北石化《数学建模入门》练习题-答案

合集下载

数学建模题目及答案

数学建模题目及答案

09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设 :(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A 、B 、C 、D 处,A 、B,C 、D的初始位置在与x 轴平行,再假设有一条在x 轴上的线ab,则ab 也与A 、B ,C 、D 平行。

当方桌绕中心0旋转时,对角线 ab 与x 轴的夹角记为θ。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令 ()f θ为A 、B 离地距离之和,()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。

由假设(1),()f θ,()g θ均为θ的连续函数。

又由假设(3),三条腿总能同时着地, 故()f θ()g θ=0必成立(∀θ)。

不妨设(0)0f =,(0)0g >g (若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。

证明:当θ=π时,AB 与CD 互换位置,故()0f π>,()0g π=。

作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。

《数学建模1》《数学建模2》《数学建模3》《数学建模4》试题及答案

《数学建模1》《数学建模2》《数学建模3》《数学建模4》试题及答案

1为调查大学中某一年级学生参加外语考试作弊的比例,用随机问答法进行调查。

设计的两个问题为:问题1:你在这次考试中有作弊行为;问题2:你在这次考试中无作弊行为。

设计的题号卡共100张,其中75张标有数字1,25张标有数字2。

请200名学生根据任意抽得的卡上的标号对问题1或问题2用“是”或“否”回答(抽出的卡再放回),结果有60名回答为“是”,则该年级学生外语考试作弊的比例约为[ 单选题:6 分]A 1%B 5%C 10%D 15%试题解析您的答案:C回答正确2如果原料钢管的长度为19米,当客户的需求为4米、6米、8米有几种合理的切割模式?[ 单选题:6 分]A 6B 7C 8D 不确定试题解析您的答案:B回答正确3原料钢管的长度为19米,客户的需求为4米50根、6米20根、8米15根,则需要的最少原料钢管数为[ 单选题:6 分]A 24B 25C 26D 27试题解析您的答案:D回答正确4在合理切割模式下,余料的长度应该[ 单选题:6 分]A 小于客户需要钢管的最小长度B 小于客户需要钢管的最大长度C 大于客户需要钢管的最小长度D 大于客户需要钢管的大长度试题解析您的答案:A回答正确5在敏感问题调查中,为了减轻被调查者的抵触情绪,瓦纳设计了一种随机问答法,这种方法需要向调查者提几个问题[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确6钢管下料问题1中,客户需求的钢管米数为[ 多选题:8分 ]A 4B 6C 8D 10试题解析您的答案:ABC回答正确7钢管下料问题2中,在客户增加了需求之后,客户需求的钢管米数为[ 多选题:8分 ]A 4B 5C 6D 8试题解析您的答案:ABCD回答正确8利用瓦纳的随机问答法进行敏感问题调查时,调查结果与下列哪些量有关[ 多选题:8分 ]A 调查的人数B 回答“是”的人数C 标有不同数字的题号卡所占的比例D 进行调查的时间试题解析您的答案:ABC回答正确9钢管下料问题中,对于大规模问题,用模型的约束条件界定合理模式时采用的做法是[ 多选题:8分 ]A 增加约束B 缩小可行域C 减小约束D 增大可行域试题解析您的答案:AB回答正确10钢管下料问题中,在合理切割模式下,余料的米数可以为[ 多选题:8分 ]A 1B 2C 3D 4试题解析您的答案:ABC回答正确11LINGO软件只能求解整数线性规划问题[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12敏感问题调查时,直接向被调查者提问该问题就可以得到真实的结果[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13钢管下料时,不同的切割标准对应的切割方案也不同[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确14用户的需求种类越多,对应的合理切割模式也越多[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15利用瓦纳的随机问答法进行敏感问题调查时,标有数字1和数字2的题号卡的数量必须相等[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1市场经济中,若供大于求,则下阶段会出现?[ 单选题:6 分]A 价格上涨B 价格下降C 没有变化D 供求平衡试题解析您的答案:B回答正确2若有10个工作台,传送带上有40个挂钩,稳态情况下,一个周期内运走的产品数占总产品数的比例为?[ 单选题:6 分]A 25%B 50%C 89.4%D 100%试题解析您的答案:C回答正确3市场经济中,生产者管理水平提高会导致?[ 单选题:6 分]A 平衡点的稳定条件放宽B 平衡点的稳定条件收紧C 没有变化D 市场震荡加剧试题解析您的答案:A回答正确4甲乙丙三系人数分别为103, 63, 34, 总共21个代表席位,按Q值方法进行分配,丙系分得的席位数为?[ 单选题:6 分]A 4B 3C 5D 不确定试题解析您的答案:A回答正确5甲乙丙三系人数分别为103, 63, 34, 总共20个代表席位,按照比例加惯例的方法,甲系分得的席位数为?[ 单选题:6 分]A 9B 10C 11D 不确定试题解析您的答案:B回答正确6若a表示消费者对需求的敏感程度,b表示生产者对价格的敏感程度,则下列说法中正确的是[ 多选题:8分 ]A a越小越有利于经济稳定B a越大越有利于经济稳定C b越小越有利于经济稳定D b越大越有利于经济稳定试题解析您的答案:AC回答正确7市场经济中的蛛网模型主要研究?[ 多选题:8分 ]A 商品数量与价格的变化规律B 商品数量与价格的振荡在什么条件下趋向稳定C 生产者管理水平对平衡点稳定性的影响D 当不稳定时政府能采取什么干预手段使之稳定试题解析您的答案:ABCD回答正确8提高传送带效率的途径有?[ 多选题:8分 ]A 增加工作台数B 减少工作台数C 增加挂钩数D 减少挂钩数试题解析您的答案:BC回答正确9传送系统的效率模型中,主要研究?[ 多选题:8分 ]A 衡量传送带效率的指标B 提高传送带效率的途径C 效率与工作台数量的关系D 效率与挂钩数量的关系试题解析您的答案:ABCD回答正确10席位分配的理想化准则应满足?[ 多选题:8分 ]A 每方分得的席位数介于应得的席位数向上取整和向下取整之间B 当总席位增加时,每方分得的席位数都不会减少C 每方分得的席位数应该四舍五入D 随机分配试题解析您的答案:AB回答正确11席位分配时,Q值方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12席位分配时,比例加惯例方法符合理想化准则的两个条件[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确13在市场经济中,供求关系是一直保持平衡的[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14挂钩数量越多,传送带的效率就越高[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15席位分配时,比例加惯例方法和Q值方法各有优缺点[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确1A、B两家电视机厂竞争的二人零和纯策略博弈模型中,A厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 4试题解析您的答案:B回答正确2二人零和纯策略博弈求解时采用的原则是?[ 单选题:6 分]A 考虑到最坏的可能性的基础上争取最好结果B 考虑到最好的可能性的基础上争取最好结果C 考虑到最坏的可能性的基础上争取最坏结果D 考虑到最好的可能性的基础上争取最坏结果试题解析您的答案:A回答正确3A、B两家电视机厂竞争的二人零和纯策略博弈模型中,B厂应生产的电视机型号为?[ 单选题:6 分]A 1B 2C 3D 不确定试题解析您的答案:B回答正确41981年美国国会表决里根总统年度财政预算时,民主党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 弃权试题解析您的答案:A回答正确51981年美国国会表决里根总统年度财政预算时,共和党应该采取的策略是?[ 单选题:6 分]A 大体支持里根B 反对里根C 完全支持里根D 与民主党妥协试题解析您的答案:C回答正确6二人零和纯策略博弈问题中,利用最大最小原则(最小最大原则)对A的赢利矩阵进行操作,得到的最优解aij满足?[ 多选题:8分 ]A aij是它所在行中的最小值B aij是它所在列中的最小值C aij是它所在行中的最大值D aij是它所在列中的最大值试题解析您的答案:AD回答正确7求纳什均衡点时,采用的方法是[ 多选题:8分 ]A 对赢利表中的赢利对的第一个元素按列求出最大值,将最大元素标上“*”B 对赢利对的第二个元素按行求出最大值,将最大元素标上“*”C 两个元素同时标有“*”号的即为纳什均衡点D 一个元素标有“*”号的即为纳什均衡点试题解析您的答案:ABC回答正确8二人非零和纯策略博弈模型的求解原则有?[ 多选题:8分 ]A 理性原则B 无悔原则C 自由原则D 随机原则试题解析您的答案:AB回答正确9本节讲述的矩阵博弈模型有?[ 多选题:8分 ]A 二人零和纯策略博弈B 二人非零和纯策略博弈C 三人零和纯策略博弈D 三人非零和纯策略博弈试题解析您的答案:AB回答正确10二人零和纯策略博弈的求解时,采用的原则可以称为?[ 多选题:8分 ]A 最大最小原则B 最小最大原则C 最大最大原则D 最小最小原则试题解析您的答案:AB回答正确11二人非零和纯策略博弈模型中,对应任意的赢利矩阵,纳什均衡点必然存在[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确12二人零和纯策略博弈模型中,鞍点对应的策略符合最小最大原则[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确13二人非零和纯策略博弈模型中,无悔原则和理性原则是一回事[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确14二人零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:正确回答正确15二人非零和纯策略博弈模型中,一方之所失即为另外一方之所得[ 判断题:6分 ]正确错误试题解析您的答案:错误回答正确1多阶段决策时,考虑的原则是?[ 单选题:6 分]A 风险越低越好B 风险越高越好C 期望收益越大越好D 决策过程越简单越好试题解析您的答案:C回答正确2随机事件是?[ 单选题:6 分]A 在一定条件下可能发生也可能不发生的事件B 在一定条件下一定发生的事件C 在一定条件下不可能发生的事件D 从来没发生过的事件试题解析您的答案:A回答正确3有一大批产品,其中15%为一等品,75%为二等品,10%为三等品.一、二、三等产品的单价分别为10元8元和6元.有人要采购一批这种产品,但来不及检验,商品的价格可定为[ 单选题:6 分]A 10元B 8元C 6元D 8.1元试题解析您的答案:D回答正确4口袋中有大小重量相同的红黄球各1个,黑球2个,任摸一球,摸到红球的概率为?[ 单选题:6 分]A 0.25B 0.5C 0.75D 1试题解析您的答案:A回答正确5某船主要对下月渔船是否出海做出决策。

数学建模试卷及参考答案

数学建模试卷及参考答案

数学建模 试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。

2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。

3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。

二、模型求证题(共2小题,每小题10分,本大题共20分)1、 某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为t=a,到达目的时刻为t=b,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t),t 是一天内时刻变量,则f(t),g(t)在[a,b]是连续函数。

作辅助函数F(t)=f(t)-g(t),它也是连续的,则由f(a)=0,f(b)>0和g(a)>0,g(b)=0,可知F (a )<0, F(b)>0,由介值定理知存在t0属于(a,b)使F(t0)=0, 即f(t0)=g(t0) 。

2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分)解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,k=1,2,........,k x ,k y =0,1,2,3。

将二维向量k s =(k x ,k y )定义为状态。

安全渡河条件下的状态集合称为允许状态集合,记做S 。

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案

数学建模基础练习一及参考答案数学建模基础练习一及参考答案练习1matlab练习一、矩阵及数组操作:1.利用基本矩阵产生3×3和15×8的单位矩阵、全1矩阵、全0矩阵、均匀分布随机矩阵([-1,1]之间)、正态分布矩阵(均值为1,方差为4),然后将正态分布矩阵中大于1的元素变为1,将小于1的元素变为0。

2.利用fix及rand函数生成[0,10]上的均匀分布的10×10的整数随机矩阵a,然后统计a中大于等于5的元素个数。

3.在给定的矩阵中删除含有整行内容全为0的行,删除整列内容全为0的列。

4.随机生成10阶的矩阵,要求元素值介于0~1000之间,并统计元素中奇数的个数、素数的个数。

二、绘图:5.在同一图形窗口画出下列两条曲线图像,要求改变线型和标记:y1=2x+5;y2=x^2-3x+1,并且用legend标注。

6.画出下列函数的曲面及等高线:z=sinxcosyexp(-sqrt(x^2+y^2)).7.在同一个图形中绘制一行三列的子图,分别画出向量x=[158101253]的三维饼图、柱状图、条形图。

三、程序设计:8.编写程序计算(x在[-8,8],间隔0.5)先新建的,在那上输好,保存,在命令窗口代数;9.用两种方法求数列:前15项的和。

10.编写程序产生20个两位随机整数,输出其中小于平均数的偶数。

11.试找出100以内的所有素数。

12.当时,四、数据处理与拟合初步:13.随机产生由10个两位随机数的行向量A,将A中元素按降序排列为B,再将B重排为A。

14.通过测量得到一组数据:t12345678910y4.8424.3623.7543.3683.1693.0383.0343.0163.0123.005分别采用y=c1+c2e^(-t)和y=d1+d2te^(-t)进行拟合,并画出散点及两条拟合曲线对比拟合效果。

15.计算下列定积分:16.(1)微分方程组当t=0时,x1(0)=1,x2(0)=-0.5,求微分方程t在[0,25]上的解,并画出相空间轨道图像。

大学生数学建模竞赛_炼油厂问题解

大学生数学建模竞赛_炼油厂问题解
2、若两点间距离以欧氏距离计算,且该区域的任一点均可作为炼油厂的候选厂址,炼油厂应建在何处,总费用是多少?
3、若油田高层已决定在该地区建两个炼油厂,若不考虑炼油厂的建造费用,仅考虑运费,两个炼油厂分别建在什么位置,各应服务于哪几个油井(假定一个油井的原油只能运往一个炼油厂),才能使总运费最低,立与预测结果基于精确的数据。
缺点如下:
单纯只是运用某软件进行分析,不能结合其他软件综合运算。
对于模型的预测结果缺少必要的检验。
xy4mn1=c(4)*((x(4)-m(1))^2+(y(4)-n(1))^2)^(1/2);
xy5mn1=c(5)*((x(5)-m(1))^2+(y(5)-n(1))^2)^(1/2);
xy6mn1=c(6)*((x(6)-m(1))^2+(y(6)-n(1))^2)^(1/2);
xy7mn1=c(7)*((x(7)-m(1))^2+(y(7)-n(1))^2)^(1/2);
执行上述循环直到i=9时求和上述所得到的MN1,MN2,记为Z1
当m1,m2=90,n1,n2=70,时结束循环,比较Z1,Z2……Zn,选出最小值Zmin.
其对应程序如下:
sets:
zb/1..9/:x,y,c;
endsets
data:
x=26 8 4 51 38 17 81 19 62;
y=38 25 70 32 17 12 53 45 22;
该点对应如下图:
图1.2
(3)关于建造两个炼油厂的情况:
其算法思想是先假设两个炼油厂的位置(m1,m1),(m2,n2),(0<m1,2<90,0<n1,2<70),再计算油井到这两个炼油厂的运费,比较得出较小值,然后累加全部最小值,得出答案。

数学建模题目及答案-数学建模100题

数学建模题目及答案-数学建模100题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载数学建模题目及答案-数学建模100题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容09级数模试题1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。

试作合理的假设并建立数学模型说明这个现象。

(15分)解:对于此题,如果不用任何假设很难证明,结果很可能是否定的。

因此对这个问题我们假设:(1)地面为连续曲面(2)长方形桌的四条腿长度相同(3)相对于地面的弯曲程度而言,方桌的腿是足够长的(4)方桌的腿只要有一点接触地面就算着地。

那么,总可以让桌子的三条腿是同时接触到地面。

现在,我们来证明:如果上述假设条件成立,那么答案是肯定的。

以长方桌的中心为坐标原点作直角坐标系如图所示,方桌的四条腿分别在A、B、C、D 处,A、B,C、D的初始位置在与x轴平行,再假设有一条在x轴上的线ab,则ab也与A、B,C、D平行。

当方桌绕中心0旋转时,对角线 ab与x轴的夹角记为。

容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。

为消除这一不确定性,令为A、B离地距离之和,为C、D离地距离之和,它们的值由唯一确定。

由假设(1),,均为的连续函数。

又由假设(3),三条腿总能同时着地,故=0必成立()。

不妨设,g(若也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为:已知,均为的连续函数,,且对任意有,求证存在某一,使。

证明:当θ=π时,AB与CD互换位置,故,。

作,显然,也是的连续函数,而,由连续函数的取零值定理,存在,,使得,即。

又由于,故必有,证毕。

2.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

《数学建模》练习题库及答案.doc

《数学建模》练习题库及答案.doc

一、名词解释1.Table命令的使用格式;2.Solve命令的使用格式;3.Do命令的使用格式;4.Plot命令的使用格式;5.ListPlot命令的使用格式;6.Reduce命令的使用格式;7.Expand命令的使用格式;8.FindRoot命令的使用格式;9.Switch命令的使用格式;lO.ConstrainedMin命令的使用格式;11 .Factor命令的特点与几种使用格式。

12.Clear命令的特点与使用格式二、计算题1. 1959年8月4日是星期几,这一天与2001年12月4日之间共有多少天?2.求我国北京市的地理经纬度。

3.北美地区有几个国家?写出它们的名字。

4.求解递归关系式a” = 3% _2a”_2,ao =1,4 = 2。

5.求斐波那契(Fibonacci)数列Fibonacci[n]从n=l至【Jn = 50的值。

6.分别以0.1、0.01、0.001为误差上限,将J方化成近似分数。

7 .求下列矩阵的特征值与对应的特征向量:13•求解方程7% -和"—张+ 1X 14.求1+ 28+38+...+n 8的简洁表达式。

15.求Pell 方程.r 2 -234y 2 -1的最小正整数解。

16.将16进制的数字20转化为10进制的数字。

17.求下列矩阵的行列逆矩阵与转置矩‘1 2 3、A= 2 3 1、3 1 2,8.求多项式 f=( X1 + X2 +X3 + X4 + X5严中 Xi 3 x 23 X35 X42 X55 的系数。

9•求208素因子分解。

10. 用Lindo 求解下列整数线性规划问题。

max / = 20 兀 1 +10%兀1 +兀2 +兀3 = 30y, + y 2 + = 2020x l +10% = 30X 2 + 20y 2 = 25 x 3 + 15y 3s.tA 20兀i +10% <20*30 + 10*2030兀2+20y2 <30*30 + 20*20 25兀3+15儿 <25*30 + 15*20 x t , y j > 0,integers11. 求中国香港的地理经纬度。

数学建模习题及答案课后习题

数学建模习题及答案课后习题

第一部分课后习题1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。

学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。

(2)节中的Q值方法。

(3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数如下表:将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种方法的道理吗。

如果委员会从10人增至15人,用以上3种方法再分配名额。

将3种方法两次分配的结果列表比较。

(4)你能提出其他的方法吗。

用你的方法分配上面的名额。

2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。

比如洁银牙膏50g装的每支元,120g装的元,二者单位重量的价格比是:1。

试用比例方法构造模型解释这个现象。

(1)分析商品价格C与商品重量w的关系。

价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。

(2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w的增加c减少的程度变小。

解释实际意义是什么。

3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。

假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长):先用机理分析建立模型,再用数据确定参数4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应多大(如图)。

若知道管道长度,需用多长布条(可考虑两端的影响)。

如果管道是其他形状呢。

5.用已知尺寸的矩形板材加工半径一定的圆盘,给出几种简便、有效的排列方法,使加工出尽可能多的圆盘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学建模入门》练习题练习题1:发现新大陆!发现新大陆!人人都能做到,可是最终哥伦布做到了.为什么哥伦布能做到呢? (参考答案: 有兴趣、能想到、去做了、坚持到底。

)答:首先从历史的角度看,当时欧洲各国对东方的贸易需求量大增,原有的航线不足以满足欧洲国内需求,所以各国需要开辟新航线扩大贸易量.而指南针的引入以及造船技术的不断改进使得远洋航行成为可能。

其次,从哥伦布个人的角度来看,他有着坚定地信念和科学的头脑。

他坚持认为地球时圆的,一直向西方航行一定可以到达印度.而且在航行途中,当所有的船员已经放弃向前、想要返航的时候,哥伦布依旧坚持自己的看法,执意继续向西,最终才发现的新大陆。

练习题2:棋盘问题有一种棋盘有64个方格,去掉对角的两个格后剩下62个格(如下图),给你31块骨牌,每块是两个格的大小。

问能否用这些骨牌盖住这62个方格?答:不可以。

不能,如图所示。

图中共有 32 个红格,30 个蓝格,而每张骨牌必定盖住一蓝一红两格,那么最后两个红格用一个骨牌无论如何也盖不上。

练习题3:硬币游戏如果你和你的对手准备依次轮流地将硬币放在一个长方形桌子上,使得这些硬币不重叠。

最后放上硬币的人为胜者,在开始时你有权决定先放还是后放。

为了能赢得这场比赛,你决定先放还是后放呢?答:为了赢得比赛,决定先放。

具体做法如下:首先将硬币放在长方形桌子的中心,然后根据对手所放的硬币,找一桌子中心为对称中心的位置,直至对方没有地方方硬币为止,有长方形的对称性,只有中心不存在对称为止,故先放者必定会赢. 练习题4:高速问题一个人从 A 地出发,以每小时30公里的速度到达 B 地,问他从 B 地回到 A 地的速度要达到多少?才能使得往返路程的平均速度达到每小时60公里? 答:不能使平均速度达到60km/h,计算如下:假设返回的速度是x km/h ,A 、B 两地间距离为S km 。

那么往返的平均速度就是:V=x S S +⨯30S 2=x13012+=x +30x 60若令v=60,解之得:x=30+x ,显然无解。

所以若按照原路线返回的话,除非速度达到∞,否则平均速度不可能达到60km/h 。

练习题5:登山问题某人上午八点从山下的营地出发,沿着一条山间小路登山,下午五点到达山顶;次日上午八点又从山顶开始下山(沿同一条小路)返回,下午五点又到达了山下的营地。

问:是否能找到一个地点来回时刻是相同的? 答:可以找到.由于本题要求不能使用高数知识,我们只能从最简单的物理模型入手。

我们不妨假设在同一天,有两个人,同时分别从山顶和山脚出发,分别上山、下山,这两人碰面的地点就是来回时刻相同的地点。

设:上山的速度为V 1(t),下山的速度为V 2(t),山路长度为X.则两人相遇的时候,有:X=dt t Vdt t tt ⎰⎰+8281)()(V显然,两人一定相遇,本方程也一定会有解。

练习题6:兄弟三人戴帽子问题解放前,在一个村子里住着聪明的三兄弟,他们除恶杀了财主的儿子,犯了人命案。

县太爷有意想免他们一死,决意出一个难题测测他们是否真的聪明,如果他们能在一个时辰内回答出来,就免他们一死,否则就被处死.题目如下: 兄弟三人站成一路纵队(老三选择了站在最前面,他后面是老二,老大站在了最后面 ),并分别被蒙住了眼睛,县太爷说我这里有两顶黑帽子和三顶红帽子,接着分别给他们头上各带了一顶帽子,然后又分别把被蒙住的眼睛解开。

此时,老大只可以看见老三和老二头上的帽子,老二只可以看见老三头上的帽子,老三看不见帽子.只有一个时辰的时间,看谁能说出自己头上帽子的颜色,第一句声音有效.现在开始! (县太爷有多少种带帽子的方案,那一种最难?你能回答吗?) 答:全红1种,2红1黑3种,1红2黑3种。

共7种不同的戴法。

老大老二老三的帽子颜色依次为:红/黑、黑、红 的戴法最难。

因为老大看到一红一黑的时候无法判断自己的帽子颜色。

此时老二知道自己和老三的头上戴的是两红或者一红一黑,但是他看到老三头上戴着红帽子,也就无法判断出自己头上帽子的颜色.这是只有通过老三对老大老二反应的判断来推出自己头顶帽子的颜色. 练习题7:做出空间图形做出由曲面222y x z +=与2226y x z --=相交的空间曲线和所围成的立体的图形。

答:如下图,用matalb 作图:Matlab的m文件代码如下:t=0:0.1:2*pir=0:0。

1:sqrt(2)[t,r]=meshgrid(t,r)x=r。

*cos(t)y=r。

*sin(t)z1=x。

^2+2*y。

^2z2=6-2*x.^2-y。

^2surf(x,y,z1)hold onsurf(x,y,z2)练习题8:π之事,知多少?关于圆周率π的事,你们知道多少?答:圆周率,一般以π来表示,是一个在数学及物理学普遍存在的数学常数,是精确计算圆周长、圆面积、球体积等几何量的关键值,其定义为圆的周长与直径的比值。

也等于圆的面积与半径平方的比值。

在分析学里,可以严格定义为满足的最小正实数,这里的是正弦函数(采用分析学的定义)。

简介圆周率(π读pài)是一个常数(约等于3.141592654),是代表圆周长和直径的比值。

它是一个无理数,即是一个无限不循环小数。

在日常生活中,通常都用3.14来代表圆周率去进行近似计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位.π(读作“派")是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉从一七三六年开始,在书信和论文中都用π来表示圆周率.因为他是大数学家,所以人们也有样学样地用π来表示圆周率了.但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现.π=Pai(π=Pi)古希腊欧几里德《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。

历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取pi=(4/3)^4≒3.1604 。

第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))〈π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术.他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3。

14)。

为什么要继续计算π第一,用这个方法就可以测试出电脑的毛病。

如果在计算中得出的数值出了错,这就表示硬件有毛病或软件出了错,这样便需要进行更改。

同时,以电脑计算圆周率也能使人们产生良性的竞争,科技也能得到进步,从而改善人类的生活。

就连微积分、高等三角恒等式,也是由研究圆周率的推动,从而发展出来的。

第二,数学家把π算的那么长,是想研究π的小数是否有规律。

目前为止,π的值己被算至小数点后60000000000001位(IBM蓝色基因)。

π在数学外的用途1.在Google公司2005年的一次公开募股中,集资额不是通常的整头数,而是$14,159,265,这当然是由π小数点后的位数得来.(顺便一提,谷歌公司2004年的首次公开募股,集资额为$2,718,281,828,与数学常数e有关)2.排版软件TeX从第三版之后的版本号为逐次增加一位小数,使之越来越接近π的值:3.1,3。

14,……当前的最新版本号是3.1415923.圆周率的终极日3月14日为圆周率日,“终极圆周率日”则是1592年3月14日6时54分,因为其英式记法为“3/14/1592 6。

54”,恰好是圆周率的十位近似值。

4。

圆周率近似值日圆周率近似值日有两天,7月22日(英国式日期记作22/7,看成圆周率的近似分数)谐音法众所周知,圆周率π是一个有名的无理数,一个无限不循环小数,无理数不好记,如果利用“谐音法”,把小数点后的前一百位编成如下顺口溜,用不了几分钟就可以记住。

首先设想一个好酒贪杯的酒徒在山寺中狂饮,醉“死”在山沟的过程(30位):圆周率3。

14159 26 535897 932 384山巅一寺一壶酒。

儿乐:“我三壶不够吃"。

“酒杀尔”,杀不死,626 43383 279乐而乐,死三三巴三,儿弃酒。

接着设想“死”者的父亲得知后的感想(15位):502 8841971 69399吾疼儿:“白白死已够凄矣,留给山沟沟".再设想“死"者的父亲到山沟里三番五次寻找儿子的情景(15位):37510 58209 74944山拐我腰痛,我怕尔冻久,凄事久思思。

再设想在一个山洞里找到“死”者并把他救活后的情景(40位):592 307 816 406 286 20899吾救儿,山洞拐,不宜留。

四邻乐,儿不乐,儿疼爸久久。

86280 348 25 34211 70679爸乐儿不懂,“三思吧!”儿悟,三思而依依,妻等乐其久.以上顺口溜不免有点东拼西凑,牛头不对马嘴,但是却把抽象的数字串形象化了,非常有利于记忆。

练习题9:身高和年龄的关系你不认为“身高和年龄之间有关系吗?”请你们三个人分别按照每人从出生到现在每年的身高和对应的年龄记录下来(在你本人的宝宝成长纪念册中),制成表(注明:男生、女生,籍贯),然后分别找到它们之间的关系,用数学(函数和图形)的方法表示出来.练习题10:过三峡大坝请你说明船舶是如何从上游通过长江三峡大坝去下游的,又是如何从下游通过长江三峡大坝去上游的。

换句话说,船舶是如何通过长江三峡大坝的。

答:本题主要是连通器原理的应用。

从低位与高位之间有闸门,把闸门打开,水位相平,船开驶入高水位中去,再关掉闸门,然后再往更高水位中注水,再把闸门打开,水位又相平,船又可以驶进去,依此类推,反之亦然。

练习题11:你如何解释?首都博物馆里有一个展品是一个出土的石盒子容器(见下图),它的外侧表面的石刻画中,有一个佛的头像是一个方形的洞,这如何解释呢?答:原容器在做成后不久遭到损坏,头像被损毁.为了将头像修补完整,古人在原头像位置凿了一个方形孔后,再将头像插入方孔。

之所以是方形,主要是因为方形容易打孔,同时也不会使头像轻易发生转动。

后台,这个修补的头像又剥落了,所以才会留下这个方孔。

练习题12:海盗分金币有五个海盗在海上抢得了100枚金币,上岸后他们要分赃。

他们五个人排了个顺序,第一个人先制定一个分配方案,如果第一个人的方案被通过并执行,此次分金币的事结束,如果第一个人的方案被否决,把第一个人杀掉. 100枚金币由其余的四个人分,再由第二个人制定一个分配方案,依次类推,直到金币被分完。

相关文档
最新文档