杭州电子科技大学 大学物理习题集(下)详细解答
大学物理B(下)试卷.doc

杭州电子科技大学学生考试卷(考试课程考试日期年月曰成绩课程号教师号任课教师姓名考生姓名学号(8位)年级专业3 (0405) 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]4 (3069)一沿x轴负方向传播的平面简谐波在r = 2s时的波形曲线如图所示,则原点。
的振动方程为(A) 1F2(B) y = 0.50 cos (1 (0519)(A)(B)(C)(D)(E) 对于沿曲线运动的物体,以下几种说法中哪一种是正确的:切向加速度必不为零.法向加速度必不为零(拐点处除外).由于速度沿切线方向,法向分速度必为零,因此法向加速度必为零.若物体作匀速率运动,其总加速度必为零.若物体的加速度2为恒矢量,它一定作匀变速率运动.(C)(D)y = 0.50cos (y = 0.50 cos (1—712171『2一 + + f*41『2 1—712 1 F 4),),),(SI).(SD.(SI).(SI).5 (3072)2 (0386)A、B两木块质量分别为和〃8,且m B=2m A,两者用一轻弹簧连接后静止于光滑水平桌面上,如图所示.若用外力将两木块压近使弹簧被压缩,然后将外力撤去,则此后两木块运动动能之比EWE® 为如图所示,一平面简谐波沿x轴正向传播,已知F点的振动方程为:y = Acos(仞+打),贝撇的表达式为(A)(B)1 (A) -•(C) V2. (B) V2/2 .(D) 2.(C)(D)y = Acos{口[£ 一 (尤-/)/"] +S。
}.y = A cos (- (x / w)] + .y = Acosco(t — x/u).y = A cos + (x — I) / u]XA- XA-D s sD(S1{(S兀T^2K-34K- P—上9(3) (0261) 一质点从静止出发沿半径R=1m的圆周运动,其角加速度随时间[的变化规6 (3310) 在弦线上有一简谐波,其表达式是y. = 2.0x10—2 COS[2K( ------ --- ) + -] (SI)10.02 20 3为了在此弦线上形成驻波,并且在x = 0处为一波节,此弦线上还应有一简谐波,其表达式为:(A)y9=2.0x10 2COS[2K( ------------ 1 --- ) +20.02 20(B)y? =2.0x10 2 COS[2TT( ----------- 1 --- ) +20.02 20(C)y? =2.0x10 2 COS[2TT( ----------- 1 --- ) +20.02 20(D)y7 =2.0x10 2COS[2K( ------------ 1)—20.02 20$2 n27(3611) I如图,Si、S2是两个相干光源,它们到F点的距离分别为尸1和尸2.路径S]P垂直穿过一块厚度为小折射率为⑶的介质板,路径S2P垂直穿过厚度为如折射率为阻的另一介质板,其余部分可看作真空,这两条路径的光程差等于(A)(-2 +〃2,2)-(* +W1)(B)[r2 + (方一1)弓]一 [* + (% - 也]律是"=12心6,(SD,则质点的角速口= _____________________________________ : 切向加速度a t=.10(4)(0039)质量相等的两物体A和8,分别固定在弹簧的两端,竖直放在光滑水平面C上,如图所示.弹簧的质量与物体A, B的质量相比,可以忽略不计.若把支持m 面C迅速移走,则在移开的一瞬间,MA的加速度大小Q A=,B的加速度的大小11(3)(5016)如图所示,流水以初速度0进入弯管,流出时的速度为。
杭电大学物理答案2

单元十三 磁通量和磁场的高斯定理 1一 选择题01. 磁场中高斯定理:0SB dS ⋅=⎰,以下说法正确的是: 【 D 】(A) 高斯定理只适用于封闭曲面中没有永磁体和电流的情况; (B) 高斯定理只适用于封闭曲面中没有电流的情况; (C) 高斯定理只适用于稳恒磁场; (D) 高斯定理也适用于交变磁场。
02. 在地球北半球的某区域,磁感应强度的大小为5410T -⨯,方向与铅直线成060。
则穿过面积为21m 的水平平面的磁通量 【 C 】(A) 0; (B) 5410Wb -⨯; (C) 5210Wb -⨯; (D) 53.4610Wb -⨯。
03. 一边长为2l m =的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。
有一均匀磁场(1063)B i j k =++通过立方体所在区域,通过立方体的总的磁通量有 【 A 】(A) 0; (B) 40Wb ; (C) 24Wb ; (D) 12Wb 。
二 填空题04. 一半径为a 的无限长直载流导线,沿轴向均匀地流有电流I 。
若作一个半径为5R a =、高为l 的柱形曲面,已知此柱形曲面的轴与载流导线的轴平行且相距3a (如图所示),则B在圆柱侧面S 上的积分:0SB dS ⋅=⎰。
05. 在匀强磁场B中,取一半径为R 的圆,圆面的法线n与B成060角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S的磁通量:212m S B dS B R πΦ=⋅=-⎰ 。
06. 半径为R 的细圆环均匀带电,电荷线密度为λ,若圆环以角速度ω绕通过环心并垂直于环面的轴匀速转动,则环心处的磁感应强度0012B μλω=,轴线上任一点的磁感应强度30223/22()R B R x μλω=+。
07. 一电量为q 的带电粒子以角速度ω作半径为R 的匀速率圆运动,在圆心处产生的磁感应强度填空题_04图示 填空题_05图示填空题_10图示计算题_14 图示04q B Rμωπ=。
《大学物理》第5单元课后答案 高等教育出版社

2
ww
1 3
0-2=2
1 2 2 m m l 3 =15.4 rad 2M r
t=2 / r =11.4 s
Page28
杭州电子科技大学
co
题14. 图 题15. 图
《大学物理习题集》 (下册)
m
2 分∴ 2分 2分 2分 2分 2分
作业登记号
学号
题1. 图
态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰 撞,则在碰撞过程中对细杆与小球这一系统 (A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴 O 的角动量守恒. (D) 机械能、动量和角动量均守恒. 【 C 】
3.如图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳
w.
杭州电子科技大学
(A) 角动量从小到大,角加速度从大到小. (B) 角动量从小到大,角加速度从小到大. (C) 角动量从大到小,角加速度从大到小. (D) 角动量从大到小,角加速度从小到大. 【 B 】
题4. 图
ww
5.刚体角动量守恒的充分而必要的条件是 (A) 刚体不受外力矩的作用. (B) 刚体所受合外力矩为零. (C) 刚体所受的合外力和合外力矩均为零. (D) 刚体的转动惯量和角速度均保持不变.
沿相对圆盘转动相反的方向走动时圆盘对地的绕轴角速度为则人对与地固联的转轴的角速度为人与盘视为系统所受对转轴合外力矩为零系统的角动量守恒设盘的质量为m则人的质量杭州电子科技大学page31大学物理习题集下册
课后答案网,用心为你服务!
大学答案 --- 中学答案 --- 考研答案 --- 考试答案 最全最多的课后习题参考答案,尽在课后答案网()! Khdaw团队一直秉承用心为大家服务的宗旨,以关注学生的学习生活为出发点, 旨在为广大学生朋友的自主学习提供一个分享和交流的平台。 爱校园() 课后答案网() 淘答案()
电子科技大学09级《大学物理(下)》期末考试及答案A卷 (A3版)

电子科技大学期末考试 09级《大学物理(下)》A 卷(考试时间90分钟,满分100分)一、选择题(每题2分,共20分)1、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感应强度 ( ) (A )与L 无关; (B )正比于2L ; (C )与L 成正比; (D )与L 成反比。
2、在感应电场中电磁感应定律可写成dtd l d E mCK Φ-=⋅⎰,式中K E 为感应电场的电场强度,此式表明 ( )(A )闭合曲线C 上K E处处相等; (B )感应电场是保守力场; (C )感应电场的电场线不是闭合曲线;(D )在感应电场中不能像静电场那样引入电势的概念。
3、一交变磁场被限制在一半径为R 的圆柱体中,在柱内、外分别有两个静止点电荷A q 和B q ,则 ( ) (A )A q 受力,B q 不受力;(B )A q 和B q 都受力;(C )A q 和B q 都不受力;(D )A q 不受力,B q 受力。
4、关于位移电流,下列哪一种说法是正确的( ) (A )位移电流的磁效应不服从安培环路定理;(B )位移电流是由变化磁场产生; (C )位移电流不可以在真空中传播; (D )位移电流是由变化电场产生。
5、根据惠更斯—菲涅尔原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强决定于波阵面上所有面元发出的子波各自传到P 点的 ( ) (A )振动振幅之和; (B )相干叠加; (C )振动振幅之和的平方; (D )光强之和。
6、严格地说,空气的折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,则干涉圆环将 ( ) (A )变大; (B )变小; (C )消失; (D )不变7、自然光以60。
入射角照射到某一透明介质表面时,反射光为线偏振光,则 ( ) (A )折射光为线偏振光,折射角为30。
; (B )折射光为部分偏振光,折射角为30。
;(C )折射光为线偏振光,折射角不能确定; (D )折射光为部分偏振光,折射角不能确定。
大学物理试题库-601-杭州电子科技大学

601--黑体辐射(不出计算题)、光电效应、康普顿散射1. 选择题题号:60112001分值:3分难度系数等级:2级用频率为ν1的单色光照射某一种金属时,测得光电子的最大动能为E K 1;用频率为ν2的单色光照射另一种金属时,测得光电子的最大动能为E K 2.如果E K 1 >E K 2,那么(A) ν1一定大于ν2 (B) ν1一定小于ν2(C) ν1一定等于ν2 (D) ν1可能大于也可能小于ν2. [ ]答案:(D )题号:60113002分值:3分难度系数等级:3级用频率为ν1的单色光照射某种金属时,测得饱和电流为I 1,以频率为ν2的单色光照射该金属时,测得饱和电流为I 2,若I 1> I 2,则(A) ν1 >ν2 (B) ν1 <ν2(C) ν1 =ν2 (D) ν1与ν2的关系还不能确定. [ ]答案:(D )题号:60112003分值:3分难度系数等级:2级已知某单色光照射到一金属表面产生了光电效应,若此金属的逸出电势是U 0 (使电子从金属逸出需作功eU 0),则此单色光的波长λ 必须满足:(A) λ ≤)/(0eU hc (B) λ ≥)/(0eU hc(C) λ ≤)/(0hc eU (D) λ ≥)/(0hc eU [ ]答案:(A )题号:60113004分值:3分难度系数等级:3级已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV ,而钠的红限波长是540nm ,那么入射光的波长是(e =1.60×10-19 C ,h =6.63×10-34 J ·s )(A) 535nm (B) 500nm(C) 435nm (D) 355nm [ ]答案:(D )题号:60114005分值:3分难度系数等级:4级在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0.今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半 径为R 的圆周运动,那末此照射光光子的能量是:(A) 0λhc (B) 0λhcm eRB 2)(2+ (C) 0λhcm eRB + (D) 0λhc eRB 2+ [ ] 答案:(B )题号:60113006分值:3分难度系数等级:3级用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为:(A) 2 E K . (B) 2h ν - E K(C) h ν - E K (D) h ν + E K [ ]答案:(D)题号:60112007分值:3分难度系数等级:2级金属的光电效应的红限依赖于:(A)入射光的频率(B)入射光的强度(C) 金属的逸出功(D)入射光的频率和金属的逸出功[ ] 答案:(C)题号:60114008分值:3分难度系数等级:4级在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的(A) 1.25倍(B) 1.5倍(C) 0.5倍(D) 0.25倍[]答案:(D)题号:60114009分值:3分难度系数等级:4级用强度为I,波长为λ 的X射线(伦琴射线)分别照射锂(Z = 3)和铁(Z = 26).若在同一散射角下测得康普顿散射的X射线波长分别为λLi和λFe (λLi,λFe >λ),它们对应的强度分别为I Li 和I Fe,则(A) λLi>λFe,I Li< I Fe(B) λLi=λFe,I Li = I Fe(C) λLi=λFe,I Li.>I Fe(D) λLi<λFe,I Li.>I Fe[]答案:(C)题号:60113010分值:3分难度系数等级:3级在康普顿效应实验中,若散射光波长是入射光波长的 1.2倍,则散射光光子能量ε 与反冲电子动能E K 之比ε / E K 为(A) 2 (B) 3 (C) 4 (D) 5 [ ]答案:(D )题号:60111011分值:3分难度系数等级:1级相应于黑体辐射的最大单色辐出度的波长叫做峰值波长m λ,随着温度T 的增高,m λ将向短波方向移动,这一结果称为维恩位移定律。
杭州电子科技大学 大学物理习题集(下)详细解答

单元一 简谐振动一、 计算题17. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。
(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。
解:(1)振动表达式为 c o s ()x A t ωϕ=+ 振幅0.02A m =,0.03/m v A m s ω==,得 0.031.5/0.02m v rad s A ω=== 周期 22 4.191.5T s ππω=== (2)加速度的最大值 2221.50.020.045/m a A m s ω==⨯=(3)速度表达式 sin()cos()2v A t A t πωωϕωωϕ=-+=++由旋转矢量图知,02πϕ+=, 得初相 2πϕ=-振动表达式 0.02cos(1.5)2x t π=-(SI )18. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。
求此简谐振动的振动方程。
解:设振动方程为 )c o s (φω+=t A x 由曲线可知: A = 10 cm当t = 0,φcos 1050=-=x ,0sin 100<-=φωv解上面两式,可得 初相 32π=φ由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )322cos(100π+=ω 则有 2/33/22π=π+ω, ∴ 125π=ω故所求振动方程为 )32125cos(1.0ππ+=t x (SI) 19. 定滑轮半径为R ,转动惯量为J ,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹簧的倔强系数为K ;另一端挂一质量为m 的物体,如图。
现将m 从平衡位置向下拉一微小距离后放手,试证物体作简谐振动,并求其振动周期。
(设绳与滑轮间无滑动,轴的摩擦及空气阻力忽略不计)。
解:以物体的平衡位置为原点建立如图所示的坐标。
电子科技大学11级《大学物理(下)》期末考试及答案B卷 (A3版)

弟1页/(共4页) 弟2页/(共4页)电子科技大学期末考试 11级《大学物理(下)》B 卷(考试时间90分钟,满分100分)一、选择题(每题2分,共20分)1.取一闭合积分回路L ,使三根载流导线穿过它围成的面,现改变三根导线之间的相互间隔,但不越出积分回路,则 ( )A .回路L 内的∑I 不变,L 上各点的B不变; B .回路L 内的∑I 改变,L 上各点的B改变;C .回路L 内的∑I 改变,L 上各点的B不变; D .回路L 内的∑I 不变,L 上各点的B改变。
2.下列说法哪个是正确的 ( )A .导体在磁场中以一定速度运动时,必定产生感应电动势;B .感生电场的电场线不是闭合曲线;C .感生电场是保守力场;D .感生电场是非保守力场,感生电场力的功与路径有关。
3.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布 ( )A .不能用安培环路定理求出;B .可以直接用安培环路定理求出;C .只能用毕奥-萨伐尔-拉普拉斯定律求出;D .可以用安培环路定理和磁感应强度的叠加原理求出。
4.取自感系数的定义式为IL Φ=,当线圈的几何形状不变,周围无铁磁性物质时,若线圈中的电流强度变小,则自感系数L ( ) A .变大,与电流成反比关系; B .变小;C .不变;D .变大,但与电流不成反比关系。
5.自然光以布儒斯特角由玻璃入射到空气表面上,反射光是 ( ) A .平行于入射面内振动的完全偏振光; B .平行于入射面内振动占优势的部分偏振光; C .垂直于入射面振动的完全偏振光; D .垂直于入射面振动占优势的部分偏振光。
6.在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹。
若把一个偏振片置于双缝后,则 ( )A .干涉条纹的间距不变,但明纹的亮度加强;B .干涉条纹的间距变窄,且明纹的亮度减弱;C .干涉条纹的间距不变,但明纹的亮度减弱;D .无干涉条纹。
7.根据惠更斯—菲涅尔原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强决定于波阵面上所有面元发出的子波各自传到P 点的 ( ) A .振动振幅之和; B .光强之和; C .振动振幅之和的平方; D .相干叠加。
大学物理(下)题库答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [ C2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [B ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ D ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ B ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ B ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ B ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ C ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[B ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ B ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ D ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ E ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ B ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ B ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ B ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ C ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ A ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距 (A) 2.86 m . (B) 2.19 m .A/ -(C) 0.5 m . (D) 0.25 m . [ C ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ D ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ C ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ D ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [B ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05.(C) 21,21,0.05. (D) 2,2,0.05. [C ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ C ]x y Ou25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ A ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)c o s(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y .(B) }]/)([cos{00φω+--=u x x t A y .(C) }]/)[(cos{00φω+--=u x x t A y .(D) }]/)[(cos{00φω+-+=u x x t A y . [ A ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ B ]28、一平面简谐波的表达式为 )/(2c o sλνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ A ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ C ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ. [ D ]31、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=. 叠加后形成的驻波中,波节的位置坐标为(A) λk x ±=. (B) λk x 21±=. x y t =t 0u O(C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ D ]32、有两列沿相反方向传播的相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ C ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ C ]34、沿着相反方向传播的两列相干波,其表达式为)/(2c o s 1λνx t A y -π= 和 )/(2c o s 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [B ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ C ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2c o s 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ C ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(co s 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ.(B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ C ] 39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ B ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ C ] 1、在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ. [ A ]2、在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等. [ C ]3、如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2.路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径的光程差等于 (A) )()(111222t n r t n r +-+(B) ])1([])1([211222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n - [ B ]4、真空中波长为λ的单色光,在折射率为n 的均匀透明媒质中,从A 点沿某一路径传播到B 点,路径的长度为l .A 、B 两点光振动相位差记为∆φ,则(A) l =3 λ / 2,∆φ=3π. (B) l =3 λ / (2n ),∆φ=3n π.(C) l =3 λ / (2n ),∆φ=3π. (D) l =3n λ / 2,∆φ=3n π. [ C ]P S 1S 2 r 1 n 1 n 2 t 2 r 2 t 15、如图所示,波长为λ的平行单色光垂直入射在折射率为n 2的薄膜上,经上下两个表面反射的两束光发生干涉.若薄膜厚度为e ,而且n 1>n 2>n 3,则两束反射光在相遇点的相位差为 (A) 4πn 2 e / λ. (B) 2πn 2 e / λ.(C) (4πn 2 e / λ) +π. (D) (2πn 2 e / λ) -π. [ A ] 6、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2 .(C) 2n 2 e -λ. (D) 2n 2 e -λ / (2n 2).[ A ]7、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3.若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是(A) 2n 2 e . (B) 2n 2 e -λ / 2.(C) 2n 2 e -λ . (D) 2n 2 e -λ / (2n 2).[B ]8在双缝干涉实验中,两缝间距为d ,双缝与屏幕的距离为D (D>>d ),单色光波长为λ,屏幕上相邻明条纹之间的距离为(A) λ D/d . (B) λd /D .(C) λD /(2d ). (D) λd/(2D ). [ A ]9、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源. [ B ]10、在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm . [ B ]11、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S '位置,则 (A) 中央明条纹也向下移动,且条纹间距不变.(B) 中央明条纹向上移动,且条纹间距不变. (C) 中央明条纹向下移动,且条纹间距增大. (D) 中央明条纹向上移动,且条纹间距增大. [ B ]Bn 1 3λn 3 n 3 S S '12、在双缝干涉实验中,设缝是水平的.若双缝所在的平板稍微向上平移,其它条件不变,则屏上的干涉条纹(A) 向下平移,且间距不变. (B) 向上平移,且间距不变.(C) 不移动,但间距改变. (D) 向上平移,且间距改变. [ B ]13、在双缝干涉实验中,两缝间距离为d ,双缝与屏幕之间的距离为D (D >>d ).波长为λ的平行单色光垂直照射到双缝上.屏幕上干涉条纹中相邻暗纹之间的距离是(A) 2λD / d . (B) λ d / D .(C) dD / λ. (D) λD /d . [ D ]14把双缝干涉实验装置放在折射率为n 的水中,两缝间距离为d ,双缝到屏的距离为D(D >>d ),所用单色光在真空中的波长为λ,则屏上干涉条纹中相邻的明纹之间的距离是(A) λD / (nd ) (B) n λD /d .(C) λd / (nD ). (D) λD / (2nd ). [ A ]15、一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ). [ B ]16、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃扳在中心恰好接触,它们之间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为λ,则反射光形成的干涉条纹中暗环半径r k 的表达式为(A) r k =R k λ. (B) r k =n R k /λ.(C) r k =R kn λ. (D) r k =()nR k /λ. [ B ]17、在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(E) ( n -1 ) d . [ A ]18、在迈克耳孙干涉仪的一支光路中,放入一片折射率为n 的透明介质薄膜后,测出两束光的光程差的改变量为一个波长λ,则薄膜的厚度是(A) λ / 2. (B) λ / (2n ).(C) λ / n . (D) ()12-n λ. [D ]19、在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个. [ B ]20、一束波长为λ的平行单色光垂直入射到一单如果P是中央亮纹一侧第一个暗纹所在的位置,则BC的长度为(A) λ / 2.(B) λ.(C) 3λ / 2 .(D) 2λ.B[B ]21、根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波各自传到P点的(A) 振动振幅之和.(B) 光强之和.(C) 振动振幅之和的平方.(D) 振动的相干叠加.[D ]22、波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2.(B) λ.(C) 2λ.(D) 3 λ.[C ]23、在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹(A) 对应的衍射角变小.(B) 对应的衍射角变大.(C) 对应的衍射角也不变.(D) 光强也不变.[ B ]24、如果单缝夫琅禾费衍射的第一级暗纹发生在衍射角为ϕ=30°的方位上.所用单色光波长为λ=500 nm,则单缝宽度为(A) 2.5³10-5 m.(B) 1.0³10-5 m.(C) 1.0³10-6 m.(D) 2.5³10-7.[ C ]25、一单色平行光束垂直照射在宽度为1.0 mm的单缝上,在缝后放一焦距为2.0 m的会聚透镜.已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm,则入射光波长约为(1nm=10−9m)(A) 100 nm (B) 400 nm(C) 500 nm (D) 600 nm [ C ]26、在单缝夫琅禾费衍射实验中,若增大缝宽,其他条件不变,则中央明条纹(A) 宽度变小.(B) 宽度变大.(C) 宽度不变,且中心强度也不变.(D) 宽度不变,但中心强度增大.[A ]27、在单缝夫琅禾费衍射实验中,若减小缝宽,其他条件不变,则中央明条纹(A) 宽度变小;(B) 宽度变大;(C) 宽度不变,且中心强度也不变;(D) 宽度不变,但中心强度变小.[ B ]28、在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a等于(A) λ.(B) 1.5 λ.(C) 2 λ. (D) 3 λ. [ D ]29、在如图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a 变为原来的23,同时使入射的单色光的波长λ变为原来的3 / 4,则屏幕C 上单缝衍射条纹中央明纹的宽度∆x 将变为原来的 (A) 3 / 4倍. (B) 2 / 3倍. (C) 9 / 8倍. (D) 1 / 2倍.(E) 2倍. [ D ]30、测量单色光的波长时,下列方法中哪一种方法最为准确?(A) 双缝干涉. (B) 牛顿环 .(C) 单缝衍射. (D) 光栅衍射. [ D ]31、一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a 代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A) a +b =2 a . (B) a +b =3 a .(C) a +b =4 a . (A) a +b =6 a . [ B ]32、一束白光垂直照射在一光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是(A) 紫光. (B) 绿光. (C) 黄光. (D) 红光. [ D ]33、对某一定波长的垂直入射光,衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该(A) 换一个光栅常数较小的光栅.(B) 换一个光栅常数较大的光栅.(C) 将光栅向靠近屏幕的方向移动.(D) 将光栅向远离屏幕的方向移动. [ B ]34、若用衍射光栅准确测定一单色可见光的波长,在下列各种光栅常数的光栅中选用哪一种最好?(A) 5.0³10-1 mm . (B) 1.0³10-1 mm . D(C) 1.0³10-2 mm . (D) 1.0³10-3 mm . [ D ]35、在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a=21b . (B) a=b . (C) a=2b . (D) a=3 b . [ B ]36、在双缝干涉实验中,用单色自然光,在屏上形成干涉条纹.若在两缝后放一个偏振片,则(A) 干涉条纹的间距不变,但明纹的亮度加强. λ(B) 干涉条纹的间距不变,但明纹的亮度减弱.(C) 干涉条纹的间距变窄,且明纹的亮度减弱.(D) 无干涉条纹.[B ]37、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[A ]38、一束光强为I0的自然光垂直穿过两个偏振片,且此两偏振片的偏振化方向成45°角,则穿过两个偏振片后的光强I为(A) 4/0I2.(B) I0 / 4.(C) I0 / 2.(D) 2I0 / 2.[ B ]39、如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I0的自然光垂直入射在偏振片上,则出射光强为(A) I0 / 8.(B) I0 / 4.(C) 3 I0 / 8.(D) 3 I0 / 4.[ A ]40、自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是(A) 在入射面内振动的完全线偏振光.(B) 平行于入射面的振动占优势的部分偏振光.(C) 垂直于入射面振动的完全线偏振光.(D) 垂直于入射面的振动占优势的部分偏振光.[ C ]一、选择题:(每题3分)1、在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态.A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为(A) 3 p1.(B) 4 p1.(C) 5 p1.(D) 6 p1.[D ]2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为:(A) pV / m.(B) pV / (kT).(C) pV / (RT).(D) pV / (mT).[ B ]3、有一截面均匀的封闭圆筒,中间被一光滑的活塞分隔成两边,如果其中的一边装有0.1 kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边应装入同一温度的氧气的质量为:(A) (1/16) kg.(B) 0.8 kg.(C) 1.6 kg.(D) 3.2 kg.[ C ]4、在标准状态下,任何理想气体在1 m3中含有的分子数都等于(A) 6.02³1023.(B)6.02³1021.(C) 2.69³1025 .(D)2.69³1023.(玻尔兹曼常量k =1.38³10-23 J ²K -1 ) [ C ]5、一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度(A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ B ]6、一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p 1和p 2,则两者的大小关系是:(A) p 1> p 2. (B) p 1< p 2.(C) p 1=p 2. (D)不确定的. [ C ]7、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]8、已知氢气与氧气的温度相同,请判断下列说法哪个正确?(A) 氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强.(B) 氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度.(C) 氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大.(D) 氧分子的质量比氢分子大,所以氢分子的方均根速率一定比氧分子的方均根速率大. [ D ]9、温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等.(C) w 相等,而ε不相等. (D) ε和w 都不相等. [ C ]10、1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为(A)RT 23. (B) kT 23. (C) RT 25. (D) kT 25. [ C ] (式中R 为普适气体常量,k 为玻尔兹曼常量)11、两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数n ,单位体积内的气体分子的总平动动能(E K /V ),单位体积内的气体质量ρ,分别有如下关系:(A) n 不同,(E K /V )不同,ρ 不同.(B) n 不同,(E K /V )不同,ρ 相同.(C) n 相同,(E K /V )相同,ρ 不同.(D) n 相同,(E K /V )相同,ρ 相同. [ C ]12、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能(E / V )A 和(E / V )B 的关系(A) 为(E / V )A <(E / V )B .(B) 为(E / V )A >(E / V )B .(C) 为(E / V )A =(E / V )B .(D) 不能确定. [ A ]13、两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量(A) 12 J . (B) 10 J(C) 6 J . (D) 5 J . [ B ]14、压强为p 、体积为V 的氢气(视为刚性分子理想气体)的内能为: (A)25pV . (B) 23pV . (C) pV . (D) 21pV . [ A ]15、下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV M m 23. (B) pV M M mol23. (C)npV 23. (D)pV N MM A 23mol . [ A ]16、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则:(A) 两种气体分子的平均平动动能相等.(B) 两种气体分子的平均动能相等.(C) 两种气体分子的平均速率相等.(D) 两种气体的内能相等. [ A ]17、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为(A) (N 1+N 2) (23kT +25kT ). (B) 21(N 1+N 2) (23kT +25kT ). (C) N 123kT +N 225kT . (D) N 125kT + N 223kT . [ C ]18、设声波通过理想气体的速率正比于气体分子的热运动平均速率,则声波通过具有相同温度的氧气和氢气的速率之比22H O /v v 为(A) 1 . (B) 1/2 .(C) 1/3 . (D) 1/4 . [ D ]19、设v 代表气体分子运动的平均速率,p v 代表气体分子运动的最概然速率,2/12)(v 代表气体分子运动的方均根速率.处于平衡状态下理想气体,三种速率关系为(A) p v v v ==2/12)( (B) 2/12)(v v v <=p (C)2/12)(v v v <<p (D)2/12)(v v v >>p[ C ]20、已知一定量的某种理想气体,在温度为T 1与T 2时的分子最概然速率分别为v p 1和v p 2,分子速率分布函数的最大值分别为f (v p 1)和f (v p 2).若T 1>T 2,则(A) v p 1 > v p 2, f (v p 1)> f (v p 2).(B) v p 1 > v p 2, f (v p 1)< f (v p 2).(C) v p 1 < v p 2, f (v p 1)> f (v p 2).(D) v p 1 < v p 2, f (v p 1)< f (v p 2). [ B ]21、 两种不同的理想气体,若它们的最概然速率相等,则它们的(A) 平均速率相等,方均根速率相等.(B) 平均速率相等,方均根速率不相等.(C) 平均速率不相等,方均根速率相等.(D) 平均速率不相等,方均根速率不相等. [ A ]22、假定氧气的热力学温度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的(A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ B ]23、 麦克斯韦速率分布曲线如图所示,图中A 、B 两部分面积相等,则该图表示(A) 0v 为最概然速率. (B) 0v 为平均速率. (C) 0v 为方均根速率. (D) 速率大于和小于0v 的分子数各占一半. [ D ]24、速率分布函数f (v )的物理意义为:(A) 具有速率v 的分子占总分子数的百分比.(B) 速率分布在v 附近的单位速率间隔中的分子数占总分子数的百分比.(C) 具有速率v 的分子数.(D) 速率分布在v 附近的单位速率间隔中的分子数. [ B ]25、若N 表示分子总数,T 表示气体温度,m 表示气体分子的质量,那么当分子速率v 确定后,决定麦克斯韦速率分布函数f (v )的数值的因素是(A) m ,T . (B) N .(C) N ,m . (D) N ,T .f (v )0(E) N,m,T.[ A ]26、气缸内盛有一定量的氢气(可视作理想气体),当温度不变而压强增大一倍时,氢气分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大一倍.(B) Z和λ都减为原来的一半.(C) Z增大一倍而λ减为原来的一半.(D) Z减为原来的一半而λ增大一倍.[C ]27、一定量的理想气体,在温度不变的条件下,当体积增大时,分子的平均碰撞频率Z 和平均自由程λ的变化情况是:(A) Z减小而λ不变.(B) Z减小而λ增大.(C) Z增大而λ减小.(D) Z不变而λ增大.[ B ]28、一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z和λ都增大.(B) Z和λ都减小.(C) Z增大而λ减小.(D) Z减小而λ增大.[ D ]29、一定量的理想气体,在体积不变的条件下,当温度降低时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z减小,但λ不变.(B) Z不变,但λ减小.(C) Z和λ都减小.(D) Z和λ都不变.[ A ]30、一定量的理想气体,在体积不变的条件下,当温度升高时,分子的平均碰撞频率Z和平均自由程λ的变化情况是:(A) Z 增大,λ不变. (B) Z 不变,λ增大.(C) Z 和λ都增大. (D) Z 和λ都不变. [ A ]31、 在一个体积不变的容器中,储有一定量的理想气体,温度为T 0时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ.当气体温度升高为4T 0时,气体分子的平均速率v ,平均碰撞频率Z 和平均自由程λ分别为:(A) v =40v ,Z =40Z ,λ=40λ.(B) v =20v ,Z =20Z ,λ=0λ.(C) v =20v ,Z =20Z ,λ=40λ.(D) v =40v ,Z =20Z ,λ=0λ. [ B ]32、在一封闭容器中盛有1 mol 氦气(视作理想气体),这时分子无规则运动的平均自由程仅决定于(A) 压强p . (B) 体积V .(C) 温度T . (D) 平均碰撞频率Z . [ B ]33、一定量的某种理想气体若体积保持不变,则其平均自由程λ和平均碰撞频率Z 与温度的关系是:(A) 温度升高,λ减少而Z 增大.(B) 温度升高,λ增大而Z 减少.(C) 温度升高,λ和Z 均增大.(D) 温度升高,λ保持不变而Z 增大. [ D ]34、一容器贮有某种理想气体,其分子平均自由程为0λ,若气体的热力学温度降到原来的一半,但体积不变,分子作用球半径不变,则此时平均自由程为 (A)02λ. (B) 0λ. (C)2/0. (D) 0/ 2. [ B ]35、图(a)、(b)、(c)各表示联接在一起的两个循环过程,其中(c)图是两个半径相等的圆构成的两个循环过程,图(a)和(b)则为半径不等的两个圆.那么: C(A) 图(a)总净功为负.图(b)总净功为正.图(c)总净功为零.(B) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为正.(C) 图(a)总净功为负.图(b)总净功为负.图(c)总净功为零.(D) 图(a)总净功为正.图(b)总净功为正.图(c)总净功为负.V 图(a) V图(b) V 图(c)36、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[ D ]37、如图所示,当气缸中的活塞迅速向外移动从而使气体膨胀时,气体所经历的过程(A) 是平衡过程,它能用p─V图上的一条曲线表示.(B) 不是平衡过程,但它能用p─V图上的一条曲线表示.(C) 不是平衡过程,它不能用p─V图上的一条曲线表示.(D) 是平衡过程,但它不能用p─V图上的一条曲线表示.[C ]38、在下列各种说法(1) 平衡过程就是无摩擦力作用的过程.(2) 平衡过程一定是可逆过程.(3) 平衡过程是无限多个连续变化的平衡态的连接.(4) 平衡过程在p-V图上可用一连续曲线表示.中,哪些是正确的?(A) (1)、(2).(B) (3)、(4).(C) (2)、(3)、(4).(D) (1)、(2)、(3)、(4).[ B ]39、设有下列过程:(1) 用活塞缓慢地压缩绝热容器中的理想气体.(设活塞与器壁无摩擦)(2) 用缓慢地旋转的叶片使绝热容器中的水温上升.(3) 一滴墨水在水杯中缓慢弥散开.(4) 一个不受空气阻力及其它摩擦力作用的单摆的摆动.其中是可逆过程的为(A) (1)、(2)、(4).(B) (1)、(2)、(3).(C) (1)、(3)、(4).(D) (1)、(4).[ D ]40、在下列说法(1) 可逆过程一定是平衡过程.(2) 平衡过程一定是可逆的.(3) 不可逆过程一定是非平衡过程.(4) 非平衡过程一定是不可逆的.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元一 简谐振动一、 计算题17. 作简谐运动的小球,速度最大值为3m v =cm/s ,振幅2A =cm ,若从速度为正的最大值的某时刻开始计算时间。
(1)求振动的周期;(2)求加速度的最大值;(3)写出振动表达式。
解:(1)振动表达式为 cos()x A t ωϕ=+振幅0.02A m =,0.03/m v A m s ω==,得 0.031.5/0.02m v rad s A ω=== 周期 22 4.191.5T s ππω=== (2)加速度的最大值 2221.50.020.045/m a A m s ω==⨯= (3)速度表达式 sin()cos()2v A t A t πωωϕωωϕ=-+=++由旋转矢量图知,02πϕ+=, 得初相 2πϕ=-振动表达式 0.02cos(1.5)2x t π=-(SI )18. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。
求此简谐振动的振动方程。
解:设振动方程为 )cos(φω+=t A x 由曲线可知: A = 10 cm当t = 0,φcos 1050=-=x ,0sin 100<-=φωv解上面两式,可得 初相 32π=φ由图可知质点由位移为 x 0 = -5 cm 和v 0 < 0的状态到x = 0和 v > 0的状态所需时间t = 2 s ,代入振动方程得 )322cos(100π+=ω 则有 2/33/22π=π+ω, ∴ 125π=ω 故所求振动方程为 )32125cos(1.0ππ+=t x (SI) 19. 定滑轮半径为R ,转动惯量为J ,轻绳绕过滑轮,一端与固定的轻弹簧连接,弹簧的倔强系数为K ;另一端挂一质量为m 的物体,如图。
现将m 从平衡位置向下拉一微小距离后放手,试证物体作简谐振动,并求其振动周期。
(设绳与滑轮间无滑动,轴的摩擦及空气阻力忽略不计)。
x (cm) t -5 10 O -102 (18)题解:以物体的平衡位置为原点建立如图所示的坐标。
物体的运动方程:x m T mg 1 =-滑轮的转动方程:R x JR )T T (21 =-对于弹簧:)x x (k T 02+=,mg kx 0=由以上四个方程得到:x )m RJ(k x2=++令)m R J(k 22+=ω物体的运动微分方程:0x x 2=+ω物体作简谐振动,振动周期为:kR J m 2T 2+=π20. 如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上。
设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F 。
当重物运动到左方最远位置时开始计时,求物体的运动方程。
解:设物体的运动方程为 )cos(φω+=t A x 恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m 24kmω==, = 2 rad/s按题目所述时刻计时,初相为 =∴ 物体运动方程为 )2cos(204.0π+=t x (SI)单元二 简谐波 波动方程四、计算题17. 如图所示,一平面简谐波沿OX 轴传播 ,波动方程为xy Acos[2(vt )]=π-+ϕλ,求:Fxm (20)题(1)P 处质点的振动方程;(2)该质点的速度表达式与加速度表达式。
解:(1)P 处质点的振动方程:])Lvt (2cos[A y ϕλπ++= (L x -=, P 处质点的振动位相超前)(2)P 处质点的速度:])Lvt (2sin[v A 2yv ϕλππ++-== P 处质点的加速度:])Lvt (2cos[v A 4y a 22ϕλππ++-==18. 某质点作简谐振动,周期为2s ,振幅为0.06m ,开始计时( t=0 ),质点恰好处在负向最大位移处,求:(1) 该质点的振动方程;(2) 此振动以速度u=2 m/s 沿x 轴正方向传播时,形成的一维筒谐波的波动方程(以该质点的平衡位置为坐标原点);(3) 该波的波长。
解: (1)该质点的初相位 πφ=振动方程 )22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (2) 波动表达式 ])/(cos[06.0π+-π=u x t y])21(cos[06.0π+-π=x t (SI)(3) 波长 4==uT λ m19. 图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图.波长米160=λ, 求 : (1) 波速和周期; (2) 坐标原点处介质质点的振动方程;(3) 该波的波动表达式.解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图, 可知此波向左传播.u = 20 /2 m/s = 10 m/s(19)题s uT 16==λ(2) 在t = 0时刻,O 处质点 φcos 0A =, φωsin 00A -=<v ,故 π-=21φ 振动方程为 )218/cos(0π-π=t A y (SI)(3) 波动表达式 ]21)16016(2cos[π-+π=x t A y (SI)20. 如图所示,一简谐波向x 轴正向传播,波速u = 500 m/s , x 0 = 1 m, P 点的振动方程为 )21500cos(03.0π-π=t y (SI). (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t = 0时刻的波形曲线. 解:(1) 2m )250/500(/===νλu m (2分)波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y]2/2)1(21500cos[03.0π--π-π=x t)21500cos(03.0x t π-π+π= (SI) (3分)(2) t = 0时刻的波形方程x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)t = 0时刻的波形曲线 (3分)单元三 波的干涉 驻波 多普勒效应四、计算题x (m)u x 0POx (m)uP O-2-112-0.030.0317. 图中A 、B 是两个相干的点波源,它们的振动相位差为(反相).B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB .若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是ABP 30 cm40 cm(17)多少.解:由图 =AP 50 cm . πλφφφ)12k ()4050(2B A +±=---=∆π∴πλ2k )4050(2±=-π∴ cm k10±=λ当1k =时,10cm =λ18. 相干波源S 1和S 1,相距11 m ,S 1的相位比S 2超前π21.这两个相干波在S 1 、S 2连线和延长线上传播时可看成两等幅的平面余弦波,它们的频率都等于100 Hz , 波速都等于400 m/s .试求在S 1、S 2的连线中间因干涉而静止不动的各点位置.解:取P ′点如图.从S 1、S 2分别传播来的两波在P ′点的相位差为 )](2[2201021x l x -π--π-=-λφλφφφl x λλφφπ+π--=242010l x u νλνφφπ+π--=2220102112π+π-π=x 由干涉静止的条件可得π+=π+π-π)12(2112k x ( k = 0,±1,±2,…) ∴ x = 5-2k ( -3≤k ≤2 )19. 设入射波的表达式为1t xy A cos2()T =π+λ,在x=0发生反射,反射点为一固定端,求:(1) 反射波的表达式;(2) 驻波的表达式;(3)波腹、波节的位置。
解:(1)入射波:)xT t (2cos A y 1λπ+=,反射点x=0为固定点,说明反射波存在半波损失。
反射波的波动方程:])xT t (2cos[ A y 2πλπ+-=(2) 根据波的叠加原理, 驻波方程:)Tt 2cos(2x 2cosA 2y 12ϕπϕϕλπ+-=)+( 将01=ϕ和πϕ=2代入得到:驻波方程:)2t 2cos(x 2sin A 2y ππνλπ+=驻波的振幅:λπx2sin A 2A =合 x (m) O S 1 S 2 l(3)波幅的位置:2)1k 2(x2πλπ+=,4)1k 2(x λ+=, 32,1,0k ,= 波节的位置:πλπk x2=,λ2kx =, 32,1,0k ,= (因为波只在x>0的空间,k 取正整数)20. 一个观测者在铁路边,看到一列火车从远处开来,他测得远处传来的火车汽笛声的频率为650 Hz ,当列车从身旁驶过而远离他时,他测得汽笛声频率降低为540 Hz ,求火车行驶的速度。
已知空气中的声速为330 m/s 。
解:根据多普勒效应, 列车接近观察者时,测得汽笛的频率:s)v u u('νν-=(观察者静止,波源朝着观察者运动)列车离开观察者时,测得汽笛的频率:s)v u u(''νν+=(观察者静止,波源背离观察者运动)由上面两式得到:s sv u v u '''-+=νν,列车行驶的速度:u''''''v s νννν+-=, s /m 5.30v s =。
单元四 杨氏双缝实验四、计算题19. 用一束8.632=λnm 激光垂直照射一双缝, 在缝后2.0m 处的墙上观察到中央明纹和第一级明纹的间隔为14cm 。
求(1)两缝的间距;(2)在中央明纹以上还能看到几条明纹?解: (1)m x d d 69100.914.0108.6320.2--⨯=⨯⨯=∆'=λ (2)由于2πθ<, 按2πθ=计算,则 3.14/'/sin =∆==x d d k λθ 应取14即看到14条明纹。
20. 在一双缝实验中,缝间距为5.0mm ,缝离屏1.0m ,在屏上可见到两个干涉花样。
一个由480nm λ=的光产生,另一个由'600nm λ=的光产生。
问在屏上两个不同花样第三级干涉条纹间的距离是多少? 解: 对于nm 480=λ的光,第三级条纹的位置:λ3dDx =对于nm 600'=λ的光,第三级条纹的位置:'3dD 'x λ= 那么:)'(3dDx 'x x λλ∆-=-=,m 102.7x 5-⨯=∆。
21. 双缝干涉实验装置如图所示, 双缝与屏之间的距离D =120cm, 两缝之间的距离d =0.50mm, 用波长=5000 Å的单色光垂直照射双缝。