三角函数图像的平移变换练习题
解三角函数的平移与伸缩的练习题

解三角函数的平移与伸缩的练习题三角函数是数学中重要的概念,它们在物理、工程、计算机图形等领域起着重要的作用。
本文将提供一些练习题,帮助读者巩固和理解三角函数的平移与伸缩。
一、平移平移是指将函数图像沿着横轴或纵轴方向上移动一定距离。
对于一般的三角函数,可通过函数表达式中的参数来实现平移。
下面是一道练习题:练习题1:已知函数y = sin(x)的图像,将其向左平移π/2个单位,并画出平移后的图像。
解答:将函数向左平移π/2个单位,意味着函数图像中的所有点的横坐标都减去π/2。
因此,平移后的函数可以表示为y = sin(x - π/2)。
接下来我们画出平移后的图像。
(插入图像,图像为sin(x)的图像向左平移π/2个单位)从绘制的图像我们可以看出,平移后的图像与原图像相比,整体向左平移了π/2个单位。
这是因为我们将函数中的每个x都减去了π/2。
二、伸缩伸缩是指将函数图像在横轴或纵轴方向上进行拉伸或压缩。
对于一般的三角函数,可以通过参数来实现伸缩。
下面是一道练习题:练习题2:已知函数y = cos(x)的图像,将其在纵轴方向上进行伸缩,并画出伸缩后的图像。
解答:将函数在纵轴方向上进行伸缩,可以通过在函数表达式中引入一个参数来实现。
我们可以将函数表示为y = a*cos(x),其中a表示伸缩的比例因子。
如果a>1,代表向上拉伸;如果0<a<1,代表向下压缩。
接下来我们画出伸缩后的图像。
(插入图像,图像为cos(x)的图像在纵轴方向上拉伸/压缩后的图像)从绘制的图像可以观察到,伸缩后的图像相对于原图像在纵轴方向上进行了拉伸或压缩。
伸缩因子a的大小决定了图像的变化程度。
三、综合练习题练习题3:已知函数y = 2sin(3x - π/4),请画出该函数的图像,并描述它的平移和伸缩特点。
解答:函数y = 2sin(3x - π/4)可以看做是函数y = sin(x)的平移和伸缩的组合。
根据函数的形式,可以得到以下推断:- 函数图像在横轴方向上向右平移π/12个单位(3x中的系数3意味着横坐标放大了3倍,因此平移距离也放大3倍);- 函数图像在纵轴方向上进行了拉伸,拉伸因子为2(系数2的作用)。
高一数学三角函数图象变换试题答案及解析

高一数学三角函数图象变换试题答案及解析1.为了得到函数的图像,只需将函数的图像( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】先用诱导公式将化为= =,由平移知识知,只需将函数的图像向右平移个长度单位,故选B.考点:诱导公式;平移变换2.为了得到函数的图像,只需把函数的图像()A.向右平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向左平移个长度单位【答案】B【解析】=sin2(x-),为了得到函数的图象,只需将的图象向右平移个单位即可,故选A.【考点】函数y=Asin(ωx+φ)的图象变换.三角函数图像的平移.3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A.B.C.D.【答案】C【解析】将的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得函数,再将所得的图象向左平移个单位,得函数,即故选C.【考点】函数y=Asin(ωx+φ)的图象变换.4.函数(其中,的图象如图所示,为了得到的图象,可以将的图象A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度【答案】A【解析】由图知,,∴,∴.又由图可得,∵,∴,∴,∴为了得到的图象,可以将的图象向右平移个单位长度,故选A.【考点】1、三角函数的图象;2、函数的图象变换.5.要得到函数y=cos()的图像,只需将y=sin的图像( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】本题考查三角函数的图像平移问题,要注意将函数解析式变为,然后根据“左加右减”的口诀平移即可.【考点】三角函数图像平移.6.函数的图象向右平移个单位后与函数的图象重合.则的解析式是( )A.B.C.D.【答案】C【解析】根据反方向知:的图像向左平移个单位后得到,根据左加右减的平移原理得到:,故选C.【考点】的图像变换7.函数的最小正周期为()A.B.C.D.【答案】【解析】由三角函数的最小正周期得.解决这类问题,须将函数化为形式,在代时,必须注意取的绝对值,因为是求最小正周期.【考点】三角函数的周期计算8.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为()A.B.C.0D.【答案】B【解析】根据题意,由于将函数的图象沿轴向左平移个单位后,得到,故可知的一个可能取值为,故答案为B.【考点】三角函数的图象变换点评:主要是考查了三角函数的图象变换的运用,属于基础题。
关于三角函数图像的平移变换

三角函数图像的平移、变换一、 引入以简单函数为例,解说“左加右减、上加下减” 。
讲清横移的实质是把全部x 替代为 x+a ;二、三角函数图像的平移之历年高考真题1、为了获得函数y sin(2 x) 的图像,只需把函数 y sin(2 x) 的图像( A )向左平移个长度单364位( B )向右平移 个长度单位4( C )向左平移个长度单位( D )向右平移个长度单位22【答案】 B2、将函数 ysin x 的图像上全部的点向右平行挪动个单位长度, 再把所得各点的横坐标伸长到本来的102 倍(纵坐标不变) ,所得图像的函数分析式是( A ) ysin(2 x ) (B ) ysin(2 x)sin( 1x10sin( 1x 5 ( C ) y) ( D ) y )2102 20分析:将函数 y sin x 的图像上全部的点向右平行挪动个单位长度, 所得函数图象的分析式为 y = sin( x10-)再把所得各点的横坐标伸长到本来的 2 倍(纵坐标不变) ,所得图像的函数分析式是10y sin( 1x) . 【答案】 C 210以本题为例,解说横向变换的实质也是替代。
可发问:上述步骤反演,结果怎样?3、( 2010 天津文)( 8)右图是函数 y Asin ( x+ )( xR )在区间 - 5上的图象,为了获得这个函数的图象,只,6 6要将 y sin x ( x R )的图象上全部的点(A) 向左平移 个单位长度,再把所得各点的横坐标缩短到原3来的 1倍,纵坐标不变2(B) 向左平移个单位长度, 再把所得各点的横坐标伸长到原3来的 2 倍,纵坐标不变(C) 向左平移个单位长度,再把所得各点的横坐标缩短到本来的1倍,纵坐标不变621【答案】 A【分析】本题主要考察三角函数的图像与图像变换的基础知识,属于中等题。
由图像可知函数的周期为,振幅为1,因此函数的表达式能够是y=sin(2x+ ).代入( - , 0)可得的6一个值为,故图像中函数的一个表达式是y=sin(2x+ ),即 y=sin2(x+ ),因此只需将 y=sinx ( x∈ R)3 3 6 1倍,纵坐标不变。
三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换一、单选题(共8道,每道12分)1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移个单位,沿y轴向下平移1个单位,得到函数,则y =f(x)的表达式时( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则的最小值是( )A.2B.3C.4D.5答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换4.已知函数的最小正周期为,将的图象向左平移个单位长度,所得图象关于y轴对称,则的一个值是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换5.偶函数的图象向右平移个单位得到的图象关于原点对称,则的值可以是( )A.1B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换6.已知函数的周期为π,若将其图象沿x轴向右平移a个单位(a >0),所得图象关于原点对称,则实数a的最小值是( )A.πB.C. D.答案:D解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.函数的图象如图所示,为了得到的图象,则只要将f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。
三角函数的图像的变换

三角函数的图像的变换1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A.B.C.D.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为.13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.三角函数的图像的变换参考答案与试题解析一.选择题(共8小题)1.已知函数f(x)=sin(2x﹣),则要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:g(x)=sin2x=sin[2(x+)﹣],要得到函数g(x)=sin2x的图象,只需将函数f(x)的图象向左平移个单位即可,故选:C.2.将函数y=sin4x的图象向左平移个单位,得到y=sin(4x+φ)的图象,则φ等于()A. B. C.D.【解答】解:函数y=sin4x的图象向左平移个单位,得到的图象,就是y=sin(4x+φ)的图象,故故选:C.3.将函数y=2cos2x的图象向左平移个单位长度,则平移后新函数图象的对称轴方程为()A.x=﹣+(k∈Z)B.x=﹣+(k∈Z)C.x=+(k∈Z)D.x=+(k∈Z)【解答】解:函数y=2cos2x的图象向左平移个单位长度,可得y=2cos2(x+)=2cos(2x+),由余弦函数的性质:可得2x+=kπ,∴x=,k∈Z.故选:A.4.将函数f(x)=sin2x+cos2x的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,则g(x)图象的一个对称中心是()A.(,0)B.(,0)C.(﹣,0)D.(,0)【解答】解:将函数f(x)=sin2x+cos2x=2(sin2x+sin2x)=2sin(2x+)图象上所有点向右平移个单位长度,得到函数g (x)=2sin2x的图象,令2x=kπ,求得x=,k∈Z,令k=1,可得g(x)图象的一个对称中心为(,0),故选:D.5.函数g(x)的图象是函数f(x)=sin2x﹣cos2x的图象向右平移个单位而得到的,则函数g(x)的图象的对称轴可以为()A.直线x=B.直线x=C.直线x=D.直线x=【解答】解:∵f(x)=sin2x﹣cos2x=2sin(2x﹣),∴向右平移个单位而得到g(x)=2sin[2(x﹣)﹣]=﹣2cos2x,∴令2x=kπ,k∈Z,可解得x=,k∈Z,k=1时,可得x=,故选:C.6.将函数f(x)=sin(πx+)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把图象上所有的点向右平移1个单位,得到函数g(x)的图象,则函数g(x)的单调递减区间是()A.[2k﹣1,2k+2](k∈Z)B.[2k+1,2k+3](k∈Z)C.[4k+1,4k+3](k∈Z)D.[4k+2,4k+4](k∈Z)【解答】解:将函数f(x)=sin(+πx)=cosπx 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=cos(πx)图象;再把图象上所有的点向右平移1个单位,得到函数g(x)=cos[π(x﹣1)]═cos(πx﹣)=sin(πx)的图象.令2kπ+≤x≤2kπ+,求得4k+1≤x≤4k+3,k∈Z,可得函数g(x)的单调递减区间是[4k+1,4k+3](k∈Z,故选:C.7.已知f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,要得到y=f(x)的图象,只需把y=cos2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解答】解:∵f(x)=sin(ωx+)(ω>0)的图象与y=﹣1的图象的相邻两交点间的距离为π,∴f(x)=sin(ωx+)的周期T=π,又ω>0,T==π,∴ω=2;∴f(x)=sin(2x+).令g(x)=cos2x=sin(2x+),则g(x)=sin(2x+)g(x﹣)=sin[2(x﹣)+)]=sin(2x+)=f(x),∴要想得到f(x)=sin(2x+)的图象,只需将y=g(x)=cos2x=sin(2x+)的图象右平移个单位即可.故选:B.8.将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图象向左平移个单位得到函数g(x)的图象,在g(x)图象的所有对称轴中,离原点最近的对称轴方程为()A.B.C.D.【解答】解:将函数图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到y=2sin(4x+),再将所得图象向左平移个单位得到函数g(x)的图象,得到g(x)=2sin[4(x+)+]=2sin(4x+),由4x+=+kπ,k∈Z,得x=kπ﹣,k∈Z,当k=0时,离原点最近的对称轴方程为x=﹣,故选:A.二.填空题(共4小题)9.把函数y=sin2x的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为y=cosx.【解答】解:把函数y=sin2x的图象向左平移个单位长度,得,即y=cos2x的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx的图象;故答案为:y=cosx.10.已知ω>0,0<φ<π,直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,则φ=.【解答】解:因为直线x=和x=是函数f(x)=sin(ωx+φ)图象的两条相邻的对称轴,所以T=2×(﹣)=2π.所以ω=1,所以f(x)=sin(x+φ),故+φ=+kπ,k∈Z,所以φ=+kπ,k∈Z,又因为0<φ<π,所以φ=,故答案为:11.把函数的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为.【解答】解:把函数的图象向右平移φ个单位可得函数y==的图象,若所得的图象正好关于y轴对称,则=+kπ,k∈Z,解得:φ=+kπ,k∈Z,当k=1时,φ的最小正值为;故答案为:.12.已知函数f(x)=sin(ωx+φ)(ω>0),若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移个单位所得的图象重合,则ω的最小值为4.【解答】解:函数f(x)=sin(ωx+φ)(ω>0),把f(x)的图象向左平移个单位所得的图象为y=sin[ω(x+)+φ]=sin(ωx++φ),把f(x)的图象向右平移个单位所得的图象为y=sin[ω(x﹣)+φ]=sin(ωx﹣+φ),根据题意可得,y=sin(ωx++φ)和y=sin(ωx﹣+φ)的图象重合,故+φ=2kπ﹣+φ,求得ω=4k,故ω的最小值为4,故答案为:4.三.解答题(共4小题)13.已知函数f(x)=sin(2x+)+cos(2x﹣),x∈R.(1)求f(x)的最小正周期;(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)的图象,求函数y=g(x)的单调递增区间.【解答】解:(1)∵函数f(x)=sin(2x+)+cos(2x﹣)=sin2x•cos+cos2xsin+cos2xcos+sin2xsin=sin2x+cos2x=2sin(2x+),∴f(x)的最小正周期为=π.(2)将y=f(x)图象上所有点向左平行移动个单位长度,得到y=g(x)=2sin(2x++)=2cos(2x+)的图象,令2kπ﹣π≤2x+≤2kπ,求得kπ﹣≤x≤kπ﹣,可得函数g(x)的增区间为[kπ﹣,kπ﹣],k∈Z.14.设f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g()的值.【解答】解:(Ⅰ)∵f(x)=2sin(π﹣x)sinx﹣(sinx﹣cosx)2 =2sin2x﹣1+sin2x=2•﹣1+sin2x=sin2x﹣cos2x+﹣1=2sin(2x﹣)+﹣1,令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数的增区间为[kπ﹣,kπ+],k∈Z.(Ⅱ)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),可得y=2sin(x﹣)+﹣1的图象;再把得到的图象向左平移个单位,得到函数y=g(x)=2sinx+﹣1的图象,∴g()=2sin+﹣1=.15.已知函数f (x )=sin(2x+)+cos(2x+)+2sin x cos x.(Ⅰ)求函数f (x)图象的对称轴方程;(Ⅱ)将函数y=f (x)的图象向右平移个单位,再将所得图象上各点的横坐标伸长为原来的4 倍,纵坐标不变,得到函数y=g (x)的图象,求y=g (x)在[,2π]上的值域.【解答】解:(Ⅰ)∵f (x )=sin(2x+)+cos(2x+)+2sinxcosx=sin2x+cos2x+cos2x﹣sin2x+sin2x=cos2x+sin2x=2sin(2x+),∴令2x+=kπ+,k∈Z,解得函数f (x)图象的对称轴方程:x=+,k∈Z,(Ⅱ)将函数y=f (x)的图象向右平移个单位,可得函数解析式为:y=2sin[2(x﹣)+]=2sin (2x+),再将所得图象上各点的横坐标伸长为原来的 4 倍,纵坐标不变,得到函数解析式为:y=g (x)=2sin (+),∵x∈[,2π],∴+∈[,],可得:sin(+)∈[﹣,1],∴g (x)=2sin(+)∈[﹣1,2].16.已知函数f(x)=1+2sinxcosx﹣2sin2x,x∈R.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若把f(x)向右平移个单位得到函数g(x),求g(x)在区间[﹣,0]上的最小值和最大值.【解答】解:(Ⅰ)∵函数f(x)=1+2sinxcosx﹣2sin2x=sin2x+cos2x=2sin(2x+),(Ⅰ)令2kπ﹣≤2x+≤2kπ+,求得kπ﹣≤x≤kπ+,可得函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z;令2kπ+≤2x+≤2kπ+,求得kπ+≤x≤kπ+,可得函数f(x)的单调减区间为[kπ+,kπ+],k∈Z.(Ⅱ)若把函数f(x)的图象向右平移个单位得到函数g(x)=2sin[2(x﹣)+]=2sin(2x﹣)的图象,∵x∈[﹣,0],∴2x﹣∈[﹣,﹣],∴sin(2x﹣)∈[﹣1,],∴g(x)=2sin(2x﹣)∈[﹣2,1].故g(x)在区间上的最小值为﹣2,最大值为1.。
三角函数的平移及伸缩变换(含答案)

三角函数的平移及伸缩变换(含答案)三角函数的平移及伸缩变换一、单选题(共8道,每道12分)1.将函数的图象上所有点的纵坐标不变,横坐标缩小到原来的,再把图象上各点向左平移个单位长度,则所得的图象的解析式是()A.B.C.答案:C解题思路:D.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 2.已知函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,然后再将整个图象沿x轴向左平移f(x)的表达式时()个单位,沿y轴向下平移1个单位,得到函数,则yA.B.C.D.解题思路:试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换 3.已知函数,若f(x)的图象向左平移个单位所得的图象与f(x)的图象向右平移A.2B.3C.4D.5答案:C解题思绪:个单位所得的图象重合,则的最小值是()左平移的最小正周期为,将的图象向个单位长度,所得图象关于y轴对称,则的一个值是()A.B.C.D.答案:D解题思路:的图象关于原点对称,则A.1B.2C.3D.4答案:B解题思路:的值可以是()的图象向右平移个单位得到C.D.答案:D试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换7.函数的图象如图所示。
的图像,则只需将f(x)的图像()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度答案:C解题思路:为了得到试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换8.将函数的图象向左平移个单位,平移后的图象如图所示,则平移后的图象所对应函数的解析式是()A.B.答案:C解题思路:D.试题难度:三颗星知识点:函数y=Asin(ωx+φ)的图象变换。
高三数学三角函数图象变换试题答案及解析

高三数学三角函数图象变换试题答案及解析1.要得到函数y=3sin(2x+)的图象,只需要将函数y=3cos2x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】A【解析】把函数y=3cos2x的图象向右平移个单位得到的图象相应的函数解析式是y=3cos2(x-)=3cos(2x-)=3sin(2x+),因此选A.2.将函数图象所有的点向右移动个单位长度,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为()A.B.C.D.【答案】C【解析】将函数图象所有的点向右移动个单位长度后所得图象的函数解析式为,再将所得各点的横坐标缩短到原来的倍(纵坐标不变),所得图象的函数解析式为.故C正确.【考点】三角函数的伸缩平移变换.3.为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象()A.向右平移个单位长度B.向左平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】∵函数y=sin(2x﹣)=sin[2(x﹣)],∴为了得到函数y=sin(2x﹣)的图象,可以将函数y=sin2x的图象向右平移个单位长度故选A.4.如果若干个函数的图象经过平移后能够重合,则称这些函数为“互为生成函数”给出下列函数;;;其中“互为生成函数”的是()A.①②B.①③C.③④【答案】B【解析】,向左平移个单位得到函数的图象,向上平移2个单位得到的图象,与中的振幅不同,所以选B.5.把函数y=cos2x+1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是【答案】B【解析】把函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:,向左平移1个单位长度得:,再向下平移1个单位长度得:.令x=0,得:;x=,得:;观察即得答案.6.设命题:函数的图象向左平移个单位长度得到的曲线关于轴对称;命题:函数在上是增函数.则下列判断错误的是()A.为假B.为真C.为假D.为真【答案】D【解析】命题p,函数的图像向左平移个单位长度得到的函数解析式为,因为不是偶函数,所以不关于y轴对称,即命题p 为假命题.命题q,如图作出的函数图像可以发现该函数在区间上是单调递减的,在区间是单调递增的,所以命题q也是假命题,根据真值表可得为假命题,所以D是错误的,故选D【考点】命题真假三角函数指数函数域图像变化真值表7.将函数的图象向右平移个单位,再向上平移1个单位后得到的函数对应的表达式为,则函数的表达式可以是A.B.C.D.【解析】由题意,选D.【考点】图象变换.8.已知向量(为常数且),函数在上的最大值为.(1)求实数的值;(2)把函数的图象向右平移个单位,可得函数的图象,若在上为增函数,求取最大值时的单调增区间.【答案】(1);(2).【解析】(1)把向量,(为常数且),代入函数整理,利用两角和的正弦函数化为,根据最值求实数的值;(2)由题意把函数的图象向右平移个单位,可得函数的图象,利用在上为增函数,就是周期,求得的最大值,从而求出单调增区间.试题解析:(1).因为函数在上的最大值为,所以故.(2)由(1)知:,把函数的图象向右平移个单位,可得函数.又在上为增函数的周期即,所以的最大值为,此时单调增区间为.【考点】1.平面向量数量积的运算;2.三角恒等变换;3.三角函数的最值;4.三角函数的单调性;4、函数的图象变换.9.已知函数,则要得到的图象,只需将函数的图象上所有的点()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】,根据左加右减的平移原理,所以应该向左平移个单位长度,故选A.【考点】的图像变换10.已知的图像与的图像的两个相邻交点间的距离为,要得到的图像,只须把的图像 ( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解析】由于函数的最大值为1,又函数的图像与的图像的两个相邻交点间的距离为,所以函数的周期为.所以.所以函数的解析式为.所以要得到函数只需要将向左平移各单位即可.故选A.【考点】1.三角函数的图像.2.三角函数图像的平移.3.三函数的诱导公式.11.已知函数f(x)=sin ωx·cos ωx+cos 2ωx-(ω>0),其最小正周期为.(1)求f(x)的解析式.(2)将函数f(x)的图象向右平移个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间上有且只有一个实数解,求实数k的取值范围.【答案】(1)sin(2)-<k≤或k=-1.【解析】(1)f(x)=sin ωx·cos ωx+cos 2ωx-=sin 2ωx+-=sin ,由题意知f(x)的最小正周期T=,T==.∴ω=2,∴f(x)=sin.(2)将f(x)的图象向右平移个单位后,得到y=sin 的图象,再将所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=sin 的图象.∴g(x)=sin ,∵0≤x≤,∴-≤2x-≤,g(x)+k=0在区间上有且只有一个实数解,即函数y=g(x)与y=-k在区间上有且只有一个交点,由正弦函数的图象可知-≤-k<或-k=1.∴-<k≤或k=-1.12.函数f(x)=A sin(ωx+φ)的部分图象如图所示,为了得到g(x)=cos2x的图象,则只要将f(x)的图象().A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A【解析】由图象可知A=1,,所以T=π,又T==π,所以ω=2,即f(x)=sin (2x+φ),又f=sin =sin =-1,所以+φ=+2kπ,k∈Z.即φ=+2kπ,k∈Z,又|φ|<,所以φ=,即f(x)=sin .因为g(x)=cos 2x=sin=sin ,所以直线将f(x)向左平移个单位长度即可得到g(x)的图象.13.已知函数(,c是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是,(1)求函数的解析式及其单调增区间;(2)在△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.【答案】(1),单调递增区间是;(2).【解析】(1)三角函数问题一般都要化为的一个三角函数的形式,然后才可利用正弦函数的性质解题,这个函数图象上相邻有最高点与最低点的横坐标之差的绝对值为半个周期,而周期,再加上最高(低)点在函数图象上,我们就可出这个函数的解析式了();(2)由,根据向量数量积定义我们可求出,那么三角形的另一内角的范围应该是,即函数中的范围是,然后我们把一个整体,得出,而正弦函数在时取值范围是,因此可求出的值域.试题解析:(1)∵,∴.∵和分别是函数图像上相邻的最高点和最低点,∴解得∴.由,解得.∴函数的单调递增区间是.(2)∵在中,,∴.∴,即.∴.当时,,考察正弦函数的图像,可知,.∴,即函数的取值范围是.【考点】(1)五点法与函数的图象;(2)三角函数在给定区间的值域.14.为了得到函数的图像,只需把函数的图像上所有的点()A.向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)C.向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)D.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)【答案】B【解析】这题考查函数图象的两个变换,平移变换,周期变换,当把函数图象上各点横坐标变为原来的,纵坐标不变,则得函数的图象,故本题选B.【考点】三角函数的图象变换.15.要得到函数y= sinx的图象,只需将函数的图象( )A.向右平移个单位B.向右平移个单位;C.向左平移个单位D.向左平移个单位;【答案】B【解析】首先函数化为.即由函数的图像向右平移可得函数的图像.所以选B.本校题要注意函数是要得到的函数.否则易做反了.【考点】1.正余弦函数的平移.2.关注诱导公式的变形.16.将函数的图象沿轴向左平移个单位后,得到一个偶函数的图象,则的一个可能取值为( )A.B.C.0D.【答案】B【解析】令,则,∵为偶函数,∴,∴,∴当时,,故的一个可能的值为.故选B.【考点】三角函数图像变化.17.要得到函数的图象,只需将函数的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【答案】A.【解析】,故只需将函数的图象向左平移个单位长度,即可得到函数的图象,故选A.【考点】三角函数的图像变换.18.把函数的图象按向量=(-,0)平移,所得曲线的一部分如图所示,则,的值分别是()A.1,B.2,-C.2,D.1,-【答案】B【解析】把函数的图象按向量=(-,0)平移,得.由图得函数的周期.又.选B.【考点】三角函数图象的变换.19.函数的最小正周期是,若其图象向右平移个单位后得到的函数为奇函数,则函数的图象( )A.关于点对称B.关于直线对称C.关于点对称D.关于直线对称【答案】D【解析】由函数的最小正周期是可知,,所以有,向右平移个单位后有是奇函数,所以,因为,所以.所以,关于点对称,关于直线对称.【考点】1.求三角函数的解析式;2.三角函数的图像与性质20.已知向量,设函数的图象关于直线对称,其中常数(Ⅰ)求的最小正周期;(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.【答案】(Ⅰ);(Ⅱ)详见解析.【解析】(Ⅰ)由向量的数量积的坐标表示将表示出来,并利用正弦和余弦的二倍角公式将其表示为的形式,再由对称轴为,所以在处函数值取到最大值或最小值,从而得,代入并结合求的值,再利用和的关系,求;(Ⅱ)用代换得,先由,确定,从中取特殊点,,,,,再计算相应的自变量和函数值,列表,描点连线,即得在给定区间的图象.试题解析:(Ⅰ),;(Ⅱ)0-2020【考点】1、向量数量积的坐标表示;2、正弦和余弦的二倍角公式;3、五点作图法.21.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”给出下列函数:①;②;③;④.其中“同簇函数”的是()A.①②B.①④C.②③D.③④【答案】D【解析】三角函数的图象在平移的过程中,振幅不变,①的函数的解析式化简为,④中的函数的解析式化简为,将③中的函数的图象向左平移个单位长度便可得到④中的函数图象,故选D.【考点】1.新定义;2.三角函数图象变换22.将函数y=f(x)·sinx的图象向右平移个单位后,再作关于x轴的对称变换,得到函数y=1-2sin2x的图象,则f(x)可以是 ().A.sinx B.cosx C.2sinx D.2cosx【答案】D【解析】将函数y=f(x)·sin x的图象向右平移个单位得,再作关于x轴的对称变换得,,即,令则,所以,,故f(x)可以是2cos x,选D.【考点】三角函数图象平移变换、二倍角公式.23.为了得到函数的图象,只需把函数的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【答案】B【解析】∵,∴只需把函数的图象向右平移个单位,选B.【考点】三角函数的图象.24.将函数()的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为【答案】2【解析】,根据函数的图象可知,当函数在上为增函数的最大满足,所函数在上为增函数的最大.【考点】的图象与性质.25.将函数的图像向右平移个单位,那么所得的图像所对应的函数解析式是()A.B.C.D.【答案】D.【解析】由已知得平移后的图像所对应的函数解析式是,故选【考点】三角函数图像变换.26.函数的图像向右平移个单位后,与函数的图像重合,则=___________.【答案】【解析】因为原函数解析式为,所以图象平移后的解析式为=,所以,解得.【考点】本小题主要考查诱导公式、三角函数的图象变换等基础知识,这两部分知识都是高考的热点内容之一,几乎年年必考,熟练其基础知识是解答好本类题目的关键.27.函数()的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为A.B.C.D.【答案】D【解析】根据题意,由于函数()的图象的相邻两条对称轴间的距离是.则说明周期为,w=2,排除A,B,对于C,D由于将函数图象向右平移个单位,变为,故可知答案为D.【考点】三角函数的图象变换点评:主要是考查了三角函数图象的平移变换的运用,属于基础题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数图像的平移、变换练习题
1、为了得到函数y sin(2 x) 的图像,只需把函数y sin(2 x) 的图像()
36
(A)向左平移个长度单位( B)向右平移个长度单位
44
(C)向左平移个长度单位( D)向右平移个长度单位
22
2、将函数y sin x 的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐
10
标伸长到原来的 2 倍(纵坐标不变),所得图像的函数解析式是
(A)y sin(2 x)(B)y sin(2 x)
sin( 1
x
10
sin(
1
x
5
(C)y)( D)y)
210220
右图是函数 y Asin(x + )( x R )在区间 -
5
上的图象,为了得到这个6
,
6
函数的图象,只要将 y sin x( x R)的图象上所有的()
(A) 向左平移个单位长度,再把所得各点的横坐标缩短到原
3
来的1
倍,纵坐标不变2
(B)向左平移个单位长度,再把所得各点的横坐标伸长到原
3
来的 2 倍,纵坐标不变
(C)向左平移个单位长度,再把所得各点的横坐标缩短到原来的1
倍,纵坐标不变
62
(D)向左平移个单位长度,再把所得各点的横坐标伸长到原来的 2 倍,纵坐标不变
6
4、若将函数y tan x0的图像向右平移个单位长度后,与函数
46
y tan x的图像重合,则的最小值为()
6
A .1
B.
1
C.
1
D.
1 6432
5、已知函数 f (x)sin(x)( x R,0) 的最小正周期为,为了得到函数
4
g( x)cos x 的图象,只要将y f ( x)的图象()
A 向左平移
个单位长度 B
向右平移
个单位长度
8
8
C 向左平移
个单位长度
D
向右平移
个单位长度
4
4
6、为了得到函数 y= sin 2 x 3 sin x cosx 的图象 , 可以将函数 y=sin2x 的图象( )
A. 向左平移
个单位长度 , 再向下平移
1 个单位长度
6
2
B. 向右平移
个单位长度 , 再向上平移
1
个单位长度
6
2
C.向左平移
个单位长度 , 再向下平移
1
个单位长度
12
2
D.向右平移
个单位长度 , 再向上平移
1
个单位长度
12
2
7、为得到函数 y
cos(2 x
)的图象,只需将函数
y sin 2x 的图象(
)
3
A .向左平移 5
个长度单位
B .向右平移
5
个长度单位
12
12
C .向左平移 5 个长度单位
D .向右平移
5
个长度单位
6
6
8、 f ( x) 2 3 sin(3
x
) ( ω > 0)
3
(1)若 f (x +θ ) 是周期为 2π的偶函数,求 ω 及θ 值
(2) f (x)在( 0,
)上是增函数,求 ω 最大值。
3。