历年中考统计与概率题专题练习

合集下载

中考数学总复习之统计与概率专项训练题

中考数学总复习之统计与概率专项训练题

中考数学总复习之统计与概率专项训练题一.选择题(共10小题)1.某鞋店对某款女鞋一周的销售情况进行统计,结果如下:尺码 35 36 37 38 39 40 销售量(双)618331221根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是( ) A .众数B .中位数C .平均数D .方差2.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是( ) A .12B .14C .16D .1123.某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如下表所示:时间/h 3 4 5 6 7 人数13231关于志愿者服务时间的描述正确的是( ) A .平均数是5B .中位数是4C .众数是6D .方差是14.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在数据整理时,出现了一处错误:将最高成绩写得更高了,统计过程中不受影响的是( ) A .平均数B .众数C .中位数D .方差5.在献爱心活动中,五名同学捐款数分别是20,20,30,40,40(单位:元),后来每人都追加了10元.追加后的5个数据与之前的5个数据相比,不变的是( ) A .平均数B .众数C .中位数D .方差6.某公司职工的月工资情况如下(单位:元),关于嘉嘉、淇淇的观点,下列判断正确的是( ) 职务 经理 副经理 职工 人数 1 1 8 月工资 1200080003000嘉嘉的观点平均数是数据的代表值,应该用平均数描述该公司月工资的集中趋势淇淇的观点众数出现的次数最多,应该用众数描述该公司月工资的集中趋势A.嘉嘉更合理B.淇淇更合理C.两人都合理D.两人都不合理7.某班38名学生所穿校服尺码统计如下,则该班38名学生所穿校服尺码的中位数是()尺码(cm)150155160165170175180频数16812542 A.8B.12C.160cm D.165cm8.2023年4月23日是第28个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为86,88,90,94,则她的最后得分是()A.86分B.88分C.90分D.94分9.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是9环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定10.我市国庆假期每日平均最高气温情况如图所示,下列说法中错误的是()A .这组数据的极差是11B .这组数据中众数和中位数都是28C .最高气温为29℃D .最低气温为16℃ 二.填空题(共10小题)11.小明参加“强国有我”主题演讲比赛,其演讲形象、内容、效果三项的成绩分别是70分、90分、80分.若将三项得分依次按2:4:4的比例确定最终成绩,则小明的最终比赛成绩为 分.12.一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是 .13.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出红球的概率 .14.甲、乙两名同学5次立定跳远成绩的平均值都是2.42m ,方差分别是:S 甲2=0.04,S 乙2=0.13,这两名同学成绩比较稳定的是 (填“甲”或“乙”).15.中共中央、国务院印发的《关于全面加强新时代大中小学劳动教育的意见》指出:“把劳动教育纳入人才培养全过程,贯通大中小学各学段”.某校现随机对七年级的50名学生进行调查,结果显示有12名学生会做饭,若该校七年级共有300人,则会做饭的学生人数约为 .16.妈妈买了4个粽子,分别是2个红枣味和2个蛋黄味,小妍随意吃两个恰好都是蛋黄味的概率是 .17.已知某组数据方差为S 2=14[(2−x)2+(3−x)2+(3−x)2+(8−x)2],则x 的值为 .18.已知一个不透明的盒子里装有4个球,其中2个红球,2个黄球,这些球除颜色外其余均相同.现从中随机地摸出一个球,不放回,然后再从剩下的球中随机摸出一个球,则摸出的两个球恰好是一个红球和一个黄球的概率是 .19.甲乙两人做游戏,同时掷两枚相同的硬币,双方约定:同面朝上甲胜,异面朝上则乙胜,则这个游戏 .(选填“公平”或“不公平”)20.十月佳节将至,某班将举办“庆中秋,迎国庆”文艺汇演活动.现打算从班级的四位同学中(两名男同学和两名女同学)随机选取两名同学来当节目主持人,则选中一男一女的概率是.三.解答题(共5小题)21.在4张完全相同的卡片里写上1,1,2,3,将它们背面朝上.(1)若随机翻出一张卡片,求恰好翻出1的概率;(2)若随机翻出两张卡片,请用列表或画树状图等方法求取出的卡片至少有一张是1的概率.22.党的二十大报告再次将劳动教育同“德育、智育、体育、美育”放在同等重要的战略地位,明确了全面加强新时代大中小学劳动教育的重要性;为落实劳动教育,我校在暑假期间组织学生积极参与“劳动最光荣”活动,并设置了四个劳动项目:A.为家人做早饭,B.洗碗,C.打扫,D.洗衣服.要求每个学生必须选择一个自己最擅长的劳动项目,并要坚持整个暑假.为了解全校参加各项目的学生人数,学校随机抽取了部分学生进行调查,根据调查结果,绘制了两幅不完整的统计图,请根据所给信息,解答下列问题:(1)本次接受抽样调查的总人数是人;(2)请将上述两个统计图中缺失的部分补充完整;(3)该校参加活动的学生共2600人,请估计该校参加A项目的学生有人;(4)小雯同学在暑假中养成了很好的劳动习惯,妈妈决定奖励带她去看两场电影,已知新上映的四部电影《志愿军》《汪汪队》《孤注一掷》《我是哪吒2》(依次记为a,b,c,d)都深受大家喜爱,很难做出决定,于是将写有这四个编号的卡片(除序号和内容外,其余完全相同)背面朝上放置,洗匀放好,从中随机抽取两张卡片.请用列表或画树状图的方法,求抽到的两张卡片恰好是《志愿军》和《孤注一掷》的概率.23.甲、乙两名运动员在相同条件下6次射击成绩的折线统计图如图:平均数中位数众数甲的射击成绩8乙的射击成绩89(1)填表(单位:环)(2)计算甲、乙射击成绩的方差?(3)你认为哪名运动员的射击水平较好,请简述理由?24.人工智能是数字经济高质量发展的引擎,也是新一轮科技革命和产业变革的重要驱动.人工智能市场分为决策类人工智能,人工智能机器人,语音类人工智能,视觉类人工智能四大类型,将四个类型的图标依次制成A,B,C,D四张卡片(卡片背面完全相同),将四张卡片背面朝上洗匀放置在桌面上.(1)随机抽取一张,抽到决策类人工智能的卡片的概率为;(2)从中随机抽取一张,记录卡片的内容后放回洗匀,再随机抽取一张,请用列表或树状图的方法求抽取到的两张卡片内容一致的概率.25.某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成如图1所示的条形图.在求这20名学生每人植树量的平均数时,小明的分析如下.第一步:求平均数的公式是x=x1+x2+⋯+x nn;第二步:n=4,x1=4,x2=5,x3=6,x4=7;第三步:x=4+5+6+74=5.5(棵)(1)小明的分析是从哪一步开始出现错误的?(2)请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.。

中考数学复习《统计与概率》专项提升训练题-附答案

中考数学复习《统计与概率》专项提升训练题-附答案

中考数学复习《统计与概率》专项提升训练题-附答案学校:班级:姓名:考号:说明:共三大题,23小题,满分120分,作答时间120分钟.中考对接点统计常考频数分布图(表)、条形统计图、扇形统计图、折线统计图,利用各种统计量分析数据,样本估计总体;概率常考利用画树状图或列表的方法计算随机事件的概率,用频率估计概率一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)题号12345678910答案1.下列事件中适合采用抽样调查的是A.对乘坐飞机的乘客进行安检B.学校招聘教师,对应聘人员进行面试C.对神舟十四号太空飞船各零部件质量情况的检查D.对市面上某品牌奶粉质量情况的调查2.下列事件是必然事件的是A.小明中考模拟考时,数学成绩都是110分以上,则中考时,他的数学成绩必定在110分以上B.明天不会出太阳C.367人中至少有2人生日相同D.随意抛掷两枚质地均匀的骰子,两次朝上的数字之和等于13.某市教委高度重视安全教育,要求各级各类学校从认识安全警告标志入手开展安全教育活动.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是A.12B.13C.14D.164.数学老师在江西智慧作业中布置了8道题目,根据“作业归集”中学生的答题情况制作了如下统计表:答对题目数量/道5678人数419189根据表中数据,全班同学答对题目数量(单位:道)的中位数和众数分别是A.6, 6B.6, 7C.7, 7D.7, 65.关于事件与概率,下面表述不正确的是A.若P(A)=0,则A为不可能事件B.若A为不可能事件,则P(A)=0C.若A为必然事件,则P(A)=1D.若A为随件事件,则0≤P(A)≤16.小明在调查全班同学喜爱的电视节目时,若喜爱体育节目的同学占全班同学的30%,那么在制作扇形统计图时,“体育”节目对应扇形的圆心角的度数为A.30°B.108°C.54°D.120°7.如图,在6×6正方形网格中,任选一个白色的小正方形并涂黑,恰好能使图中黑色部分为轴对称图形的概率是A.533B.433C.111D.2338.已知在一个样本中,50个数据分别落在5个小组内,第一,二,三,五组数据分别为2,6,7,15,则第四小组的频数和频率分别为A.25,50%B.20,50%C.20,40%D.25,40%9.教育部规定,初中生每天的睡眠时间应为9个小时.小红同学记录了她一周的睡眠时间.并将统计结果绘制成如图所示的折线统计图,则小红这一周每天睡眠时间在9个小时以上(含9个小时)的有A.4天B.3天C.2天D.1天10.国庆期间,数学研究小组对游客前往山西凤凰山生态植物园的出行方式进行了随机抽样调查,将结果整理后绘制了如下两幅统计图(尚不完整).根据图中的信息,下列结论中错误的是A.本次抽样调查的样本容量是2000B.扇形统计图中的m为5C.若国庆期间去该地观光的游客有1万人,则选择自驾方式出行的大约有4500人D.样本中选择自驾方式出行的有1000人二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,一个游戏盘中,红、黄、蓝三个扇形的圆心角度数分别为45°,120°,195°,让转盘自由转动,指针停止后(指针指向分界线时重新转)在黄色区域的概率是.12.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差这几个统计量中,该鞋厂最关注的是.13.小明、小华两人进行飞镖比赛,已知他们每人十次投得的成绩如图所示,那么两人中成绩更稳定的是.14.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访100名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;①绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比;①整理采访记录并绘制空矿泉水瓶投放频数分布表.正确统计步骤的顺序应该是.15.如图,这是某旅游景区某周当日最高气温的折线统计图,则这7天的日最高气温的平均数为℃.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2小题,每小题5分,共10分)(1)已知数据3, 4, 5, 8, x的平均数为5,求这组数据的众数.(2)将2023,-22与π, 3.14159和√4, sin 60°六个数字分别写在六张卡片上,这些卡片除了数字外其他都相同,洗匀7后背面朝上放在桌面上,任取一张卡片,求卡片上面写的数字恰是无理数的概率.17.(本题8分)小明和小亮用如图所示的两个转盘(每个转盘被平均分成面积相等的扇形)做游戏:同时转动两个转盘(指针指向分界线时重新转),停止转动后,若指针所指两个区域的数字之差的绝对值为奇数,则小明胜;若指针所指两个区域的数字之差的绝对值为偶数,则小亮胜.这个游戏对双方公平吗?请你用列表法或树状图说明理由.18.(本题7分)甲、乙两位同学参加数学综合素质测试,各项成绩(单位:分)如下表:数与代数空间与图形统计与概率综合与实践学生甲93938990学生乙94929486(1)甲成绩的众数是;乙成绩的中位数是.(2)如果数与代数、空间与图形、统计与概率、综合与实践的成绩按4①3①1①2计算,那么甲、乙的数学综合素质成绩分别为多少分?19.(本题8分)某校九年级两个班各选派6名学生参加“垃圾分类知识竞赛”,各参赛选手的成绩如下(满分150分):九(1)班: 86, 91, 92, 92, 94, 96.九(2)班: 83, 89, 90, 90, 91, 97.(1)九(1)班参赛选手成绩的中位数是分,众数是分.(2)求九(2)班参赛选手成绩的方差.20.(本题8分)某商场国庆期间为促销特举办抽奖活动,规则如下:在不透明的袋子中有2个红球和3个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小颖只有一次摸球机会,那么小颖获得奖品的概率为.(2)如果小颖有两次摸球机会(摸出后不放回),求小颖获得2份奖品的概率.(请用“画树状图”或“列表”的方法写出分析过程)21.(本题8分)某校在七年级新生中举行了全员“防溺水”安全知识竞赛,竞赛题目共10题,每题10分.现从三个班中各随机抽取10名同学的成绩(单位:分).收集数据:1班: 90, 70, 80, 80, 80, 90, 80, 90, 80, 1002班: 60, 80, 80, 90, 90, 90, 60, 90, 100, 1003班: 80, 90, 60, 80, 80, 90, 80, 100, 100, 80整理、分析数据:班级平均数中位数众数1班m80802班84n903班848080根据以上信息回答下列问题:(1)填空:表格中m=,n=.(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩最好?请说明理由.(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,已知该校七年级新生共630人,试估计需要准备多少张奖状.22.(本题13分)为了加强对食堂的监控,有效保证饮食质量,某学校随机抽取部分学生开展满意度问卷调查,学生根据实际情况给食堂评分,并将本次调查结果制成如下统计表:评分/分45678910人数6183646a284比率3%9%18%23%31%b2%(1)本次问卷调查,学生所评分数的众数是分.(2)根据本次调查结果,若从本校随机抽选一名学生给食堂评分,估计他的评分不低于8分的概率是多少?(3)学校决定:本次调查综合得分8~10分为“满意”,给予食堂通报表扬; 6~8分为“比较满意”,提醒食堂进行改善; 0~6分为“不满意”,责令食堂限时整改.根据本次调查结果,判断学校可能对食堂采取何种措施,说明理由.(这里的0~6表示大于等于0同时小于6)23.(本题13分)某校文学社为了解学生课外阅读情况,对本校七年级的学生进行了课外阅读知识水平检测.为了解情况,从七年级学生中随机抽取部分女生和男生的测试成绩,这些学生的成绩记为x(0≤x≤100),将所得数据分为5组:A组: x<60.B组: 60≤x<70.C组: 70≤x<80.D组: 80≤x<90.E组: 90≤x≤100.学校对数据进行分析后,提供了如下信息:女生成绩在70≤x<80这一组的数据:70,72,72,72.男生成绩在60≤x<80这一组的数据:72,68,62,68,70.抽取的男生和女生测试成绩的平均数、中位数、众数如表所示:平均数中位数众数男生76a68女生7672b请根据以上信息解答下列问题:(1)a=, b=.(2)通过以上的数据分析,你认为(填“男”或“女”)学生的课外阅读整体水平较高,请说明理由:.(写出一条理由即可)(3)现在打算从得分为D组的学生中随机选出2名学生调查他们课外阅读的时间,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.参考答案1.D2.C3.A4.D5.D6.B7.B8.C9.C 10.D 提示:样本容量是700÷35%=2000,故A 正确; m %=1-45%-35%-15%=5% ①m=5,故B 正确;10000×45%=4500(人),故C 正确; 2000×45%=900(人),故D 错误.11.1312.众数 13.小明 14.①①① 15.20 16.解:(1)由题意,得3+4+5+8+x=5×5,解得x=5.所以数据3, 4, 5, 8, 5的众数是5. ......................................................................................................................... 5分 (2)①六个数字2023,-227,π, 3.14159,√4, sin 60°中,无理数只有π和sin 60°两个①P (卡片上面写的数字恰是无理数)=26=13. ........................................................................................................... 5分 17.解:这个游戏对双方公平. .................................................................................................................................. 2分 理由:画树状图如下:共有12种等可能的结果,其中指针所指两个区域的数字之差的绝对值为奇数的结果有6种,指针所指两个区域的数字之差的绝对值为偶数的结果有6种,①小明胜的概率=612=12,小亮胜的概率=612=12 ①小明胜的概率=小亮胜的概率①这个游戏对双方公平. ......................................................................................................................................... 8分 18.解:(1)93;93. ........................................................................................................................................................ 1分 (2)甲的数学综合素质成绩为93×4+93×3+89×1+90×24+3+1+2=92(分), (4)分 乙的数学综合素质成绩为94×4+92×3+94×1+86×24+3+1+2=91.8(分). ................................................................................ 7分19.解:(1)92; 92. ....................................................................................................................................................... 3分 (2)平均数为83+89+90×2+91+976=90(分),方差s 2=16[(83-90)2+(89-90)2+2×(90-90)2+(91-90)2+(97-90)2]=503. (8)分20.解:(1)25. ................................................................................................................................................................ 2分(2)列表如下:红1红2 黑1 黑2 黑3 红1(红1,红2)(红1,黑1) (红1,黑2) (红1,黑3) 红2 (红2,红1)(红2,黑1)(红2,黑2) (红2,黑3) 黑1 (黑1,红1) (黑1,红2)(黑1,黑2)(黑1,黑3) 黑2 (黑2,红1) (黑2,红2) (黑2,黑1)(黑2,黑3)黑3(黑3,红1)(黑3,红2)(黑3,黑1)(黑3,黑2)................................................................................................................................................................................. 6分 由上表可知,共有20种等可能的结果,其中两次摸到红球的结果数为2①P (两次获得奖品)=220=110. .................................................................................................................................... 8分 21.解:(1)84;90. ........................................................................................................................................................ 2分 (2)2班成绩最好.理由如下: 从平均数上看,三个班都一样;从中位数上看, 1班和3班都是80分, 2班是90分; 从众数上看, 1班和3班都是80分, 2班是90分.综上所述, 2班的成绩最好. ................................................................................................................................... 5分 (3)630×530=105(张).答:估计需要准备105张奖状. ............................................................................................................................... 8分 22.解:(1)8. ............................................................................................................................................................... 3分 (2)6÷3%=200a=200-6-18-36-46-28-4=62. ①由表格知评分不低于8分的频率是62+28+4200×100%=47% (或1-3%-9%-18%-23%=47%) ............................................................................................................................... 7分 ①评分不低于8分的概率是47%. ......................................................................................................................... 8分 (3)方法一:x =4×6+5×18+6×36+7×46+8×62+9×28+10×4200=7.2(分). ........................................................................... 11分①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分方法二: b=28200×100%=14%.x =4×3%+5×9%+6×18%+7×23%+8×31%+9×14%+10×2%=7.2(分). ........................................................... 11分 ①6<7.2<8①学校对食堂采取提醒改善的措施. ................................................................................................................... 13分 23.解:(1)71;72. ........................................................................................................................................................ 4分 提示:本次调查人数为(2+4)÷30%=20(名)B 组的人数为20×25%=5(人), B 组中的女生有5-3=2(名) 调查人数中,女生有1+2+4+1+2=10(人),男生有20-10=10(人)抽查人数中,10名男生成绩处在中间位置的两个数的平均数为71分,因此中位数是71,即a=71 在10名女生成绩中,出现次数最多的是72,因此众数是72,即b=72.(2)女; ....................................................................................................................................................................... 6分 女生成绩的中位数、众数均比男生的高. ............................................................................................................ 8分 (3)根据题意列表如下:男1男2 男3 女 男1男1男2男1男3 男1女 男2 男2男1男2男3男2女 男3 男3男1 男3男2男3女女女男1女男2女男3共有12种等可能的结果,其中1男1女的结果有6种所以恰好是1男1女的概率是612=12. ................................................................................................................... 13分。

2023年中考数学专题练——10统计和概率

2023年中考数学专题练——10统计和概率

2023年江苏省徐州市中考数学专题练——10统计和概率一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是()A.折线统计图B.扇形统计图C.频数分布直方图D.条形统计图2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是()A.平均数是8B.中位数8.5C.众数是8D.极差是4 3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为()成绩(分)20304050607090100频数(人)13398434 A.60分B.50分C.3人D.9人4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()165170145150一分钟跳绳个数(个)学生人数(名)5212A.平均数是160B.众数是165C.中位数是167.5D.方差是25.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为()A.6B.14C.5D.20 6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S甲2=8.6,S乙2=2.6,S丙2=5.0,S丁2=7.2.则这四位同学3次数学成绩最稳定的是()A.甲B.乙C.丙D.丁7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3 8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨;②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数.所有合理推断的序号是.三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A的概率.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A座票后,妈妈购得B座票的概率是;(2)求分给二人相邻座位(过道两侧座位C、D不算相邻)的概率.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A、B、C、D四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩.乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩.丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩.你认为较为合理的是方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图.①这组数据的中位数是分;②请求出这组数据的平均数;③小明的体质健康测试成绩是C等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A、B、C,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩.(1)甲同学选择A通道的概率是.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值为;(2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h的学生人数.16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品.(1)甲抽中冰墩墩的概率是;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题:(1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I.A课程成绩的频数分布直方图如图(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);II.A课程成绩在70≤x<80这一组的是:70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A,B两门课程成绩的平均数、中位数、众数如下表:课程平均数中位数众数A75.3m84.5B72.27083根据以上信息,回答下列问题:(1)m=;(2)在此次测试中,某学生的A课程成绩为75分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A”或“B”),理由是.(3)假设该年级学生都参加此次测试,估计A课程成绩超过平均分75.3分的人数.21.(2022•邳州市一模)一张圆桌旁设有4个座位,甲先坐在了如图所示的座位上,乙、丙2人等可能地坐到①、②、③中的2个座位上.(1)丙坐在②号座位的概率是;(2)用画树状图或列表的方法,求乙与丙不相邻而坐的概率.22.(2022•徐州一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共 人,补全条形统计图;(2)扇形统计图中“观看微课”对应的扇形圆心角等于 °;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数. 23.(2022•徐州一模)2022年徐州中考体育进行改革,男女考生各有七项可选,每位考生可以任选三项进行测试.某班对学生选项情况进行调查.随机抽取其中一组5名学生的报名情况如下表,这5名学生分别标记为A ,B ,C ,D ,E ,其中“√”表示选报该项. 选项 学生1分钟跳绳立定跳远 50米跑 抛实心球 50米游泳 1000米跑(男) 800米跑(女)引体向上(男) 仰卧起坐(女) A√√√B√√√C√√√D√√√E√√√(1)5名学生中选项是1分钟跳绳、立定跳远、掷实心球的概率是;(2)每组随机抽取选项是“50米游泳”的两人进行测试,用画树状图的方法求该组中抽到的恰好是A、C的概率.24.(2022•鼓楼区校级二模)为响应“双减”政策,提升学生的艺体素养,某校计划开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生,统计他们喜欢的课程(每人只能从中选一项),并将统计结果绘制成如下两幅统计图,请你结合图中信息解答问题.(1)请通过计算,将条形统计图补充完整;(2)本次抽样调查的样本容量是.(3)已知该校有2700名学生,请你根据样本估计全校学生中喜欢剪纸的有多少人?25.(2022•鼓楼区校级三模)为了了解某校七年级体育测试成绩,随机抽取该校七年级一班所有学生的体育测试成绩作为样本,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)直接写出该样本的容量,并将条形统计图补充完整;(2)在扇形统计图中,求出等级C对应的圆心角的度数;(3)若规定达到A、B等级为优秀,该校七年级共有学生850人,通过样本估计该校七年级参加体育测试达到优秀标准的学生有多少人?26.(2022•睢宁县模拟)受疫情影响,很多学校都纷纷响应了“停课不停学”的号召,开展线上教学活动.为了解学生上网课使用的设备类型,某校从“电脑、手机、电视、其它”四种类型的设备对学生做了一次抽样调查.调查结果显示,每个学生只选择了以上四种设备类型中的一种,现将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)若该校共有1500名学生,估计全校用手机上网课的学生共有名;(3)在上网课时,老师在A、B、C、D四位同学中随机抽取一名学生回答问题,求两次都抽取到同一名学生回答问题的概率.2023年江苏省徐州市中考数学专题练——10统计和概率参考答案与试题解析一.选择题(共8小题)1.(2022•泉山区校级三模)空气是混合物,为直观介绍空气中各成分的百分比,所采用的统计图最适合的是( ) A .折线统计图 B .扇形统计图 C .频数分布直方图D .条形统计图【解答】解:根据题意可知,为直观介绍空气中各成分的百分比,应选择扇形统计图. 故选:B .2.(2022•鼓楼区校级二模)在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9,对这组数据,下列说法正确的是( ) A .平均数是8B .中位数8.5C .众数是8D .极差是4【解答】解:A .平均数为7+10+9+8+7+96=813,故本选项不合题意;B .中位数为8+92=8.5,故本选项符合题意;C .众数是7和9,故本选项不合题意;D .极差为10﹣7=3,故本选项不合题意; 故选:B .3.(2022•贾汪区二模)某班共有35位同学参加了学校组织的数学解题大赛,如表为该班参赛成绩的频数分布表,该班数学成绩的众数为( ) 成绩(分) 20 30 40 50 60 70 90 100 频数(人) 13398 434 A .60分B .50分C .3人D .9人【解答】解:由表格中的数据可得, 该班数学成绩的众数为50分, 故选:B .4.(2022•徐州二模)某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( ) 一分钟跳绳个165170145150数(个) 学生人数(名) 5 2 1 2A .平均数是160B .众数是165C .中位数是167.5D .方差是2【解答】解:根据题目给出的数据,可得: 平均数为:x =110×(165×5+170×2+145×1+150×2)=161,故A 选项错误,不符合题意;众数是:165,故B 选项正确,符合题意; 中位数是:165+1652=165,故C 选项错误,不符合题意;方差是:S 2=110×[(165−161)2×5+(170﹣161)2×2+(145−161)2×1+(150−161)2×2]]=74,故D 选项错误,不符合题意; 故选:B .5.(2022•睢宁县模拟)一只不透明的袋子中装有若干个白球和红球,共计20个,这些球除颜色外都相同.将球搅匀,每次从中随机摸出一个球,记下颜色后放回、再搅匀、再摸球,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.3,由此可估计袋子中红球的个数约为( ) A .6B .14C .5D .20【解答】解:根据题意得: 20×(1﹣0.3) =20×0.7 =14(个),答:估计袋子中红球的个数约为14个; 故选:B .6.(2022•丰县二模)甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S 甲2=8.6,S 乙2=2.6,S 丙2=5.0,S 丁2=7.2.则这四位同学3次数学成绩最稳定的是( ) A .甲B .乙C .丙D .丁【解答】解:∵甲、乙、丙、丁四位同学3次数学成绩的平均分相同,又∵2.6<5.0<7.2<8.6,∴S乙2<S丙2<S丁2<S甲2.∴乙同学3次数学成绩最稳定.故选:B.7.(2022•徐州一模)“市长杯”足球赛中,七支参赛球队进球数如下(单位:个):3、5、2、2、3、1、3,这组数据的中位数和众数分别是()A.1.5,3B.2,2C.3,3D.2,3【解答】解:从小到大排列此数据为:1,2,2,3,3,3,5,处在第4位为中位数为3.数据3出现次数最多,所以众数为3,故选:C.8.(2022•邳州市一模)在一个不透明的盒子中有25个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球试验后,发现摸到白球的频率稳定于0.4,由此可估计盒子中白球的个数约为()A.6B.8C.10D.12【解答】解:根据题意得:25×0.4=10(个),答:估计盒子中白球的个数约为10个;故选:C.二.填空题(共2小题)9.(2022•丰县二模)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在白色区域的概率是12.【解答】解:如图,设每个小正方形的边长为1,整个图形的面积=4×4=16,白色区域的面积=12×16=8,P(白色区域)=816=12,故答案为:12.10.(2022•泉山区校级三模)下图是国家统计局发布的2021年2月至2022年2月北京居民消费价格涨跌幅情况折线图(注:2022年2月与2021年2月相比较成为同比,2022年2月与2022年1月相比较称为环比).根据图中信息,有下面四个推断:①2021年2月至2022年2月北京居民消费价格同比均上涨; ②2021年2月至2022年2月北京居民消费价格环比有涨有跌;③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的方差小于2021年9月至2022年1月同比数据的方差;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数小于2021年9月至2022年1月环比数据的平均数. 所有合理推断的序号是 ②③④ .【解答】解:①由折线统计图可得,2021年2月至2022年2月北京居民消费价格同比有涨有跌,故错误,不符合题意;②2021年2月至2022年2月北京居民消费价格环比有涨有跌,故正确,符合题意; ③在北京居民消费价格同比数据中,2021年4月至8月的同比数据的起伏小于2021年9月至2022年1月同比数据的起伏,故方差小,正确,符合题意;④在北京居民消费价格环比数据中,2021年4月至8月的环比数据的平均数为15×(0﹣0.1﹣0.4+0.7+0.1)=0.06,2021年9月至2022年1月环比数据的平均数为15×(﹣0.1+1.0+0﹣0.3+0.2)=0.16,故正确,符合题意, 故答案为:②③④. 三.解答题(共16小题)11.(2022•鼓楼区校级二模)为了更好防控疫情,某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士指导某社区预防疫情工作.用树状图(或列表法)求恰好选中医生甲和护士A 的概率. 【解答】解:画树状图如下:由树状图知,共有6种等可能情形,恰好选中医生甲和护士A 只有一种情形, 所以恰好选中医生甲和护士A 的概率为16.12.(2022•泉山区校级三模)小明的爸妈购买车票,高铁售票系统随机分配座位,若系统已将两人分配到同一排.窗过道窗(1)小明的爸爸购得A 座票后,妈妈购得B 座票的概率是14;(2)求分给二人相邻座位(过道两侧座位C 、D 不算相邻)的概率.【解答】解:(1)小明的爸爸购得A 座票后,妈妈购得B 座票的的概率是14;故答案为:14;(2)根据题意画树状图如下:共有20种等可能的结果,其中分给小明的爸妈二人相邻座位(过道两侧座位C 、D 不算相邻)的结果有6种,∴分给小明的爸妈二人相邻座位(过道两侧座位C ,D 不算相邻)的概率是620=310.13.(2022•丰县二模)某校将学生体质健康测试成绩分为A 、B 、C 、D 四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩. 乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩. 丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩. 你认为较为合理的是 丙 方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图. ①这组数据的中位数是 3 分; ②请求出这组数据的平均数;③小明的体质健康测试成绩是C 等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.【解答】解:(1)甲方案、乙方案选择样本比较片面,不能代表真实情况,抽样调查不具有广泛性和代表性; 具有代表性的方案是丙方案, 故答案为:丙;(2)①这120人的成绩从小到大排列处在中间位置的两个数都是3分,因此中位数是3分,故答案为:3; ②平均数为x =30×4+45×3+30×2+15×1120=2.75(分),答:这组数据的平均数是2.75分;③小明的体质健康测试成绩是C 等级对应分数2分,低于平均成绩,比中位数小,位于中下水平,小明的体质健康水平有待提高.建议小明加强体育锻炼,增强体质(结合数据,言之有理即可).14.(2022•丰县二模)如图,某公园门口的限行柱之间的三个通道分别记为A 、B 、C ,这三个通道宽度同,行人选择任意一个通道经过的可能性是相同的.周末甲、乙、丙、丁四位同学相约去该公园玩. (1)甲同学选择A 通道的概率是13.(2)用画树状图法或列表法,求甲、丙两位同学从同一通道经过的概率.【解答】解:(1)甲同学选择A 通道的概率是13;故答案为:13;(2)画树状图如下:共有9种等可能的情况数,甲、丙两位同学从同一通道经过的有3种, 则甲、丙两位同学从同一通道经过的概率是39=13.15.(2022•徐州二模)某学校为了了解本校1200名学生的课外阅读的情况,现从各年级随机抽取了部分学生对他们一周的课外阅读时间进行了调查,并绘制出如图的统计图①和图②,根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 40 ,图①中m 的值为 25 ; (2)根据所给数据,补全图②统计图;(3)根据样本数据,估计该校一周的课外阅读时间大于5h 的学生人数. 【解答】解:(1)本次接受随机抽样调查的学生人数为6÷15%=40(人), 图①中m 的值为1040×100=25,故答案为:40;25;(2)一周的课外阅读时间为7小时的人数为40×20%=8(人), 补全图②统计图如下:(3)估计该校一周的课外阅读时间大于5h的学生人数为1200×10+8+440=660(人).16.(2022•贾汪区二模)甲、乙两家书店规模相当,去年下半年的月盈利折线统计图如图所示.(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量B.A.中位数B.平均数C.众数D.方差②请分别求出反应这两家书店月盈利“平均水平”的统计量;(2)根据(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家书店经营状况较好?请简述理由.【解答】解:(1)①要评价这两家书店7~12月的月盈利的平均水平,应选择计算统计量平均数,故答案为:B;②x甲=16×(1+1.5+2.5+2.5+3.5+4)=2.5(万元),x乙=16×(2+3+2.5+1.5+1.5+1.5)=2(万元);(2)甲书店经营状况较好,甲书店营业额的平均值大于乙书店,且由折线统计图可知甲书店的营业额持续稳定增长,潜力大.17.(2022•徐州二模)某班准备三个奖品,有2个冰墩墩和1个雪容融,分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,甲先从中随机抽取一张卡片,不放回再由乙从中随机抽取一张卡片,由卡片所写内容来决定奖品. (1)甲抽中冰墩墩的概率是23;(2)试用列表的方法表示所有可能的结果,并求出甲和乙抽中相同奖品的概率. 【解答】解:(1)甲抽中冰墩墩的概率是23,故答案为:23;(2)把2个冰墩墩卡片分别记为A 、B ,1个雪容融卡片记为C , 列表如下:共有6种等可能的结果,其中甲和乙抽中相同奖品的结果有2种,即(A ,B )、(B 、A ), ∴甲和乙抽中相同奖品的概率为26=13.18.(2022•贾汪区二模)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校为加强学生自我防护意识,成立“防疫志愿者服务队”,设立三个“监督岗”:①教学楼监督岗,②阅览室监督岗,③就餐监督岗,小宇和小宁两位同学报名参加了志愿者服务工作,在不了解具体岗位的情况下,他们从序号①、②、③中随机填报了一个服务监督岗序号.(1)小宇填报“③”的概率为13;(2)用列表法或画树状图法,求小宇和小宁同时选到“③就餐监督岗”的概率.【解答】解:(1)小宇填报“③”的概率为13;故答案为:13;(2)画树状图为:共有9种等可能的结果,其中小宇和小宁同时选到“③就餐监督岗”的结果数有1种, ∴小宇和小宁同时选到“③就餐监督岗”的概率为19.19.(2022•泉山区校级三模)4月16日,神舟十三号载人飞船返回舱在东风着陆场成功着陆,中国“太空出差三人组”成员平安回到了祖国大地.星空浩瀚无限,探索永无止境,我们都是“追梦人”,为了庆祝我国航天事业的发展,某校举行航空航天作品展,为了解学生上交作品情况,随机调查了部分学生上交作品件数,根据调查结果,绘制了如下两幅不完整的统计图.请根据相关信息,解答下列问题: (1)补全两幅统计图;(2)求所抽取学生上交作品件数的众数与中位数;(3)求所抽取学生上交作品件数的平均数,若该校共有1200名学生,请估计上交的作品一共有多少件?【解答】解:(1)本次调查共抽取的学生有4÷10%=40(人).上交作品2件的人数为40﹣4﹣8﹣12﹣6=10(人). 上交作品2件的人数所占的百分比1040×100%=25%,补全两幅统计图如图:(2)所抽取学生上交作品件数的众数为3, 所抽取学生上交作品件数的中位数为2+22=2;(3)所抽取学生上交作品件数的平均数140×(4×0+8×1+10×2+12×3+6×4)=2.2,1200×2.2=2640(件),答:估计上交的作品一共有2640件.20.(2022•邳州市一模)某学校九年级共有320名学生.为了解该年级学生A ,B 两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.I .A 课程成绩的频数分布直方图如图(数据分成6组:40≤x <50,50≤x <60,60≤x <70,70≤x <80,80≤x <90,90≤x ≤100); II .A 课程成绩在70≤x <80这一组的是: 70 71 71 71 73 73.5 74 74 78 78.5 79 79 79 79.5Ⅲ.A ,B 两门课程成绩的平均数、中位数、众数如下表:课程 平均数 中位数 众数 A 75.3 m 84.5 B72.27083。

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。

解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。

然后计算红球的数量,即12只红球。

最后,将红球的数量除以总球数,即12/20=0.6。

答案:取出红球的概率为0.6。

2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。

解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。

因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。

答案:取出红球后再取出黄球的概率为1/6。

3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。

解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。

然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。

接着计算出选出3本数学书的情况数,即C(6, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。

解析:计算取出红球的情况数,即C(10, 3)。

然后计算取出蓝球的情况数,即C(10, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。

答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。

5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。

中考统计与概率专题复习题及答案

中考统计与概率专题复习题及答案

中考统计与概率专题复习题及答案热点8 统计与概率本次考试时间为100分钟,总分为100分。

一、选择题(共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个是符合题目要求的)1.已知一组数据5,5,6,x,7,7,8的平均数为6,则这组数据的中位数是()A。

7B。

6C。

5.5D。

52.检测1000名学生的身高,从中抽出50名学生测量。

在这个问题中,50名学生的身高是()A。

个体B。

总体C。

样本容量D。

总体的样本3.下列事件为必然事件的是()A。

买一张电影票,座位号是偶数;B。

抛掷一枚普通的正方体骰子1点朝上;C。

百米短跑比赛,一定产生第一名;D。

明天会下雨。

4.一次抽奖活动中,印发的奖券有10,000张,其中特等奖2张,一等奖20张,二等奖98张,三等奖200张,鼓励奖680张。

那么第一位抽奖者(仅买一张奖券)中奖的概率为()A。

1111B。

5000C。

1050D。

505.某校把学生的笔试、实践能力、成长记录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀。

甲、乙、丙三人的各项成绩(单位:分)如下表。

学期总评成绩优秀的是()笔试 | 实践能力 | 成长记录 |甲。

| 90.| 83.| 95.|乙。

| 88.| 90.| 95.|丙。

| 90.| 88.| 90.|A。

甲B。

乙、丙C。

甲、乙D。

甲、丙6.甲、乙两个样本的方差分别是s甲^2=6.06,s乙^2=14.31.由此可反映出()A。

样本甲的波动比样本乙的波动大;B。

样本甲的波动比样本乙的波动小;C。

样本甲的波动与样本乙的波动大小一样;D。

样本甲和样本乙的波动大小关系不确定。

7.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差为3.那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是()A。

2,1B。

2,3C。

4,1D。

4,38.某班一次数学测验,其成绩统计如下表:分数 | 50.| 60.| 70.| 80.| 90.| 100 |人数 | 16.| 12.| 11.| 15.| 5.| 5.|则这个班此次测验的众数为()A。

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)

中考数学复习之统计与概率综合训练题(含20大题)1.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.2.某电视台为了解观众对“谍战”题材电视剧的喜爱情况,随机抽取某社区部分电视观众,进行问卷调查,整理绘制了如下不完整的条形统计图和扇形统计图:请根据以上信息,解答下列问题:(1)在这次接受调查的女观众中,表示“不喜欢”的女观众所占的百分比是多少?(2)求这次调查的男观众人数,并补全条形统计图.(3)若该社区有男观众约1000人,估计该社区男观众喜欢看“谍战”题材电视剧的约有多少人?3.一所中学,为了让学生了解环保知识,增强的环保意识,特地举行了一次“护家乡”的环保知识竞赛,共有900名学生参加这次竞赛.为了解本次竞赛的情况,从中抽取了部分学生的成绩进行统计.分组频数频率50.5~60.540.0860.5~70.580.1670.5~80.5100.2080.5~90.5160.3290.5~100合计请根据上表和图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)在该问题中,样本容量是;(4)全体参赛学生中,竞赛成绩的中位数落在哪个组内?(5)若成绩在90分以上(不含90分)可以获奖,在全校学生的试卷中任抽取一张,获奖的概率是多大?4.孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为A1级、A2级、A3级,其中A1级最好,A3级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到A1级的可能性大?为什么?5.“时裳”服装店现有A、B、C三种品牌的衣服和D、E两种品牌的裤子,温馨家现要从服装店选购一种品牌的衣服和一种品牌的裤子.(1)写出所有选购方案(利用树状图或列表方法表示)(2)如果(1)中各种选购方案被选中的可能性相同,那么A品牌衣服被选中的概率是多少?6.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.7.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y=6x图象上的概率.8.宣传交通安全知识,争做安全小卫士.某校进行“交通安全知识”宣传培训后进行了一次测试.学生考分按标准划分为不合格、合格、良好、优秀四个等级,为了解全校的考试情况,对在校的学生随机抽样调查,得到图(1)的条形统计图,请结合统计图回答下列问题:(1)该校抽样调查的学生人数为名;抽样中考生分数的中位数所在等级是;(2)抽样中不及格的人数是多少?占被调查人数的百分比是多少?(3)若已知该校九年级有学生500名,图(2)是各年级人数占全校人数百分比的扇形图(图中圆心角被等分),请你估计全校优良(良好与优秀)的人数约有多少人?9.小明和小刚用如图所示的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由.若不公平,如何修改规则才能使游戏对双方公平?10.“学生坐校车上学”的安全问题越来越受到社会的关注,某校利用周末假期,随机抽查了本校若干名学生和部分家长对“初中生坐校车上学”现象的看法,统计整理制作了如下的统计图,请回答下列问题:(1)这次抽查的家长总人数为;(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生恰好抽到持“无所谓”态度的概率是.11.“你记得父母的生日吗?”这是我校在九年级学生中开展主题为“感恩”教育时设置的一个问题,有以下四个选项:A.父母生日都记得;B.只记得母亲生日;C.只记得父亲生日;D.父母生日都不记得.在随机调查了(1)班和(2)班各50名学生后,根据相关数据绘出如图所示的统计图.(1)补全频数分布直方图;(2)据此推算,九年级共900名学生中,“父母生日都不记得”的学生共多少名?(3)若两个班中“只记得母亲生日”的学生占22%,则(2)班“只记得母亲生日”的学生所占百分比是多少?12.某中学开展菜市场菜价调查活动,以锻炼同学们的生活能力.调查一共连续7天,每天调查3次,第一次8:00由各班的A小组调查,第二次13:00由B小组调查,第三次17:00由C小组调查.调查完后分析当天的菜价波动情况,七天调查结束后整理数据,就得出了菜价最便宜的某一时段.下面是同学们的一些调查情况,请你帮忙分析数据:第1天菜价调查情况(单位:元/千克)第2﹣5天平均菜价(单位:元/千克)(1)根据“第2﹣5天平均菜价”图来分析:哪种蔬果价格最便宜?(2)从第一天的调查情况来看,哪种蔬果的价格波动最小?请通过计算说明.(3)计算苹果、白菜、土豆在1﹣5天的平均菜价.(4)根据上面两个图来分析:在3﹣5天中的哪一天的哪一时段购买苹果最省钱?13.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?14.某班50名同学进行数学测验,将所得成绩(得分取整数,最低分为50分)进行整理后分成五组,并绘成统计图(如图).请结合统计图提供的信息,回答下列问题.(1)请将该统计图补充完整;(2)请你写出从图中获得的三个以上的信息;(3)老师随机抽取一份试卷来分析,抽取到哪一组学生试卷的可能性较大?15.2006年,某校三个年级的初中在校学生共有796名,学生的出生月份统计如下,根据图中数据回答下列问题:(1)出生人数超过60人的月份有哪些?(2)出生人数最多的是几月?(3)在这些学生中至少有两人生日在10月5日是不可能或可能,还是必然的?(4)如果你随机地遇到这些学生中的一位,那么这位学生生日在哪一个月概率最小?16.为了给某区初一新生订做校服,某服装加工厂随机选取部分新生,对其身高情况进行调查,图甲、图乙是由统计结果绘制成的不完整的统计图.根据图中信息解答下列问题:(1)一共调查了名学生;(2)在被调查的学生中,身高在1.55~1.65m的有人,在1.75m及以上的有人;(3)在被调查的学生中,身高在1.65~1.75m的学生占被调查人数的%,在1.75m 及以上的学生占被调查人数的%;(4)如果今年该区初一新生有3200人,请你估计身高在1.65~1.75m的学生有多少人.17.某开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数/名1423223每人月工资/元2100084002025220018001600950请你根据上述内容,解答下列问题:(1)该公司“高级技工”有人;(2)该公司的工资极差是元;(3)小张到这家公司应聘普通工作人员,咨询过程中得到两个答案,你认为用哪个数据向小张介绍员工的月工资实际水平更合理些?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后算一算余下的40人的平均工资,说说你的看法.18.为了解全校学生上学的交通方式,该校九年级(8)班的5名同学联合设计了一份调查问卷,对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E(其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是人,并把条形统计图补充完整;(2)在扇形统计图中,“步行”的人数所占的百分比是,“其他方式”所在扇形的圆心角度数是;(3)已知这5名同学中有2名女同学,要从中选两名同学汇报调查结果.请你用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.19.有三张卡片(形状、大小、质地都相同),正面分别写上整式x+1,x,3.将这三张卡片背面向上洗匀,从中随机抽取一张卡片,再从剩下的卡片中随机抽取另一张、第一次抽取的卡片上的整式作为分子,第二次抽取的卡片上的整式作为分母.(1)请写出抽取两张卡片的所有等可能结果(用树状图或列表法求解);(2)试求抽取的两张卡片结果能组成分式的概率.20.初三学生小丽、小杰为了解本校初二学生每周上网的时间,各自在本校进行了抽样调查.小丽调查了初二电脑爱好者中40名学生每周上网的时间,算得这些学生平均每周上网时间为2.5小时;小杰从全体320名初二学生名单中随机抽取了40名学生,调查了他们每周上网的时间,算得这些学生平均每周上网时间为1.2小时.小丽与小杰整理各自样本数据,如下表所示.时间段(小时/周)小丽抽样人数小杰抽样人数0~16221~210102~31663~482(每组可含最低值,不含最高值)请根据上述信息,回答下列问题:(1)你认为哪位学生抽取的样本具有代表性?答:;估计该校全体初二学生平均每周上网时间为小时;(2)根据具有代表性的样本,把上图中的频数分布直方图补画完整;(3)在具有代表性的样本中,中位数所在的时间段是小时/周;(4)专家建议每周上网2小时以上(含2小时)的同学应适当减少上网的时间,根据具有代表性的样本估计,该校全体初二学生中有多少名同学应适当减少上网的时间?。

历年中考统计与概率题专题练习

历年中考统计与概率题专题练习

历年中考统计与概率题专题练习1.某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求a的值;(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名有1人的上网时间在8~10小时。

学生中随机选取2人,其中至少..2.广州市努力改善空气质量,近年来空气质量明显好转。

根据广州市环境保护局公布的2006-2010这五年各年的全年空气质量优良的天数。

绘制拆线图如图7,根据图中的信息回答:(1)、这五年的全年空气质量优良的天数的中位数是.极差是.(2)、这五年的全年空气质量优良的天数与它前一年相比较,增加最多的是年。

(填写年份)(3)、求这五年的全年空气质量优良的天数的平均数。

3.甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为31-,乙袋中的三张卡片上所、-7、标的数值分别为,-先从甲袋中随机取出一张卡片,用x表示取出、612、的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值。

把x、y分别作为点A的横坐标与纵坐标。

(1)用适当的方法写出点A(x、y)的所有情况。

(2)求点A落在第三象限的概率。

4.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:111061591613120828101761375731210711368141512(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.5.某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10(1)求a,b的值;合计50 1(2)若将各自选项的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取2名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.6.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?。

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

历年中考统计与概率题专题练习1.某中学九年级(3)班50名学生参加平均每周上网时间的调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:
(1)求a的值;
(2)用列举法求以下事件的概率:从上网时间在6~10小时的5名学生中随机选取2人,其中至少
..有1人的上网时间在8~10小时。

2.广州市努力改善空气质量,近年来空气质量明显好转。

根据广州市环境保护局公布的2006-2010这五年各年的全
年空气质量优良的天数。

绘制拆线图如图7,根据图中的
信息回答:
(1)、这五年的全年空气质量优良的天数的中位数
是.极差是.
(2)、这五年的全年空气质量优良的天数与它前一年相比
较,增加最多的是年。

(填写年份)
(3)、求这五年的全年空气质量优良的天数的平均数。

3.甲已两个袋中均装有三张除所标的数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为
、6
1
2

-先从甲袋中随机取出一张卡片,用x表示取出的1
-,乙袋中的三张卡片上所标的数值分别为,
7、
3
、-
卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值。

把x、y分别作为点A 的横坐标与纵坐标。

(1)用适当的方法写出点A(x、y)的所有情况。

(2)求点A落在第三象限的概率。

4.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:
11 10 6 15 9 16 13 12 0 8
2 8 10 17 6 1
3 7 5 7 3
12 10 7 11 3 6 8 14 15 12
(1)求样本数据中为A级的频率;
(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;
(3)从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率. 5.某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:
(1)求a ,b 的值; (2)若将各自选项的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的
圆心角的度数;
(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的
训练效果,
从这5名学生中随机抽取2名学生进行推铅球测试,求所抽取的
两名学生中至多.. 有一名女生的概率.
6.4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?
自选项目 人数 频率 立定跳远 9 0.18 三级蛙跳 12 一分钟跳绳 8 0.16 投掷实心球 b 0.32 推铅球 5 0.10 合计
50
1。

相关文档
最新文档