(x 0)=0,∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内,f ′(x )>0,在(x 0,1)内,f ′(x )<0,即f (x )在(-1,x 0)内单调递增,在(x 0,1)内单调递减,∴f (x )在(-1,1)内有且仅有一个极值点,且为极大值点.当a <-14时,∵⎩⎨⎧ f ′(-1)=4⎝⎛⎭⎫a -14<0f ′(1)=-4⎝⎛⎭⎫a +14>0,∴存在x 0∈(-1,1)使f ′(x 0)=0.∵f ′(x )=2x 2-4ax -3开口向上,∴在(-1,x 0)内f ′(x )<0,在(x 0,1)内f ′(x )>0.即f (x )在(-1,x 0)内单调递减,在(x 0,1)内单调递增,∴f (x )在(-1,1)内有且仅有一个极值点,且为极小值点.当-14≤a ≤14时,由(1)知f (x )在(-1,1)内递减,没有极值点.综上,当a >14或a <-14时,f (x )在(-1,1)内的极值点的个数为1,当-14≤a ≤14时,f (x )在(-1,1)内的极值点的个数为0.模块综合检测(C)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1.方程x =1-4y 2所表示的曲线是( )A .双曲线的一部分B .椭圆的一部分C .圆的一部分D .直线的一部分2.若抛物线的准线方程为x =-7,则抛物线的标准方程为( )A .x 2=-28yB .x 2=28yC .y 2=-28xD .y 2=28x3.双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.用a ,b ,c 表示三条不同的直线,γ表示平面,给出下列命题:①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若a ∥γ,b ∥γ,则a ∥b ;④若a ⊥γ,b ⊥γ,则a ∥b .其中真命题的序号是( )A .①②B .②③C .①④D .③④5.已知a 、b 为不等于0的实数,则a b >1是a >b 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6.若抛物线y 2=4x 的焦点是F ,准线是l ,点M (4,m )是抛物线上一点,则经过点F 、M 且与l 相切的圆一共有( )A .0个B .1个C .2个D .4个7.若双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1,F 2.线段F 1F 2被抛物线y 2=2bx 的焦点分成5∶3两段,则此双曲线的离心率为( ) A. 3 B. 6 C.233 D.263 8.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为245,则此双曲线方程是( )A.x 212-y 24=1 B .-x 212+y 24=1C.x 24-y 212=1 D .-x 24+y 212=19.下列四个结论中正确的个数为( )①命题“若x 2<1,则-1<x <1”的逆否命题是“若x >1或x <-1,则x 2>1”;②已知p :∀x ∈R ,sin x ≤1,q :若a <b ,则am 2<bm 2,则p ∧q 为真命题;③命题“∃x ∈R ,x 2-x >0”的否定是“∀x ∈R ,x 2-x ≤0”;④“x >2”是“x 2>4”的必要不充分条件.A .0个B .1个C .2个D .3个10.设f (x )=x (ax 2+bx +c ) (a ≠0)在x =1和x =-1处有极值,则下列点中一定在x 轴上的是( )A .(a ,b )B .(a ,c )C .(b ,c )D .(a +b ,c )11.函数y =ln x x 的最大值为( )A .e -1B .eC .e 2 D.10312.已知命题P :函数y =log 0.5(x 2+2x +a )的值域为R ;命题Q :函数y =-(5-2a )x 是R 上的减函数.若P 或Q 为真命题,P 且Q 为假命题,则实数a 的取值范围是( )A .a ≤1B .a <2C .1<a <2D .a ≤1或a ≥2二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 3+x 2+mx +1是R 上的单调函数,则m 的取值范围是________.14.一动圆圆心在抛物线x 2=8y 上,且动圆恒与直线y +2=0相切,则动圆必过定点________.15.已知F 1、F 2是椭圆C x 2a 2+y 2b 2=1 (a >b >0)的两个焦点,P 为椭圆C 上一点,PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________________________________________________________________.三、解答题(本大题共6小题,共70分)17.(10分)已知p :x 2-12x +20<0,q :x 2-2x +1-a 2>0 (a >0).若綈q 是綈p 的充分条 件,求a 的取值范围.18.(12分)已知函数f (x )=x 3+bx 2+cx +d 在(-∞,0)上是增函数,在[0,2]上是减函数,且方程f (x )=0的一个根为2.(1)求c 的值;(2)求证:f (1)≥2.19.(12分) 如图,M 是抛物线y 2=x 上的一个定点,动弦ME 、MF 分别与x 轴交于不同的点A 、B ,且|MA |=|MB |.证明:直线EF 的斜率为定值.20.(12分)命题p :关于x 的不等式x 2+2ax +4>0,对一切x ∈R 恒成立,命题q :指数函数f (x )=(3-2a )x 是增函数,若p 或q 为真,p 且q 为假,求实数a 的取值范围.21.(12分)已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,求实数a 的取值范围.22.(12分)如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p>0)交于A ,B 两点,O 为坐标原点,OA →+OB →=(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.答案1.B [x =1-4y 2,∴x 2+4y 2=1 (x ≥0).即x 2+y 214=1 (x ≥0).]2.D3.C [由已知,b 2a 2=1,∴a =b ,∴c 2=2a 2,∴e =c a =2a a = 2.]4.C5.D [如取a =-3,b =-2,满足a b >1,但不满足a >b .反过来取a =1,b =-5,满足a >b ,但不满足a b >1,故答案为D.]6.D [因为点M (4,m )在抛物线y 2=4x 上,所以可求得m =±4.由于圆经过焦点F 且和准线l 相切,由抛物线的定义知圆心在抛物线上.又因为圆经过抛物线上的点M ,所以圆心在线段FM 的垂直平分线上,即圆心是线段FM 的垂直平分线与抛物线的交点,结合图形易知对于点M (4,4)和(4,-4),都各有两个交点,因此一共有4个满足条件的圆.]7.C8.B [由已知得椭圆中a =5,b =3,∴c =4,且它的焦点在y 轴上,故双曲线的焦点也应在y 轴上且为(0,4)和(0,-4),又椭圆的离心率为e =c a =45,所以双曲线的离心率为2,即c a =2,又c =4,∴它的实半轴为2,虚半轴平方为b 2=c 2-a 2=16-4=12, 则双曲线方程为y 24-x 212=1.]9.B [只有③中结论正确.]10.A11.A [令y ′=(ln x )′x -ln x ·x ′x2=1-ln x x 2=0,x =e ,当x >e 时,y ′<0;当x <e 时,y ′>0,y 极大值=f (e)=1e ,在定义域内只有一个极值,所以y max =1e .]12.C [先化简P 与Q ,建构关于a 的关系式;由函数y =log 0.5(x 2+2x +a )的值域为R 知:内层函数u (x )=x 2+2x +a 恰好取遍(0,+∞)内的所有实数⇔Δ=4-4a ≥0⇔a ≤1,即P ⇔a ≤1;同样由y =-(5-2a )x 是减函数⇔5-2a >1,即Q ⇔a <2;由P 或Q 为真,P 且Q 为假知,P 与Q 中必有一真一假.故答案为C.]13.⎣⎡⎭⎫13,+∞解析 f ′(x )=3x 2+2x +m ,依题意可知f (x )在R 上只能单调递增,所以Δ=4-12m ≤0,∴m ≥13.14.(0,2)解析 动圆一定过抛物线x 2=8y 的焦点.15.3解析 由已知,得⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a |PF 1|·|PF 2|=18, ∴|PF 1|2+|PF 2|2+36=4a 2,又|PF 1|2+|PF 2|2=4c 2,∴4a 2-4c 2=36,∴b =3.16.(-∞,-3)∪(0,3)解析 设F (x )=f (x )g (x ),由已知得,F ′(x )=f ′(x )g (x )+f (x )g ′(x ).当x <0时,F ′(x )>0,∴F (x )在(-∞,0)上为增函数.又∵f (x )为奇函数,g (x )为偶函数.∴F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),∴F (x )为奇函数.∴F (x )在(0,+∞)上也为增函数.又g (-3)=0,∴F (-3)=0,F (3)=0.∴f (x )g (x )<0的解集为(-∞,-3)∪(0,3).17.解 p :{x |2<x <10},q :{x |x <1-a ,或x >1+a }.由綈q ⇒綈p ,得p ⇒q ,于是1+a <2,∴0<a <1.18.(1)解 ∵f (x )在(-∞,0)上是增函数,在[0,2]上是减函数,∴f ′(0)=0.∵f ′(x )=3x 2+2bx +c ,∴f ′(0)=c =0.∴c =0.(2)证明 ∵f (2)=0,∴8+4b +2c +d =0,而c =0,∴d =-4(b +2).∵方程f ′(x )=3x 2+2bx =0的两个根分别为x 1=0,x 2=-23b ,且f (x )在[0,2]上是减函数,∴x 2=-23b ≥2,∴b ≤-3.∴f (1)=b +d +1=b -4(b +2)+1=-7-3b ≥-7+9=2.故f (1)≥2.19.证明 设M (y 20,y 0),直线ME 的斜率为k (k >0),则直线MF 的斜率为-k ,直线ME 的方程为y -y 0=k (x -y 20).由⎩⎪⎨⎪⎧ y -y 0=k (x -y 20)y 2=x 得ky 2-y +y 0(1-ky 0)=0.于是y 0·y E =y 0(1-ky 0)k. 所以y E =1-ky 0k .同理可得y F =1+ky 0-k. ∴k EF =y E -y F x E -x F =y E -y F y 2E -y 2F=1y E +y F =-12y 0(定值). 20.解 设g (x )=x 2+2ax +4,由于关于x 的不等式x 2+2ax +4>0对一切x ∈R 恒成立,所以函数g (x )的图象开口向上且与x 轴没有交点,故Δ=4a 2-16<0,∴-2<a <2.函数f (x )=(3-2a )x 是增函数,则有3-2a >1,即a <1.又由于p 或q 为真,p 且q 为假,可知p 和q 一真一假.①若p 真q 假,则⎩⎪⎨⎪⎧-2<a <2,a ≥1, ∴1≤a <2.②若p 假q 真,则⎩⎪⎨⎪⎧a ≤-2,或a ≥2,a <1, ∴a ≤-2.综上可知,所求实数a 的取值范围为{a |1≤a <2或a ≤-2}.21.解 由f (x )>1,得ax -ln x -1>0.即a >1+ln x x 在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln x x 2,∵x >1,∴g ′(x )<0.∴g (x )=1+ln x x 在区间(1,+∞)内单调递减.∴g (x )<g (1)=1,即1+ln x x <1在区间(1,+∞)内恒成立,∴a ≥1.22.解 (1)由⎩⎪⎨⎪⎧ y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.因为 OA →+OB →=(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12. 解得⎩⎪⎨⎪⎧p =1,k =2. 所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,抛物线过点P 的切线与l 平行时,△ABP 的面积最大, y ′=-x ,所以-x 0=2⇒x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455, 由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0, |AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+22·(-4)2-4×(-4)=410.∴△ABP 面积的最大值为410×4552=8 2.。
高中数学模块综合检测新人教A版选择性必修第一册

模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设x ,y ∈R ,向量a =(x,1,1),b =(1,y,1),c =(2,-4,2),a ⊥c ,b ∥c ,则|a +b |=( )A .2 2B .10C .3D .4【答案】C【解析】∵b ∥c ,∴y =-2.∴b =(1,-2,1).∵a ⊥c ,∴a ·c =2x +1·()-4+2=0,∴x =1.∴a =(1,1,1).∴a +b =(2,-1,2).∴|a +b |=22+-12+22=3.2.如图,在空间四边形ABCD 中,设E ,F 分别是BC ,CD 的中点,则AD →+12(BC →-BD →)等于( )A .AD →B .FA →C .AF →D .EF →【答案】C【解析】∵BC →-BD →=DC →,12(BC →-BD →)=12DC →=DF →,∴AD →+12(BC →-BD →)=AD →+DF →=AF →.3.若直线l 1:mx +2y +1=0与直线l 2:x +y -2=0互相垂直,则实数m 的值为( ) A .2 B .-2 C .12 D .-12【答案】B【解析】直线l 1:y =-m 2x -12,直线l 2:y =-x +2,又∵直线l 1与直线l 2互相垂直,∴-m2×(-1)=-1,即m =-2.4.已知直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,则a =( )A .-9B .1C .1或-2D .1或-9【答案】D【解析】由条件得圆的半径为3,圆心坐标为(1,-2),因为直线l :x -2y +a -1=0与圆(x -1)2+(y +2)2=9相交所得弦长为4,所以9-⎝ ⎛⎭⎪⎫422=⎝ ⎛⎭⎪⎫|1+4+a -1|52,所以a 2+8a -9=0,解得a =1或a =-9.5.已知M (x 0,y 0)是双曲线C :x 2a 2-y 2b2=1上的一点,半焦距为c ,若|MO |≤c (其中O 为坐标原点),则y 20的取值范围是( )A .⎣⎢⎡⎦⎥⎤0,b 4c 2 B .⎣⎢⎡⎦⎥⎤0,a 4c 2C .⎣⎢⎡⎭⎪⎫b 4c 2,+∞ D .⎣⎢⎡⎭⎪⎫a 2c 2,+∞ 【答案】A【解析】因为|MO |≤c ,所以|MO |≤a 2+b 2,所以x 20+y 20≤a 2+b 2,又因为x 20a 2-y 20b2=1,消去x 2得0≤y 20≤b 4a 2+b 2,所以0≤y 20≤b 4c2.6.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,直线l :y =24x 与椭圆C 相交于A ,B 两点,若|AB |=2c ,则椭圆C 的离心率为( )A .32B .34C .12D .14【答案】A【解析】设直线与椭圆在第一象限内的交点为A (x ,y ),则y =24x ,由|AB |=2c ,可知|OA |=x 2+y 2=c ,即x 2+⎝⎛⎭⎪⎫24x 2=c ,解得x =223c ,所以A ⎝ ⎛⎭⎪⎫223c ,13c .把点A 代入椭圆方程得到⎝ ⎛⎭⎪⎫223c 2a2+⎝ ⎛⎭⎪⎫13c 2b2=1,整理得8e 4-18e 2+9=0,即(4e 2-3)(2e 2-3)=0,因为0<e <1,所以可得e =32. 7.在空间直角坐标系Oxyz 中,O (0,0,0),E (22,0,0),F (0,22,0),B 为EF 的中点,C 为空间一点且满足|CO →|=|CB →|=3,若cos 〈EF →,BC →〉=16,则OC →·OF →=( )A .9B .7C .5D .3【答案】D【解析】设C (x ,y ,z ),B (2,2,0),OC →=(x ,y ,z ),BC →=(x -2,y -2,z ),EF →=(-22,22,0),由cos 〈EF →,BC →〉=EF →·BC→|EF →||BC →|=-22,22,0·x -2,y -2,z 4×3=16,整理可得x -y =-22,由|CO →|=|CB →|=3,得x 2+y 2=x -22+y -22,化简得x +y =2,以上方程组联立得x =24,y =324,则OC →·OF →=(x ,y ,z )·(0,22,0)=22y =3. 8.已知点M ,N 是抛物线y =4x 2上不同的两点,F 为抛物线的焦点,且满足∠MFN =135°,弦MN 的中点P 到直线l :y =-116的距离为d ,若|MN |2=λ·d 2,则λ的最小值为( )A .22B .1-22C .1+22D .2+ 2【答案】D【解析】抛物线y =4x 2的焦点F ⎝ ⎛⎭⎪⎫0,116,准线为y =-116.设|MF |=a ,|NF |=b ,由∠MFN =135°,得|MN |2=|MF |2+|NF |2-2|MF |·|NF |·cos ∠MFN =a 2+b 2+2ab .由抛物线的定义,得点M 到准线的距离为|MF |,点N 到准线的距离为|NF |.由梯形的中位线定理,得d =12(|MF |+|NF |)=12(a +b ).由|MN |2=λ·d 2,得14λ=a 2+b 2+2ab a +b 2=1-2-2aba +b 2≥1-2-2ab 2ab2=1-2-24=2+24,得λ≥2+2,当且仅当a =b 时取得最小值2+2.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线l :(a 2+a +1)x -y +1=0,其中a ∈R ,下列说法正确的是( ) A .当a =-1时,直线l 与直线x +y =0垂直 B .若直线l 与直线x -y =0平行,则a =0C .直线l 过定点(0,1)D .当a =0时,直线l 在两坐标轴上的截距相等 【答案】AC【解析】对于A 项,当a =-1时,直线l 的方程为x -y +1=0,显然与x +y =0垂直,所以正确;对于B 项,若直线l 与直线x -y =0平行,可知(a 2+a +1)·(-1)=1·(-1),解得a =0或a =-1,所以不正确;对于C 项,当x =0时,有y =1,所以直线过定点(0,1),所以正确;对于D 项,当a =0时,直线l 的方程为x -y +1=0,在x 轴、y 轴上的截距分别是-1,1,所以不正确.故选AC .10.已知F 1,F 2是双曲线C :y 24-x 22=1的上、下焦点,点M 是该双曲线的一条渐近线上的一点,并且以线段F 1F 2为直径的圆经过点M ,则下列说法正确的是( )A .双曲线C 的渐近线方程为y =±2xB .以F 1F 2为直径的圆的方程为x 2+y 2=2 C .点M 的横坐标为± 2 D .△MF 1F 2的面积为2 3 【答案】ACD【解析】由双曲线方程y 24-x 22=1知a =2,b =2,焦点在y 轴,渐近线方程为y =±abx =±2x ,A 正确;c =a 2+b 2=6,以F 1F 2为直径的圆的方程是x 2+y 2=6,B 错误;由⎩⎨⎧x 2+y 2=6,y =2x ,得⎩⎨⎧x =2,y =2或⎩⎨⎧x =-2,y =-2,由对称性知点M 横坐标是±2,C 正确;S △MF 1F 2=12|F 1F 2||x M |=12×26×2=23,D 正确.故选ACD .11.已知点A 是直线l :x +y -2=0上一定点,点P ,Q 是圆x 2+y 2=1上的动点,若∠PAQ 的最大值为90°,则点A 的坐标可以是( )A .(0,2)B .(1,2-1)C .(2,0)D .(2-1,1)【答案】AC【解析】如图所示,原点到直线l 的距离为d =212+12=1,则直线l 与圆x 2+y 2=1相切.由图可知,当AP ,AQ 均为圆x 2+y 2=1的切线时,∠PAQ 取得最大值.连接OP ,OQ ,由于∠PAQ 的最大值为90°,且∠APO =∠AQO =90°,|OP |=|OQ |=1,则四边形APOQ 为正方形,所以|OA |=2|OP |=2.设A (t ,2-t ),由两点间的距离公式,得|OA |=t 2+2-t2=2,整理得2t 2-22t =0,解得t =0或t =2,因此,点A 的坐标为(0,2)或(2,0).故选AC .12.关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有OP →=16OA →+512OB →+512OC →,则P ,A ,B ,C 四点共面C .设{}a ,b ,c 是空间中的一组基底,则{2a ,-b ,c }也是空间的一组基底D .若a ·b <0,则〈a ,b 〉是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有OP →=16OA →+13OB →+12OC →,因为16+512+512=1,所以P ,A ,B ,C 四点一定共面,所以是正确的;对于C 中,由{}a ,b ,c 是空间中的一组基底,则向量a ,b ,c 不共面,可得向量2a ,-b ,c 也不共面,所以{2a ,-b ,c }也是空间的一组基底,所以是正确的;对于D 中,若a ·b <0,又由〈a ,b 〉∈[0,π],所以〈a ,b 〉∈⎝ ⎛⎦⎥⎤π2,π,所以不正确. 三、填空题:本题共4小题,每小题5分,共20分.13.在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是__________;|OM |=________.【答案】(1,1,-1)3【解析】在空间直角坐标系Oxyz 中,点M (1,-1,1)关于x 轴的对称点坐标是M ′(1,1,-1),|OM |=12+-12+12=3.14.(2021年惠州期末)圆C :(x -1)2+y 2=1关于直线l :x -y +1=0对称的圆的方程为______________.【答案】(x +1)2+(y -2)2=1【解析】圆C :(x -1)2+y 2=1圆心C (1,0),半径r =1,设圆C 关于直线l :x -y +1=0的对称点C ′(a ,b ),则⎩⎪⎨⎪⎧a +12-b2+1=0,ba -1=-1,解得a =-1,b =2,即圆C 的圆心关于直线l 的对称圆心为C ′(-1,2),而圆关于直线对称得到的圆的半径不变,所以所求的圆的方程为(x +1)2+(y -2)2=1.15.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M ,N 分别是线段BB 1,B 1C 1的中点,则直线MN 到平面ACD 1的距离为________.【答案】32【解析】如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则D (0,0,0),C (0,1,0),D 1(0,0,1),M ⎝ ⎛⎭⎪⎫1,1,12,A (1,0,0).∴AM →=⎝⎛⎭⎪⎫0,1,12,AC→=(-1,1,0),AD 1→=(-1,0,1).设平面ACD 1的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD 1→=0,即⎩⎪⎨⎪⎧-x +y =0,-x +z =0,令x =1,则y =z =1,∴n =(1,1,1).∴点M 到平面ACD 1的距离d =|AM →·n ||n |=32.又∵MN →綉12AD 1→,∴MN ∥平面ACD 1.∴直线MN 到平面ACD 1的距离为32.16.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为该双曲线上一点且2|PF 1|=3|PF 2|,若∠F 1PF 2=60°,则该双曲线的离心率为________.【答案】7【解析】2|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,故|PF 1|=6a ,|PF 2|=4a .在△PF 1F 2中,利用余弦定理得4c 2=36a 2+16a 2-2·6a ·4a cos60°,化简整理得到c =7a ,故e =7.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在△ABC 中,A (2,-5,3),AB →=(4,1,2),BC →=(3,-2,5). (1)求顶点B ,C 的坐标; (2)求CA →·BC →.解:(1)设点O 为坐标原点,OB →=OA →+AB →=(2,-5,3)+(4,1,2)=(6,-4,5), 则B (6,-4,5).OC →=OB →+BC →=(6,-4,5)+(3,-2,5)=(9,-6,10),则C (9,-6,10).(2)AC →=AB →+BC →=(7,-1,7),则CA →=(-7,1,-7),又因为BC →=(3,-2,5),所以CA →·BC →=-7×3+1×(-2)+(-7)×5=-58. 18.(12分)菱形ABCD 的顶点A ,C 的坐标分别为A (-4,7),C (6,-5),BC 边所在直线过点P (8,-1).求:(1)AD 边所在直线的方程; (2)对角线BD 所在直线的方程.解:(1)k BC =-5--16-8=2,∵AD ∥BC ,∴k AD =2.∴AD 边所在直线的方程为y -7=2(x +4),即2x -y +15=0. (2)k AC =-5-76--4=-65.∵菱形的对角线互相垂直,∴BD ⊥AC ,∴k BD =56.∵AC 的中点(1,1),也是BD 的中点,∴对角线BD 所在直线的方程为y -1=56(x -1),即5x -6y +1=0.19.(12分)已知圆C 1:x 2+y 2-2x -6y -1=0和圆C 2:x 2+y 2-10x -12y +45=0. (1)求证:圆C 1和圆C 2相交;(2)求圆C 1和圆C 2的公共弦所在直线的方程和公共弦长. (1)证明:圆C 1的圆心C 1(1,3),半径r 1=11. 圆C 2的圆心C 2(5,6),半径r 2=4.两圆圆心距d =|C 1C 2|=5,r 1+r 2=11+4,|r 1-r 2|=4-11, ∴|r 1-r 2|<d <r 1+r 2. ∴圆C 1和圆C 2相交.(2)解:圆C 1和圆C 2的方程相减, 得4x +3y -23=0,∴两圆的公共弦所在直线的方程为4x +3y -23=0.圆心C 2(5,6)到直线4x +3y -23=0的距离d =|20+18-23|16+9=3,故公共弦长为216-9=27.20.(12分)如图,过抛物线C :x 2=2py (p >0)的焦点F 的直线交C 于M (x 1,y 1),N (x 2,y 2)两点,且x 1x 2=-4.(1)求抛物线C 的标准方程;(2)R ,Q 是C 上的两动点,R ,Q 的纵坐标之和为1,R ,Q 的垂直平分线交y 轴于点T ,求△MNT 的面积的最小值.解:(1)由题意,设直线MN 的方程为y =kx +p2,由⎩⎪⎨⎪⎧y =kx +p 2,x 2=2py ,得x 2-2pkx -p 2=0,由题意知x 1,x 2是方程两根,所以x 1x 2=-p 2=-4, 所以p =2,抛物线的标准方程为x 2=4y .(2)设R (x 3,y 3),Q (x 4,y 4),T (0,t ),因为点T 在RQ 的垂直平分线上,所以|TR |=|TQ |, 得x 23+(y 3-t )2=x 24+(y 4-t )2.因为x 23=4y 3,x 24=4y 4,所以4y 3+(y 3-t )2=4y 4+(y 4-t )2, 即4(y 3-y 4)=(y 3+y 4-2t )(y 4-y 3), 所以-4=y 3+y 4-2t .又因为y 3+y 4=1,所以t =52,故T ⎝ ⎛⎭⎪⎫0,52.于是S △MNT =12|FT ||x 1-x 2|=34|x 1-x 2|.由(1)得x 1+x 2=4k ,x 1x 2=-4, 所以S △MNT =34|x 1-x 2|=34x 1+x 22-4x 1x 2=3416k 2-4×-4=3k 2+1≥3. 所以当k =0时,S △MNT 有最小值3.21.(12分)如图,在四棱锥P -ABCD 中,PC ⊥底面ABCD ,底面ABCD 是直角梯形,AB ⊥AD ,AB ∥CD ,AB =2AD =2CD =2,E 是PB 上的点.(1)求证:平面EAC ⊥平面PBC ; (2)二面角P -AC -E 的余弦值为63,求直线PA 与平面EAC 所成角的正弦值.(1)证明:∵PC ⊥底面ABCD ,AC ⊂底面ABCD , ∴PC ⊥AC .∵AB =2,AD =CD =1,∴AC =BC =2. ∴AC 2+BC 2=AB 2,∴AC ⊥BC . 又∵BC ∩PC =C ,∴AC ⊥平面PBC . ∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC .(2)解:如图,以C 为原点,取AB 中点F ,CF →,CD →,CP →分别为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,则C (0,0,0),A (1,1,0),B (1,-1,0). 设P (0,0,a )(a >0),则E ⎝ ⎛⎭⎪⎫12,-12,a 2,CA →=(1,1,0),CP →=(0,0,a ),CE →=⎝ ⎛⎭⎪⎫12,-12,a 2,设m =(x 1,y 1,z 1)为平面PAC 的法向量, 由⎩⎪⎨⎪⎧m ·CA →=x 1+y 1=0,m ·CP →=az 1=0,所以可取x 1=1,y 1=-1,z 1=0,即m =(1,-1,0). 设n =(x 2,y 2,z 2)为平面EAC 的法向量, 则n ·CA →=n ·CE →=0,即⎩⎪⎨⎪⎧x 2+y 2=0,x 2-y 2+az 2=0,取x 2=a ,y 2=-a ,z 2=-2,则n =(a ,-a ,-2),依题意,|cos 〈m ,n 〉|=|m ·n ||m ||n |=a a 2+2=63,则a =2.于是n =(2,-2,-2),PA →=(1,1,-2). 设直线PA 与平面EAC 所成角为θ,则sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=23,即直线PA 与平面EAC 所成角的正弦值为23. 22.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且经过点⎝⎛⎭⎪⎫-1,32.(1)求椭圆C 的方程.(2)过点(3,0)作直线l 与椭圆C 交于A ,B 两点,试问在x 轴上是否存在定点Q 使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由.解:(1)由题意可得32=c a ,1a 2+34b2=1, 又因为a 2-b 2=c 2, 解得a 2=4,b 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)存在定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称,理由如下: 设直线l 的方程为x +my -3=0,与椭圆C 联立,整理得(4+m 2)y 2-23my -1=0. 设A (x 1,y 1),B (x 2,y 2),定点Q (t,0)(依题意t ≠x 1,t ≠x 2),则由韦达定理可得,y 1+y 2=23m 4+m 2,y 1y 2=-14+m2. 直线QA 与直线QB 恰关于x 轴对称,等价于AQ ,BQ 的斜率互为相反数. 所以y 1x 1-t +y 2x 2-t=0,即y 1(x 2-t )+y 2(x 1-t )=0.又因为x 1+my 1-3=0,x 2+my 2-3=0, 所以y 1(3-my 2-t )+y 2(3-my 1-t )=0, 整理得(3-t )(y 1+y 2)-2my 1y 2=0. 从而可得(3-t )·23m 4+m 2-2m ·-14+m2=0,11 即2m (4-3t )=0,所以当t =433,即Q ⎝ ⎛⎭⎪⎫433,0时,直线QA 与直线QB 恰关于x 轴对称成立.特别地,当直线l 为x 轴时,Q ⎝ ⎛⎭⎪⎫433,0也符合题意. 综上所述,存在x 轴上的定点Q ⎝⎛⎭⎪⎫433,0,满足直线QA 与直线QB 恰关于x 轴对称.。
模块综合检测(一)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
模块综合检测(一)选修3-3(90分钟 100分)1.(6分)关于布朗运动的说法正确的是( )A.布朗运动是液体分子的运动B.悬浮在液体中的颗粒越大,其布朗运动越明显C.布朗运动是悬浮颗粒内部分子无规则运动的反映D.悬浮在液体中的颗粒越小,液体温度越高,布朗运动越明显2.(2013·天水模拟)(6分)相互作用的分子间具有势能,规定两分子相距无穷远时两分子间的势能为零。
设分子a固定不动,分子b以某一初速度从无穷远处向a运动,直至它们之间的距离最小。
在此过程中,a、b之间的势能( )A.先减小,后增大,最后小于零B.先减小,后增大,最后大于零C.先增大,后减小,最后小于零D.先增大,后减小,最后大于零3.(6分)在下列叙述中正确的是( )A.物体的温度越高,分子热运动越剧烈,分子平均动能越大B.布朗运动就是液体分子的热运动C.对一定质量的气体加热,其内能一定增加D.当分子间距r<r0时,分子间斥力比引力变化得快;当r>r0时,引力比斥力变化得快4.(6分)下列说法正确的是( )A.某种液体的饱和蒸汽压与温度无关B.物体内所有分子热运动动能的总和就是物体的内能C.气体的温度升高,分子的平均动能增大D.所有晶体都具有各向异性的特点5.(6分)热力学第二定律常见的表述方式有两种,其一:不可能使热量由低温物体传递到高温物体而不引起其他变化;其二:不可能从单一热源吸收热量并把它全部用来做功,而不引起其他变化。
第一种表述方式可以用图甲来表示,根据你对第二种表述的理解,如果也用类似的示意图来表示,你认为图乙中正确的是( )6.(6分)设合力为零时分子间距为r0,分子之间既有引力也有斥力,它们与分子间距的关系有以下说法,其中正确的是( )A.随着分子间距的增加,分子间的引力减小得快,斥力减小得慢B.随着分子间距的增加,分子间的引力减小得慢,斥力减小得快C.分子间距大于r0时,距离越大,分子力越大D.分子间距等于r0时,分子力最大7.(2013·广州模拟)(6分)下列说法正确的是( )A.在黑暗、密闭的房间内,在窗外射入的阳光下,可以看到灰尘在飞舞,这些飞舞的灰尘在做布朗运动B.小木块浮在水面上是由于液体表面张力的作用C.大颗粒的盐磨成细盐,就变成了非晶体D.对于一定质量的饱和蒸汽,当温度不变,体积减小一半时,压强不变8.(6分)水蒸气达到饱和时,水蒸气的压强不再变化,这时( )A.水不再蒸发B.水不再凝结C.蒸发和凝结达到动态平衡D.以上都不对9.(6分)某充有足量空气的足球,在从早晨使用到中午的过程中,其体积的变化忽略不计,则其内部气体的压强随温度变化的关系图像应遵循图中的(设足球不漏气)( )10.(2013·潮州模拟)(6分)夏天将密闭有空气的矿泉水瓶放进低温的冰箱中会变扁,此过程中瓶内空气(可看成理想气体)( )A.内能减小,外界对其做功B.内能减小,吸收热量C.内能增加,对外界做功D.内能增加,放出热量11.(6分)如图所示,活塞将汽缸分成两个气室,汽缸壁、活塞、拉杆是绝热的,且都不漏气,U A和U B分别表示A、B气室中气体的内能。
中职语文综合检测试卷一(含答案)

中职语文(基础模块)综合检测试卷一(教师版)参考答案姓名:班级:分数:本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(综合题)。
卷面满分90分,考试时间100分钟。
第Ⅰ卷(选择题共30分)一、单项选择题(本大题共 10 题,每小题 3 分,共 30 分)在每小题给出的四个备选项中,只有一项是符合题目要求的,请将其选出,未选、错选或多选均不得分。
1.下列加点字的读音全对的一项是( B )A.雾霾.(mái) 档.案(dàng) 庇.护(bì) 并行不悖.(bó) B.角.逐(jué) 瞭.望(liào) 氛.围(fēn) 博闻强识.(zhì)C.便笺.( qiān) 贮.藏(chǔ) 剽.窃(biáo) 舐.犊情深(shì) D.熨.帖(yùn) 罢黜.(chù) 龋.齿(qǔ) 气喘吁吁..(yū)解析:A并行不悖.bèi C便笺.jiān 剽.窃piāo D熨.帖 yù气喘吁吁.. xū xū2.下列词语中没有错别字的一组是( A )A.熨帖煞风景老羞成怒文武之道,一张一弛B.暧昧黄梁梦惹是生非有志者,事意成C.针砭荧光屏委屈求全天网恢恢,疏而不漏D.摸仿闭门羹得陇望蜀曾经沧海难为水B.黄粱梦有志者,事竟成C.委曲求全D.模仿3.依次填入下列各句横线处的词语,最恰当的一组是( D )(1)学好本民族的语言尚且要花许多气力_____学习另一种语言呢?(2)伪制紫砂壶_____,即冒仿名家产品,在新壶上直接冒刻上名人的,是作伪手段之一。
(3)他不愿意再跟他们谈下去,就_____走了。
A.何况款式借口 B.况且款式借故C.况且款识借口D.何况款识借故况且、何况:都表示更进一层的意思。
况且,多用于肯定句;何况,多用于疑问句,何况引出的后分句重在与前分句构成对比,用甲烘托乙,表示甲如此,乙更是如此。
高中生物选择性必修三 模块综合测评 课后作业

模块综合测评(时间:90分钟满分:100分)一、选择题(14×2=28分,每小题只有一个选项符合题目要求)1.下列关于果酒和果醋制作的叙述,错误的是()A.制作果酒时瓶口需密闭,而制作果醋时要打开瓶盖或通气B.温度对酵母菌酒精发酵的影响很大,而对醋酸菌的发酵影响不大C.在变酸的果酒的表面观察到的菌膜可能是醋酸菌在液面大量繁殖形成的D.制作果酒和果醋时都应用体积分数为70%的酒精对发酵瓶消毒并注意无菌操作B[温度对酵母菌和醋酸菌的发酵都有影响,在制作果酒时温度要控制在18~30 ℃,而在制作果醋时则要将温度控制在30~35 ℃。
]2.在利用葡萄自然发酵产生果酒的过程中,未经杀菌,但其他杂菌不能生长的原因是()A.经冲洗后的葡萄上只有野生型酵母菌无其他杂菌B.其他杂菌不能利用葡萄汁中的糖作碳源C.在缺氧和呈酸性的发酵液中,酵母菌能大量繁殖,其他杂菌不适应环境而被抑制D.酵母菌发酵产生大量酒精,杀死了其他杂菌C[冲洗的目的是洗去浮尘,在冲洗过程中,杂菌和酵母菌被洗掉的机会是均等的;异养微生物都能利用糖;根本的原因是其他微生物不适应缺氧和酸性环境。
]3.微生物培养是微生物工程中的基础技术,下列相关叙述正确的是() A.病毒和细菌的培养基成分相同B.平板划线法中的“线”是连续的、不分区域的C.微生物培养基中并不是都必须添加碳源或氮源D.在微生物培养操作过程中,为防止杂菌污染,需对培养基和培养皿进行消毒C[病毒必须寄生在活细胞内才能进行生命活动,如可用活鸡胚培养病毒;平板划线法每次划线前都要灼烧接种环,划线是分区域的;微生物种类不同,对营养物质的需求不同,应根据所培养微生物的需要确定培养基的成分;对培养基和培养皿要进行灭菌,而不是消毒。
]4.三个培养皿中分别加入10 mL不同的培养基,然后接种相同的大肠杆菌样液。
培养36 h后,计算菌落数,结果如下表。
下列相关叙述正确的是()B.该实验采用平板划线法接种C.Ⅰ和Ⅲ对照,说明大肠杆菌的生长不需要生长因子D.Ⅱ和Ⅲ对照,说明大肠杆菌的生长需要葡萄糖D[该培养基加入了琼脂,故为固体培养基;对微生物进行计数时宜采用稀释涂布平板法接种,而不是平板划线法接种;Ⅰ与Ⅲ中有葡萄糖、生长因子两种变量,不能得出相应结论;Ⅱ和Ⅲ对照,自变量是有无葡萄糖,说明大肠杆菌的生长需要葡萄糖。
数学选择性必修一 模块综合检测

模块综合检测(时间:120分钟,满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D.Ax +By +C =0可化为y =-A B x -C B ,由AB <0,BC <0,得-AB >0,-CB >0,故直线Ax +By +C =0经过第一、二、三象限,不经过第四象限.2.已知直线mx +ny +1=0平行于直线4x +3y +5=0,且在y 轴上的截距为13,则m ,n 的值分别为( )A .4和3B .-4和3C .-4和-3D .4和-3解析:选C.由题意知:-m n =-43,即3m =4n ,且有-1n =13,所以n =-3,m =-4.3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M 在AC 上,且AM =12MC ,点N 在A 1D 上,且A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,则MN →=( ) A .-13a +13b +13c B .a +13b -13c C.13a -13b -23c D .-13a +b +13c解析:选A.因为M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND ,所以AM →=13AC →,A 1N →=23A 1D →.又ABCD -A 1B 1C 1D 1为平行六面体,且AB →=a ,AD →=b ,AA 1→=c ,所以AC →=a +b ,A 1D →=b -c ,所以MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(a +b )+c +23(b -c )=-13a +13b +13c . 4.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( )A .-4B .-2C .0D .2解析:选B.因为直线l 的斜率为tan 135°=-1,所以l 1的斜率为1,所以k AB =2-(-1)3-a=1,解得a =0.又l 1∥l 2,所以-2b =1,解得b =-2,所以a +b =-2.5.已知a ,b 是两异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a ,b 所成的角为( )A .30°B .60°C .90°D .45°解析:选B.由于AB →=AC →+CD →+DB →,则AB →·CD →=(AC →+CD →+DB →)·CD→=CD →2=1,由cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12,得〈AB→,CD →〉=60°,故直线a ,b 所成的角为60°.6.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线被圆x 2+y 2-6x =0截得的弦长为25,则双曲线的离心率为( )A. 3B.62C.355D. 5解析:选 C.依题意可得渐近线方程为bx ±ay =0,而圆的标准方程为(x -3)2+y 2=9.由弦长为25,可得圆心(3,0)到渐近线的距离为2,故3b a 2+b2=2,即b 2a 2=45,所以离心率e =c a =a 2+b 2a 2=355.故选C.7.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B.由已知可得,抛物线的焦点坐标为⎝ ⎛⎭⎪⎫a 4,0.又直线l 的斜率为2,故直线l 的方程为y =2⎝ ⎛⎭⎪⎫x -a 4,则|OA |=|a |2,故S △OAF =12·|a |4·|a |2=4,解得a =±8,故抛物线的方程为y 2=±8x .8.已知椭圆x 225+y 2m 2=1(m >0)的左焦点为F 1(-4,0),右焦点为F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是( )A.⎝ ⎛⎭⎪⎫-35,35B.⎝⎛⎭⎪⎫-355,355 C.⎝ ⎛⎭⎪⎫-54,54 D.⎝⎛⎭⎪⎫-574,574 解析:选D.依题意,得m =3,所以x 225+y 29=1.以原点为圆心,c =4为半径作圆,则F 1F 2是圆的直径.若P 在圆外,则∠F 1PF 2为锐角;若P 在圆上,则∠F 1PF 2为直角;若P 在圆内,则∠F 1PF 2为钝角.联立⎩⎨⎧x 225+y 29=1,x 2+y 2=16,消去y ,得x =±574.故结合图形(图略)可知-574<x <574.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.在同一平面直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是( )解析:选ABD.圆(x +a )2+y 2=a 2的可知a ≠0,圆的圆心(-a ,0),半径为|a |,直线y =ax +a 2的斜率为a ,在y 轴上的焦距为a 2>0,所以在同一直角坐标系中,直线y =ax +a 2与圆(x +a )2+y 2=a 2的位置不可能是ABD.故选ABD.10.已知双曲线C 过点(3,2)且渐近线为y =±33x ,则下列结论正确的是( )A .C 的方程为x 23-y 2=1 B .C 的离心率为 3C .曲线y =e x -2-1经过C 的一个焦点D .直线x -2y -1=0与C 有两个公共点解析:选AC.设双曲线C 的方程为x 2a 2-y 2b 2=1,根据条件可知b a =33,所以方程可化为x 23b 2-y 2b 2=1,将点(3,2)代入得b 2=1,所以a 2=3,所以双曲线C 的方程为x 23-y 2=1,故A 对;离心率e =ca =a 2+b 2a 2=3+13=233,故B 错;双曲线C 的焦点为(2,0),(-2,0),将x =2代入得y =e 0-1=0,所以C对;联立⎩⎨⎧x 23-y 2=1x -2y -1=0,整理得y 2-22y +2=0,则Δ=8-8=0,故只有一个公共点,故D 错,故选AC.11.已知椭圆C 的中心为坐标原点,焦点F 1,F 2在y 轴上,短轴长等于2,离心率为63,过焦点F 1作y 轴的垂线交椭圆C 于P 、Q 两点,则下列说法正确的是( )A .椭圆C 的方程为y 23+x 2=1 B .椭圆C 的方程为x 23+y 2=1 C .|PQ |=233D .△PF 2Q 的周长为4 3解析:选ACD.由已知得,2b =2,b =1,c a =63, 又a 2=b 2+c 2,解得a 2=3. 所以椭圆C 的方程为x 2+y 23=1.如图:所以|PQ |=2b 2a =23=233,△PF 2Q 的周长为4a =4 3.故选ACD.12.已知点F 是抛物线y 2=2px (p >0)的焦点,AB ,CD 是经过点F 的弦且AB ⊥CD ,AB 的斜率为k ,且k >0,C ,A 两点在x 轴上方,则下列结论中成立的是( )A.OC→·OD →=-34p 2 B .四边形ACBD 面积最小值为16p 2 C.1|AB |+1|CD |=12pD .若|AF |·|BF |=4p 2,则直线CD 的斜率为- 3 解析:选ACD.如图所示:F (p2,0),设直线AB 的方程为x =my +p2,设直线AB 的倾斜角为θ(θ≠0).设A (x 1,y 1),B (x 2,y 2),联立直线AB 与抛物线的方程整理得: y 2-2pmy -p 2=0.所以y 1y 2=-p 2,x 1x 2=y 212p ·y 222p =p 24,y 1+y 2=2pm . |AB |=1+m 2·(y 1+y 2)2-4y 1y 2=2p (1+m 2)=2p ·(1+cos 2θsin 2θ)=2psin 2θ.设C (x 3,y 3),D (x 4,y 4), 同理可得y 3y 4=-p 2,x 3x 4=p 24,|CD |=2pcos 2θ, 对于A ,OC →·OD →=x 3x 4+y 3y 4=p 24-p 2=-3p 24,故正确;对于B ,四边形ACBD 面积S =12CD ·AB =4p 22sin 2θ·cos 2θ=8p 2sin 22θ,故其最小值为8p 2,故错;对于C ,1|AB |+1|CD |=sin 2θ2p +cos 2 θ2p =12p ,故正确;对于D ,|AF |·|BF |=(x 1+p 2)(x 2+p 2)=x 1x 2+p 2(x 1+x 2)+p 24=4p 2,则p 2(x 1+x 2)=7p 2⇒x 1+x 2=7p .⇒2pm 2=6p ⇒m =3(m >0),θ=π6.则直线CD 的倾斜角为2π3,其斜率为- 3. 故选ACD.三、填空题:本题共4小题,每小题5分,共20分.13.设点P 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)与圆x 2+y 2=a 2+b 2在第一象限的交点,F 1,F 2分别是双曲线的左、右焦点,且|PF 1|=3|PF 2|,则此双曲线的离心率为________.解析:由题知PF 1⊥PF 2, 则⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|2+|PF 2|2=4c 2,|PF 1|=3|PF 2|, 得ca =3+1. 答案:3+114.已知圆C 1:x 2+y 2+2x -6y +1=0,圆C 2:x 2+y 2-4x +2y -11=0,则两圆的公共弦所在的直线方程为________,公共弦长为________.解析:设两圆交点为A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标是方程组⎩⎪⎨⎪⎧x 2+y 2+2x -6y +1=0, ①x 2+y 2-4x +2y -11=0 ②的解, ①-②得:3x -4y +6=0.因为A ,B 两点坐标都满足此方程,所以3x -4y +6=0即为两圆公共弦所在的直线方程. 易知圆C 1的圆心(-1,3),半径r 1=3. 又C 1到直线AB 的距离为 d =|-1×3-4×3+6|32+(-4)2=95.所以|AB |=2r 21-d 2=232-⎝ ⎛⎭⎪⎫952=245.即两圆的公共弦长为245. 答案:3x -4y +6=0 24515.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,D 为AA 1上一点.若二面角B 1DC C 1的大小为60°,则AD 的长为________.解析:如图,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系Cxyz ,则C (0,0,0),B 1(0,2,2).设AD =a (0≤a ≤2),则点D 的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2). 设平面B 1CD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m ·CB 1→=0m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a ,1,-1).又平面C 1DC 的一个法向量为(0,1,0),记为n ,则由cos 60°=|m ·n ||m ||n |,得1a 2+2=12,即a =2,故AD = 2. 答案: 216.已知直线l :x =my +1(m ≠0)恒过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,椭圆C 的上顶点为抛物线x 2=43y 的焦点,则椭圆C 的方程为________.解析:根据题意,直线l :x =my +1(m ≠0)恒过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F ,所以F (1,0),所以c =1.又因为椭圆C 的上顶点为抛物线x 2=43y 的焦点, 所以b =3,b 2=3, 所以a 2=b 2+c 2=4,所以椭圆C 的方程为x 24+y 23=1. 答案:x 24+y 23=1四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值.(1)l 1⊥l 2,且直线l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 解:(1)因为l 1⊥l 2, 所以a (a -1)-b =0.又因为直线l 1过点(-3,-1), 所以-3a +b +4=0. 故a =2,b =2.(2)因为直线l 2的斜率存在,l 1∥l 2, 所以直线l 1的斜率存在. 所以ab =1-a .①又因为坐标原点到这两条直线的距离相等, 所以l 1,l 2在y 轴上的截距互为相反数,即4b =b .② 联立①②可得a =2,b =-2或a =23,b =2.18.(本小题满分12分)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程. 解:(1)由题意得F (1,0),l 的方程为 y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2. 由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16, 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.19.(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =4,求平面PBC 与平面PDC 所成角的余弦值.解:(1)证明:因为底面ABCD 是菱形,所以BD ⊥AC .又P A ⊥平面ABCD ,所以BD ⊥P A .又P A ∩AC =A ,所以BD ⊥平面P AC .(2)以BD 与AC 的交点O 为坐标原点,OB ,OC 所在直线为x 轴,y 轴,过点O 且垂直于平面ABCD 的直线为z 轴,建立如图所示的空间直角坐标系.由已知可得,AO =OC =3,OD =OB =1,所以P (0,-3,4),B (1,0,0),C (0,3,0),D (-1,0,0),PC→=(0,23,-4),BC →=(-1,3,0),CD→=(-1,-3,0). 设平面PBC 的法向量为n 1=(x 1,y 1,z 1),平面PDC 的法向量为n 2=(x 2,y 2,z 2),由⎩⎨⎧n 1·PC →=0,n 1·BC →=0,可得⎩⎪⎨⎪⎧23y 1-4z 1=0,-x 1+3y 1=0,令x 1=3,可得n 1=⎝⎛⎭⎪⎫3,1,32. 同理,由⎩⎨⎧n 2·PC →=0,n 2·CD →=0,可得n 2=⎝ ⎛⎭⎪⎫-3,1,32, 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-519,又平面PBC 与平面PDC 所成的角为锐角,所以平面PBC 与平面PDC 所成角的余弦值为519.20.(本小题满分12分)如图,已知抛物线C :y 2=4x的焦点为F ,过点F 的直线l 与抛物线C 交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,T 为抛物线的准线与x 轴的交点.(1)若TA→·TB →=1,求直线l 的斜率; (2)求∠ATF 的最大值.解:(1)由题意得F (1,0),T (-1,0),当直线l 与x 轴垂直时,A (1,2),B (1,-2),此时TA →·TB →=(2,2)·(2,-2)=0,这与TA→·TB →=1矛盾. 故直线l 与x 轴不垂直.设直线l 的方程为y =k (x -1).①将①代入y 2=4x 整理得k 2x 2-(2k 2+4)x +k 2=0.所以x 1+x 2=2k 2+4k 2,x 1x 2=1. 所以y 1y 2=k 2(x 1-1)(x 2-1)=k 2[x 1x 2-(x 1+x 2)+1]=-4,所以TA →·TB →=(x 1+1,y 1)·(x 2+1,y 2)=x 1x 2+(x 1+x 2)+1+y 1y 2=1+2k 2+4k 2+1-4=4k 2=1.解得k =±2.故直线l 的斜率为±2.(2)因为y 1>0,所以tan ∠ATF =y 1x 1+1=y 1y 214+1=4y 1+4y 1≤1. 当且仅当y 1=4y 1,即y 1=2时取等号. 故∠ATF 的最大值为π4.21.(本小题满分12分)如图,在三棱锥P -ABC 中,平面P AB ⊥平面ABC ,AB =6,BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为π4,求平面P AC 与平面PDE 的夹角.解:(1)证明:由题意知AC =26,BC =23,AB =6,所以AC 2+BC 2=AB 2,所以∠ACB =π2, 所以cos ∠ABC =236=33.又易知BD =2,所以CD 2=22+(23)2-2×2×23cos ∠ABC =8, 所以CD =22,又AD =4,所以CD 2+AD 2=AC 2,所以CD ⊥AB .因为平面P AB ⊥平面ABC ,交线为AB ,所以CD ⊥平面P AB ,所以CD ⊥PD ,因为PD ⊥AC ,AC ∩CD =C ,所以PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,所以可建立如图所示的直角坐标系D -xyz ,因为直线P A 与平面ABC 所成的角为π4,即∠P AD =π4,所以PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),所以CB →=(-22,2,0),AC →=(22,4,0),P A →=(0,-4,-4). 因为AD =2DB ,CE =2EB ,所以DE ∥AC ,由(1)知AC ⊥BC ,所以DE ⊥BC ,又PD ⊥平面ABC ,所以PD ⊥BC ,因为PD ∩DE =D ,所以CB ⊥平面PDE ,所以CB→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ),则⎩⎨⎧n ⊥AC →,n ⊥P A →,所以⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1,所以n =(2,-1,1)为平面P AC 的一个法向量.所以cos 〈n ,CB →〉=-4-24×12=-32, 所以平面P AC 与平面PDE 所成的锐二面角的余弦值为32,故平面P AC 与平面PDE 的夹角为30°.22.(本小题满分12分)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,1),且离心率为32.(1)求椭圆E 的标准方程;(2)设直线l :y =12x +m 与椭圆E 交于A ,C 两点,以AC 为对角线作正方形ABCD ,记直线l 与x 轴的交点为N ,求证|BN |为定值.解:(1)由题意,可知椭圆的焦点在x 轴上,且b =1,由椭圆的离心率e =c a =1-b 2a 2=32,得a =2,所以椭圆E 的标准方程为x 24+y 2=1.(2)证明:设A (x 1,y 1),C (x 2,y 2),线段AC 的中点为M ,由⎩⎪⎨⎪⎧y =12x +m ,x 24+y 2=1, 整理得x 2+2mx +2m 2-2=0,由Δ=(2m )2-4(2m 2-2)=8-4m 2>0,解得-2<m <2,则x 1+x 2=-2m ,x 1x 2=2m 2-2,y 1+y 2=12(x 1+x 2)+2m =m ,则M ⎝ ⎛⎭⎪⎫-m ,12m .|AC |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+⎝ ⎛⎭⎪⎫122·4m 2-4×(2m 2-2)=10-5m 2. 由l 与x 轴的交点N (-2m ,0), 得|MN |=(-m +2m )2+⎝ ⎛⎭⎪⎫12m 2=54m 2.所以|BN |2=|BM |2+|MN |2=14|AC |2+|MN |2=5 2,所以|BN |为定值.。
模块综合测试题检测A

模块综合测试题检测A一、选择题:(25个题,每题2分)1.现有一瓶混有酵母菌和葡萄糖的培养液,通入不 同浓度的氧气时,其产生的酒精和CO 2的量如图所示 (两种呼吸作用速率相等),问:在氧浓度为a 时 A.酵母菌只进行厌氧发酵 B.67%的酵母菌进行厌氧发酵 C.33%的酵母菌进行厌氧发酵 D.酵母菌停止厌氧发酵2.有一灌用用葡萄糖液培养的酵母菌,由于混入氧气,酵母菌就有了两种呼吸类型.假使全部酵母菌都在分解葡萄糖,且两种呼吸消耗葡萄糖的速度相等.当灌内产生的CO 2与酒精的mol 数之比为2:1时,有多少酵母菌在进行有氧呼吸A.1/2B.1/3C.1/4D.1/53.在消毒不彻底的密封肉类罐头中,肉毒杆菌能够迅速繁殖并产生大量的毒素,肉毒杆菌的代谢类型为A.自养需氧型B.自养厌氧型C.异养需氧型D.异养厌氧型4.研究认为,用固定化酶技术处理污染物是很有前途的。
如将从大肠杆菌得到的磷酸三酯酶固定到尼龙膜上制成制剂,可用于降解残留在土壤中的有机磷农药,与用微生物降解相比,其作用不需要适宜的A .温度B .pHC .水分D .营养5.发酵工程的第一个重要工作是选择优良的单一纯种。
消灭杂菌,获得纯种的方法包括A .根据微生物对碳源需要的差别,使用含不同碳源的培养基B .根据微生物缺乏生长因子的种类,在培养基中增减不同的生长因子C .根据微生物遗传组成的差异,在培养基中加入不同比例的核酸D .根据微生物对抗菌素敏感性的差异,在培养基中加入不同的抗菌素6.所有细菌都具有的特征是A .都是异养生物B .仅在有水条件下繁殖C .仅在有氧条件下生长D .生存温度都超过80℃7.下面关于植物细胞工程的叙述,正确的是( )A . 叶肉细胞脱分化后可形成无定形状态的薄壁细胞B . 叶肉细胞经再分化过程可形成愈伤组织C . 融合植物叶肉细胞时,应先去掉细胞膜D .植物体的任何一个体细胞经离体培养都能表现出全能性8.下列关于细胞工程的叙述中,错误的是( )A . 植物细胞融合必须先制备原生质体B . 试管婴儿技术包括人工授精和胚胎移植两方面C . 经细胞核移植培育出的新个体只具有一个亲本的遗传性状D .用于培养的植物器官或组织属于外植体9.人工种子是指植物离体培养中产生的胚状体,包裹在含有养分和具有保护功能的物质中,并在适宜的条件下能够发芽出苗的颗粒体。
苏教版数学选修2-1:模块综合检测

(时间:120分钟;满分:160分)模块综合检测一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上)1.已知命题p :∀x ∈R ,x 2+x -1<0,则命题﹁p 是________. 解析:全称命题的否定是存在性命题. 答案:∃x ∈R ,x 2+x -1≥02.已知点A (1,-2,0)和向量a =(-3,4,12),若AB →=2a ,则点B 的坐标为________.解析:设B (x ,y ,z ),则AB →=(x -1,y +2,z ),又AB →=2a ,解得x =-5,y =6,z =24,所以B 点坐标为(-5,6,24).答案:(-5,6,24)3.若向量a =(1,1,x ),b =(1,2,1),c =(1,1,1),满足条件(c -a )·(2b )=-2,则x =________.解析:c -a =(0,0,1-x ),(c -a )·(2b )=2(0,0,1-x )·(1,2,1)=2(1-x )=-2,解得x =2.答案:24.已知a ∈R ,则“a >2”是“1a <12”的________条件.解析:由1a <12可得a -22a >0,即得a >2或a <0,∴“a >2”是“1a <12”的充分不必要条件.答案:充分不必要5.已知双曲线x 2a 2-y 2b 2=1的离心率为2,焦点与椭圆x 225+y 29=1的焦点相同,那么双曲线的渐近线方程为________.解析:根据椭圆方程可得c =25-9=4,又椭圆与双曲线焦点相同,故其焦点坐标为(±4,0),又据已知得:⎩⎪⎨⎪⎧c a =2,c =4,故a =2,b =c 2-a 2=23,故其渐近线方程为y =±bax =±3x .答案:3x ±y =06.双曲线x 216-y 29=1上一点P 到右焦点的距离是实轴两端点到右焦点距离的等差中项,则P 点到左焦点的距离为________.解析:由a =4,b =3,得c =5.设左焦点为F 1,右焦点为F 2,则|PF 2|=12(a +c +c -a )=c =5,由双曲线的定义得:|PF 1|=2a +|PF 2|=8+5=13.答案:137.已知抛物线C :y 2=x 与直线l :y =kx +1,“k ≠0”是“直线l 与抛物线C 有两个不同交点”的____________条件.解析:当k =0时,直线y =1与抛物线C :y 2=x 只有一个交点;所以直线l 与抛物线C有两个不同交点必须k ≠0;当k ≠0时,由⎩⎪⎨⎪⎧y 2=x ,y =kx +1,得k 2x 2+(2k -1)x +1=0,Δ=(2k -1)2-4k 2=-4k +1,则Δ不一定大于零,此时直线l 与抛物线C ,可能没有交点,可能有一个交点,也可能有两个交点,所以“k ≠0”是“直线l 与抛物线C 有两个不同交点”必要不充分条件.答案:必要不充分8.抛物线y =-x 2上的点到直线4x +3y -8=0距离的最小值是________.解析:设抛物线y =-x 2上一点为(m ,-m 2),该点到直线4x +3y -8=0的距离为|4m -3m 2-8|5,故当m =23时,取得最小值为43.答案:439.已知G 是△ABC 的重心,O 是平面ABC 外的一点,若λOG →=OA →+OB →+OC →,则λ=________.解析:如图,正方体中,OA →+OB →+OC →=3OG →,所以λ=3. 答案:310.若点P (2,0)到双曲线x 2a 2-y 2b2=1的一条渐近线的距离为2,则双曲线的离心率为________.解析:设过第一象限的渐近线倾斜角为α⇒sin α=22⇒α=45°⇒k =1;所以y =±bax=±x ⇒a =b ,因此c =2a ,e =ca= 2.答案: 211.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________.解析:抛物线y 2=ax (a ≠0)的焦点F 坐标为(a 4,0),则直线l 的方程为y =2(x -a4),它与y 轴的交点为A (0,-a 2),所以△OAF 的面积为12|a 4|·|a2|=4,解得a =±8,所以抛物线方程为y 2=±8x .答案:y 2=±8x12.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP →的最大值为________.解析:由题意,F (-1,0),设点P (x 0,y 0),则有x 204+y 203=1,解得y 20=3(1-x 204),因为FP →=(x 0+1,y 0),OP →=(x 0,y 0),所以OP →·FP →=x 0(x 0+1)+y 20=x 0(x 0+1)+3(1-x 204)=x 204+x 0+3,此二次函数对应的抛物线的对称轴为x 0=-2,因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值224+2+3=6.答案:613.如图在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,∠BAC =30°,BC =1,A 1A =6,M 是CC 1的中点,则二面角B -AM -C 的大小为________.解析:以点C 为原点建立如图所示的空间直角坐标系,则B (1,0,0),A (0,3,0),A 1(0,3,6),M (0,0,62),所以A 1B →=(1,-3,-6),AM →=(0,-3,62),因为直三棱柱ABC -A 1B 1C 1,所以CC 1⊥面ABC ,所以CC 1⊥BC , 因为∠ACB =90°,即BC ⊥AC , 所以BC ⊥平面ACC 1, 即BC ⊥面AMC ,所以CB →=(1,0,0)是平面AMC 的一个法向量, 设n =(x ,y ,z )是平面BAM 的一个法向量,BA →=(-1,3,0),BM →=(-1,0,62).由⎩⎪⎨⎪⎧n ·BA →=0n ·BM →=0,得⎩⎪⎨⎪⎧-x +3y =0-x +62z =0, 取z =2,得n =(6,2,2),因为|CB →|=1,|n |=23,所以cos 〈CB →,n 〉=623=22,又二面角B -AM -C 的平面角是锐角, 因此二面角B -AM -C 的大小为45°. 答案:45°14.设x 1,x 2∈R ,常数a >0,定义运算“*”,x 1*x 2=(x 1+x 2)2-(x 1-x 2)2,若x ≥0,则动点P (x ,x *a )的轨迹是________.解析:因为x 1*x 2=(x 1+x 2)2-(x 1-x 2)2,所以x *a =(x +a )2-(x -a )2=2ax , 则P (x ,2ax ),设P (x 1,y 1),即⎩⎨⎧x 1=xy 1=2ax ,消去x 得y 21=4ax 1(x 1≥0,y 1≥0), 故点P 的轨迹为抛物线的一部分. 答案:抛物线的一部分二、解答题(本大题共6小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)已知p :(x +2)(x -10)≤0,q :[x -(1-m )][x -(1+m )]≤0(m >0),若﹁p 是﹁q 的必要不充分条件,求实数m 的取值范围.解:因为﹁p 是﹁q 的必要不充分条件, 则p 是q 的充分不必要条件,由p :(x +2)(x -10)≤0可得-2≤x ≤10, 由q :[x -(1-m )][x -(1+m )]≤0(m >0), 可得1-m ≤x ≤1+m (m >0), 因为p 是q 的充分不必要条件,所以⎩⎪⎨⎪⎧1-m ≤-21+m ≥10,得m ≥9,即实数m 的取值范围为m ≥9.16.(本小题满分14分)如图所示,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面AA 1B 1B ,且C 1H = 5.(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长.解:如图所示,以点B 为坐标原点,建立空间直角坐标系,依题意,得A (22,0,0),B (0,0,0),C (2,-2,5),A 1(22,22,0),B 1(0,22,0),C 1(2,2,5).(1)易得AC →=(-2,-2,5),A 1B 1→=(-22,0,0),因为cos 〈AC →,A 1B 1→〉=AC →·A 1B 1→|AC →||A 1B 1→|=43³22=23.所以异面直线AC 与A 1B 1所成角的余弦值为23.(2)易知AA 1→=(0,22,0),A 1C 1→=(-2,-2,5). 设平面AA 1C 1的法向量m =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧m ·A 1C 1→=0,m ·AA 1→=0,即⎩⎨⎧-2x 1-2y 1+5z 1=0,22y 1=0.不妨令x 1=5,可得z 1=2,即m =(5,0,2). 同样地,设平面A 1B 1C 1的法向量n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n ·A 1C 1→=0,n ·A 1B 1→=0.即⎩⎨⎧-2x 2-2y 2+5z 2=0,-22x 2=0.不妨令y 2=5,可得z 2=2,即n =(0,5,2).于是cos 〈m ,n 〉=m ·n |m ||n |=27³7=27,从而sin 〈m ,n 〉=357.所以二面角A -A 1C 1-B 1的正弦值为357.(3)由N 为棱B 1C 1的中点,得N (22,322,52).设M (a ,b ,0),则MN →=(22-a ,322-b ,52).由MN ⊥平面A 1B 1C 1,得 ⎩⎪⎨⎪⎧MN →·A 1B 1→=0,MN →·A 1C 1→=0.即⎩⎨⎧(22-a )·(-22)=0,(22-a )·(-2)+(322-b )·(-2)+52³5=0.解得⎩⎨⎧a =22,b =24.故M (22,24,0).因此BM →=(22,24,0),所以线段BM 的长为|BM →|=104.17.(本小题满分14分)已知椭圆与双曲线2x 2-2y 2=1共焦点,且过(2,0). (1)求椭圆的标准方程;(2)求斜率为2的一组平行弦的中点轨迹方程.解:(1)依题意得,将双曲线方程标准化为x 212-y 212=1,则c =1.∵椭圆与双曲线共焦点,∴设椭圆方程为x 2a 2+y 2a 2-1=1,∵椭圆过(2,0),∴2a 2+0a 2-1=1,即a 2=2,∴椭圆的标准方程为x 22+y 2=1.(2)依题意,设斜率为2的弦所在直线的方程为y =2x +b ,弦的中点坐标为(x ,y ),则⎩⎪⎨⎪⎧y =2x +b x 22+y 2=1得9x 2+8bx +2b 2-2=0, ∴⎩⎨⎧x 1+x 2=-8b 9,y 1+y 2=2b 9.即⎩⎨⎧x =-4b9,y =b9,∴y =-14x .令Δ=0,64b 2-36(2b 2-2)=0,即b =±3, 所以斜率为2且与椭圆相切的直线方程为y =2x ±3,即当x =±43时斜率为2的直线与椭圆相切.所以平行弦的中点轨迹方程为:y =-14x (-43≤x ≤43).18.(本小题满分16分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,AC =BC =CC 1,M 、N 分别是A 1B 、B 1C 1的中点.(1)求证:MN ⊥平面A 1BC ;(2)求直线BC 1和平面A 1BC 所成角的大小.解:(1)据题意CA 、CB 、CC 1两两垂直,以C 为原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图.设AC =BC =CC 1=a ,则B (0,a ,0),B 1(0,a ,a ),A (a ,0,0),C (0,0,0),C 1(0,0,a ),A 1(a ,0,a ),M (a 2,a 2,a 2),N (0,a2,a ). 所以BA 1→=(a ,-a ,a ),CA 1→=(a ,0,a ),MN →=(-a 2,0,a 2).所以MN →·BA 1→=0,MN →·CA 1→=0, 即MN ⊥BA 1,MN ⊥CA 1. 又BA 1∩CA 1=A 1, 故MN ⊥平面A 1BC .(2)因为MN ⊥平面A 1BC , 则MN →为平面A 1BC 的法向量, 又BC 1→=(0,-a ,a ),则cos 〈BC 1→,MN →〉=BC 1→·MN →|BC 1→||MN →|=a 222a ³22a=12,所以〈BC 1,MN →〉=60°,故直线BC 1和平面A 1BC 所成的角为30°.19.(本小题满分16分)已知动点P 到定点F (2,0)的距离与点P 到定直线l :x =22的距离之比为22.(1)求动点P 的轨迹C 的方程;(2)设M 、N 是直线l 上的两个点,点E 与点F 关于原点O 对称,若EM →²FN →=0,求MN 的最小值.解:(1)设点P (x ,y ),依题意,有(x -2)2+y 2|x -22|=22,整理,得x 24+y 22=1.所以动点P 的轨迹C 的方程为x 24+y 22=1.(2)∵点E 与点F 关于原点O 对称, ∴点E 的坐标为(-2,0). ∵M 、N 是直线l 上的两个点,∴可设M (22,y 1),N (22,y 2)(不妨设y 1>y 2). ∵EM →·FN →=0, ∴(32,y 1)·(2,y 2)=0,则6+y 1y 2=0,即y 2=-6y 1.由于y 1>y 2,则y 1>0,y 2<0.∴MN =y 1-y 2=y1+6y 1≥2y 1²6y 1=2 6.当且仅当y 1=6,y 2=-6时,等号成立, 故MN 的最小值为2 6.20.(本小题满分16分)如图,抛物线的顶点O 在坐标原点,焦点在y 轴负半轴上,过点M (0,-2)作直线l 与抛物线相交于A ,B 两点,且满足OA →+OB →=(-4,-12).(1)求直线l 和抛物线的方程;(2)当抛物线上一动点P 从点A 到B 运动时,求△ABP 面积的最大值.解:(1)据题意可设直线l 的方程为y =kx -2,抛物线方程为x 2=-2py (p >0). 由⎩⎪⎨⎪⎧y =kx -2x 2=-2py 得x 2+2pkx -4p =0. 设点A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4.所以OA →+OB →=(x 1+x 2,y 1+y 2) =(-2pk ,-2pk 2-4).因为OA →+OB →=(-4,-12),所以⎩⎪⎨⎪⎧-2pk =-4-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1k =2. 故直线l 的方程为y =2x -2,抛物线为x 2=-2y .(2)由⎩⎪⎨⎪⎧y =2x -2x 2=-2y 得,x 2+4x -4=0.所以AB =1+k 2·(x 1+x 2)2-4x 1x 2 =1+22³(-4)2-4³(-4)=410.设点P (t ,-12t 2)(-2-22<t <-2+22),点P 到直线l 的距离为d ,则d =|2t +12t 2-2|22+(-1)2=|(t +2)2-8|25(-2-22<t <-2+22),当t =-2时,d max =455, 此时点P (-2,-2).故△ABP 面积的最大值12·AB ·d =12³410³455=8 2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测(时间:90分钟满分:110分)一、选择题(本题共14小题,每小题4分,共56分,第1~8小题只有一个选项符合题意,第9~14小题有多个选项符合题意,全选对的得4分,选对但不全的得2分,有选错的得0分)1.某点电荷和金属圆环间的电场线分布如图1所示。
下列说法正确的是()图1A.b点的电势低于a点的电势B.若将一正试探电荷由a点移到b点,电场力做负功C.c点的电场强度与d点的电场强度大小无法判断D.若将一正试探电荷从d点由静止释放,电荷将沿着电场线由d到c解析:选B沿电场线方向电势逐渐降低,因b点所在的等势面高于a点所在的等势面,故b点的电势高于a点的电势,选项A错误;若将一正试探电荷由a点移到b点,电场力做负功,选项B正确;由于电场线密集的地方场强较大,故d点的场强大于c点的场强,选项C错误;因dc电场线是曲线,故若将一正试探电荷从d点由静止释放,电荷将不能沿着电场线由d到c,选项D错误。
2.如图2所示,虚线a、b、c代表电场中的三条电场线,实线为一带负电的粒子仅在电场力作用下通过该区域时的运动轨迹,P、R、Q是这条轨迹上的三点,由此可知() A.带电粒子在R点时的速度大于在Q点时的速度B.带电粒子在P点时的电势能比在Q点时的电势能大C.带电粒子在R点时的动能与电势能之和比在Q点时的小,比在P点时的大D.带电粒子在R点的加速度小于在Q点的加速度图2解析:选A根据电场线的疏密程度可知,R、Q两点的电场强度E R>E Q,则带电粒子在R 、Q 两点的加速度a R >a Q ,故D 错误;由于带电粒子只受电场力作用,动能与电势能相互转化,两者之和不变,故C 错误;根据曲线运动知识,带电粒子在R 处所受电场力沿电场线向右,又由于该粒子带负电,则R 处电场的方向应该向左,所以电势φR >φQ ,根据E p =qφ可得R 、Q 两点的电势能E p R <E p Q ,则R 、Q 两点的动能E k R >E k Q ,所以v R >v Q ,故A 正确;同理,E p P <E p Q ,故B 错误。
3.如图3所示,电路中R 1、R 2均为可变电阻,电源内阻不能忽略,平行板电容器C 的极板水平放置。
闭合电键S ,电路达到稳定时,带电油滴悬浮在两板之间静止不动。
如果仅改变下列某一个条件,油滴仍能静止不动的是( )图3A .增大R 1的阻值B .增大R 2的阻值C .增大两板间的距离D .断开电键S解析:选B 在直流电路中,R 2与电容器串联的支路不通,因此电容器两端的电压等于R 1两端的电压,增大R 1的阻值,R 1两端的电压增大,电容器两端的电压增大,由E =U d 可知,电容器两极板间的电场强度增大,因此板间带电油滴受到的电场力增大,会向上运动,A 项错误;增大R 2的阻值不改变电路中的总电阻,不改变R 1两端的电压,因此电容器中的油滴仍保持静止,B 项正确;增大两板间的距离,而电容器的两板间的电压一定,由E =U d 可知,板间的场强减小,油滴受到的电场力减小,油滴会向下运动,C 项错误;断开电键S ,电容器会通过R 1、R 2进行放电,使板间场强减小,油滴受到的电场力减小而向下运动,D 项错误。
4.在研究微型电动机的性能时,可采用如图4所示的实验电路。
当调节滑动变阻器R ,使电动机停止转动时,电流表和电压表的示数分别为1.0 A 和1.0 V ;重新调节R ,使电动机恢复正常运转时,电流表和电压表的示数分别为2.0 A 和15.0 V 。
则当这台电动机正常运转时( )图4A .电动机的内阻为7.5 ΩB .电动机的内阻为2.0 ΩC .电动机的输出功率为30.0 WD .电动机的输出功率为26.0 W解析:选D 因为电动机停止转动时,电流表和电压表的示数分别为1.0 A 和1.0 V ,说明电动机在没有将电能转化为机械能时属于纯电阻电路,故说明电动机的内阻为r =U I =1.0 V 1.0 A=1.0 Ω,选项A 、B 错误;当电动机正常运转时,电流表和电压表的示数分别为2.0 A 和15.0 V ,则电动机的总功率为P 总=2.0 A ×15.0 V =30.0 W ,此时电动机的发热功率为P 热=(2.0A)2×1.0 Ω=4.0 W ,故电动机的输出功率为P 出=P 总-P 热=30.0 W -4.0 W =26.0 W ,选项D 正确。
5.如图5所示,电源电动势为E ,内阻为r ,滑动变阻器最大电阻为R ,开关K 闭合。
两平行金属极板a 、b 间有匀强磁场,一带负电的粒子(不计重力)以速度v 水平匀速穿过两极板。
下列说法正确的是( )图5A .若将滑片P 向上滑动,粒子将向a 板偏转B .若将a 极板向上移动,粒子将向a 板偏转C .若增大带电粒子的速度,粒子将向b 板偏转D .若增大带电粒子带电量,粒子将向b 板偏转解析:选C 因电容器与电阻并联,将滑片P 向上滑动,电阻两端的电压减小,故两板间的电场强度要减小,故粒子所受电场力减小,因带负电,电场力向上,则粒子将向b 板偏转运动,故A 错误;保持开关闭合,将a 极板向上移动一点,板间距离增大,电压不变,由E =U d 可知,板间场强减小,带电粒子受电场力变小,则粒子将向b 板偏转,故B 错误;若增大带电粒子的速度,所受极板间洛伦兹力增大而所受电场力不变,故粒子将向b 板偏转,故C 正确;若增大带电粒子带电量,所受电场力增大,所受洛伦兹力也增大,两者仍相等,故粒子将不会偏转,故D 错误。
6.(2019·全国卷Ⅱ)如图6,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a 、d 两点射出的电子的速度大小分别为( )图6A.14kBl ,54kBlB.14kBl ,54kBlC.12kBl ,54kBl D.12kBl ,54kBl 解析:选B若电子从a 点射出,运动轨迹如图线①, 有q v a B =m v a 2R aR a =l 4解得v a =qBR a m =qBl 4m =kBl 4若电子从d 点射出,运动轨迹如图线②, 有q v d B =m v d 2R dR d 2=⎝⎛⎭⎫R d -l 22+l 2 解得v d =qBR d m =5qBl 4m =5kBl 4选项B 正确。
7.已知电源内阻r =2 Ω,灯泡电阻R L =2 Ω,R 2=2 Ω,滑动变阻器R 1的最大阻值为3 Ω,如图7所示,将滑片P 置于最左端,闭合开关S 1、S 2,电源的输出功率为P 0,则( )图7A .滑片P 向右滑动,电源输出功率一直减小B .滑片P 向右滑动,电源输出功率一直增大C .断开S 2,电源输出功率达到最大值D .滑片P 置于最右端时,电源输出功率仍为P 0解析:选D 闭合开关S 1、S 2,外电路总电阻R =R 1+R 并=R 1+1 Ω,当R =r =2 Ω时,电源输出功率最大,根据电源输出功率与外电路电阻的关系图像可知,滑片从最左端向右滑动,外电路总电阻从4 Ω减小到1 Ω,电源输出功率先增大再减小,故A 、B 错误;滑片在最左端,断开S 2,外电路总电阻R =R 1+R 2=5 Ω≠r ,电源的输出功率不是最大,故C 错误;当滑片在最左端时,R =R 1+R 并=4 Ω,电流I =E R +r =E 6(A),电源的输出功率为P 0,则P 0=I 2R =E 29(W);当滑片在最右端时,R ′=R 并=1 Ω,电流I ′=E R ′+r =E 3(A),电源的输出功率为P ′=I ′2R ′=E 29(W)=P 0,故D 正确。
8.如图8所示,两个横截面分别为圆形和正方形的区域内有磁感应强度相同的匀强磁场,圆的直径和正方形的边长相等,两个电子分别以相同的速度飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形磁场的电子初速度方向对准圆心;进入正方形磁场的电子初速度方向垂直于边界,从中点进入。
则下面判断错误的是( )图8A .两电子在两磁场中运动时,其半径一定相同B .两电子在磁场中运动的时间有可能相同C .进入圆形磁场区域的电子可能先飞离磁场D .进入圆形磁场区域的电子可能后飞离磁场解析:选D 电子在磁场中做匀速圆周运动,洛伦兹力提供向心力q v B =m v 2R ,整理得R =m v qB,两过程电子速度v 相同,所以半径相同,A 正确;电子在磁场中的可能运动情况如图所示,轨迹1和3先出圆形磁场,再出正方形磁场,轨迹2显示电子同时从圆形与正方形边界出磁场,运动时间相同,所以B 、C 正确,D 错误。
9.(多选)(2019·全国卷Ⅱ)静电场中,一带电粒子仅在电场力的作用下自M 点由静止开始运动,N 为粒子运动轨迹上的另外一点,则( )A .运动过程中,粒子的速度大小可能先增大后减小B .在M 、N 两点间,粒子的轨迹一定与某条电场线重合C .粒子在M 点的电势能不低于其在N 点的电势能D .粒子在N 点所受电场力的方向一定与粒子轨迹在该点的切线平行解析:选AC 如图所示,在两正电荷形成的电场中,一带正电的粒子在两电荷的连线上运动时,粒子有可能经过先加速再减速的过程,A 对。
粒子运动轨迹与电场线重合需具备初速度为0、电场线为直线、只受电场力三个条件,B 错。
带电粒子仅受电场力在电场中运动时,其动能与电势能的总量不变,E k M =0,而E k N ≥0,故E p M ≥E p N ,C 对。
粒子运动轨迹的切线方向为速度方向,由于粒子运动轨迹不一定是直线,故N 点电场力方向与轨迹切线方向不一定平行,D 错。
10.如图9所示,为某一点电荷所形成的一簇电场线,a 、b 、c 三条虚线为三个带电粒子以相同的速度从O 点射入电场的运动轨迹,其中b 虚线为一圆弧,AB =BC ,且三个粒子的电荷量大小相等,不计粒子重力及相互作用力,则以下说法正确的是( )图9A .a 一定是正粒子的运动轨迹,b 和c 一定是负粒子的运动轨迹B .由于AB =BC ,故U AB =U BCC .a 对应的粒子的加速度越来越小,c 对应的粒子的加速度越来越大,b 对应的粒子的加速度大小不变D .b 对应的粒子的质量大于c 对应的粒子的质量解析:选CD 图中的电场线无法判断方向,所以不能判断出a 、b 、c 三种粒子的电性,故A 错误;根据公式U =Ed ,由于AB 间的平均场强小于BC 间的平均场强(电场线的疏密反映电场的强弱),故U AB ≠U BC ,故B 错误;粒子只受电场力,由a =qE m得a 虚线对应的粒子的加速度越来越小,c 虚线对应的粒子的加速度越来越大,b 虚线对应的粒子的加速度大小不变,故C 正确;三个粒子的电荷量大小相等,以相同的速度从同一点O 点射入电场,故静电力F 相等,由于b 粒子做圆周运动⎝⎛⎭⎫F =m b v 2r ,c 粒子做近心运动⎝⎛⎭⎫F >m c v 2r ,比较可知c 粒子的质量较小,故D 正确。