2021年中考数学专项训练---利润问题(含解析)
中考数学试卷利润题

一、选择题(本大题共10小题,每小题3分,共30分)1. 下列关于利润的说法中,正确的是()A. 利润总是大于成本B. 利润总是小于售价C. 利润与成本成正比D. 利润与售价成反比2. 一件商品的成本为200元,售价为300元,若要使利润率提高5%,则售价应调整为()A. 320元B. 330元C. 340元D. 350元3. 某商店进购一批商品,成本为1000元,售价为1500元,若要使利润率提高10%,则售价应调整为()A. 1650元B. 1700元C. 1750元D. 1800元4. 下列关于利润问题的方程中,正确的是()A. 利润 = 成本 + 售价B. 利润 = 售价 - 成本C. 利润率 = 利润 / 成本D. 利润率 = 利润 / 售价5. 一件商品的成本为120元,售价为180元,若要使利润率提高20%,则售价应调整为()A. 216元B. 216.8元C. 217.6元D. 218.4元6. 某商店进购一批商品,成本为500元,售价为800元,若要使利润率提高15%,则售价应调整为()A. 920元B. 925元C. 930元D. 935元7. 下列关于利润问题的公式中,正确的是()A. 利润 = 成本× 利润率B. 利润率 = 利润 / 成本C. 利润 = 售价× 利润率D. 利润率 = 售价 / 成本8. 一件商品的成本为80元,售价为120元,若要使利润率提高25%,则售价应调整为()A. 150元B. 152元C. 154元D. 156元9. 某商店进购一批商品,成本为300元,售价为500元,若要使利润率提高30%,则售价应调整为()A. 650元B. 652元C. 654元D. 656元10. 下列关于利润问题的不等式中,正确的是()A. 利润 > 成本B. 利润 < 售价C. 利润率 > 0D. 利润率 < 100%二、填空题(本大题共5小题,每小题5分,共25分)11. 利润率是表示利润与成本的百分比,其计算公式为:利润率 = 利润 / 成本× 100%。
初中数学第二十一章一元二次方程应用题-利润专题2(含答案)

初中数学第二十一章一元二次方程应用题-利润专题2(含答案)学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是()A.(3+x)(4−0.5x)=15B.(x+3)(4+0.5x)=15C.(x+4)(3−0.5x)=15D.(x+1)(4−0.5x)=152. 某商场以10元/件的进价新进一批商品,根据以往的销售经验知,当售价定为15元/件时,每天可售出商品200件,且售价每提高2元,每天将减少售出商品10件.商场销售该商品每天的利润为650元,求该商品的售价是多少?若设商品售价为x元/件,则可列出的一元二次方程是( )A.[200−10(x−15)](x−15)=650B.[200−10(x−15)](x−10)=650C.(200−x−152×10)(x−15)=650 D.(200−x−152×10)(x−10)=6503. 某种文化衫,平均每天销售40件,每件盈利20元,由于换季现准备降价销售,若每件降价0.5元,则每天可多售5件,为了尽快减少库存且每天要盈利1080元,每件应降价()元.A.14B.2C.2或14D.28或44. 福山一水果店以每斤12元的价格购进大樱桃若干斤,然后以每斤18元的价格出售,每天可售出100斤.通过调查发现,若每斤每降低1元,每天可多售出30斤.水果店要想每天销售大樱桃盈利1000元,决定降价销售.若将大樱桃每斤的售价降低x元,则列方程为( )A.(18−x)(100+30x)=1000B.(18−12−x)⋅30x=1000C.(18−x)(100−30x)=1000D.(18−12−x)(100+30x)=10005. 某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为( )A.(50+x)(10−x)=504B.50(10−x)=504C.(10−x)(50+6x)=504D.(10−6x)(50+x)=5046. 宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为元时,宾馆当天的利润为10890元.则有( )A. B.C. D.2. 某商场以10元/件的进价新进一批商品,根据以往的销售经验知,当售价定为15元/件时,每天可售出商品200件,且售价每提高2元,每天将减少售出商品10件.商场销售该商品每天的利润为650元,求该商品的售价是多少?若设商品售价为x元/件,则可列出的一元二次方程是( )A.[200−10(x−15)](x−15)=650B.[200−10(x−15)](x−10)=650C.(200−x−152×10)(x−15)=650 D.(200−x−152×10)(x−10)=6508. 某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的关系.每盆植入3株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利为20元,需要每盆增加几株花苗?设每盆增加株花苗,下面列出的方程中符合题意的是( )A. B.C. D.9. 某商品原来每个售价400元,经过连续两次降价后,现在每个售价为256元,设平均每次下降的百分比为x,则( )A.400(1−2x)=256B.400(1−x)2=256C.400×2(1−x)=256D.400(1+x)2=25610. 某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用5元.为尽快回笼资金,该电商计划开展降价促销活动.通过市场调研发现,该时装售价每降价1元,每天销量增加4件.若该电商每天扣除平台推广费之后的利润要达到4500元,则适合的售价应定于( )A.70元B.80元C.70元或90元D.90元二、填空题(本题共计 7 小题,每题 3 分,共计21分,)11. 某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件.现在采取提高售价,减少销量的方法增加利润,已知这种商品每涨价0.5元,其销量减少10件.(1)若售价为14元,则每天的销量为________件;(2)若售价为x元,则每天的销量为________件(用含x的代数式表示);(3)要使每天获得700元的利润,则售价为________元.12. 平遥牛肉是我国美食文化的精华之一.已知某专卖店平遥牛肉的进价为每份10元,现在的售价是每份16元,每天可卖出120份.据市场调查,每涨价1元,每天要少卖出10份.如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价________元.13. 某商店出传某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为________.14. 某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,设每千克应涨价x元,则可列方程为________.15. 超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为________元.16. 新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x元,可列方程为.17. 某商品每天销售40件,每件盈利20元,为减少库存,让顾客得到实惠,每件降价1元,则每天多售10件,若每天盈利1430元,每件应降价________元.三、解答题(本题共计 3 小题,每题 10 分,共计30分,)18. 某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=−10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?19. 女本柔弱,为母则刚,说的是母亲对子女无私的爱,母爱伟大,值此母亲节来临之际,某花店推出一款康乃馨花束,经过近几年的市场调研发现,该花束在母亲节的销售量y(束)与销售单价x(元)之间满足如图所示的一次函数关系,已知该花束的成本是每束100元.(1)求出y关于x的函数关系式(不要求写x的取值范围);(2)设该花束在母亲节盈利为w元,写出w关于x的函数关系式;并求出当售价定为多少元时,利润最大;(3)花店开拓新的进货渠道,以降低成本.预计在今后的销售中,母亲节期间该花束的销售量与销售单价仍存在(1)中的关系.若想实现销售单价为200元,且销售利润不低于9900元的销售目标,该花束每束的成本应不超过多少元.20. 某商场新上市一款运动鞋,每双进货价为250元,投入市场后,调研表明;当销售价为290元时,平均每天能售出8双;而当销售价每降低5元时,平均每天就能多售出4双.(1)商场要想尽快回收成本,并使这款运动鞋的销售利润平均每天达到420元,那么这款运动鞋应降价多少元?销售价应定为多少元?(2)这款运动鞋的销售价定为多少元?可使商场平均每天获得的利润最多?最大利润是多少元?参考答案与试题解析初中数学第二十一章一元二次方程应用题-利润专题2一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.A【解析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4−0.5x)元,由题意得(x+ 3)(4−0.5x)=15即可.2.D【解析】本题考查了一元二次方程的应用,解题关键是理解题意,找出题中的等量关系.根据:利润等于(售价减进价)乘以销售量列出方程即可.3.A4.D5.C利润=售价-进价,降低5元增加10件,可知降低x元增加2x件,从而列出方程即可.6.C 2.D【解析】本题考查了一元二次方程的应用,解题关键是理解题意,找出题中的等量关系.根据:利润等于(售价减进价)乘以销售量列出方程即可.8.A9.B10.A二、填空题(本题共计 7 小题,每题 3 分,共计21分)11.120200−10⋅x−10 0.515(1)根据这种商品每涨价0.5元,其销量减少10件列式计算即可;(2)根据这种商品每涨价0.5元,其销量减少10件,得出这种商品售价为x元时,涨价(x−10)元,则每天的销售量列代数式即可得到;(3)首先用含x的代数式表示出每天的销售量及单件的利润,然后根据总利润=单件利润×销售量列出方程,解方程求出x的值,最后根据“减少销量的方法增加利润”即可得到答案.12.113. 14. (10+x)(500−20x)=6000【解析】设每千克水果涨了x元,那么就少卖了20x千克,根据市场每天销售这种水果盈利了6000元可列方程.15.5或1016. (40−x) (20+2x)=1200【解析】试题分析:设每件童装应降价元,可列方程为:(40−x)(20+2x)=1200.故答案为(40−x)(20+2x)= 120017.9【解析】设应降价x元,则每件盈利(20−x)元,每天可出售(40+10x)件,所以此时商场平均每天要盈利(20−x)(40+ 10x)元,根据商场平均每天要盈利1430元,为等量关系列出方程求解即可。
中考利润问题及答案

二次函数的实际应用知识要点:二次函数的一般式c bx ax y ++=2(0≠a )化成顶点式ab ac a b x a y 44)2(22-++=,如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值).即当0>a 时,函数有最小值,并且当abx 2-=,a b ac y 442-=最小值;当0<a 时,函数有最大值,并且当abx 2-=,a b ac y 442-=最大值.如果自变量的取值范围是21x x x ≤≤,如果顶点在自变量的取值范围21x x x ≤≤内,则当abx 2-=,a b ac y 442-=最值,如果顶点不在此范围内,则需考虑函数在自变量的取值范围内的增减性;如果在此范围内y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小.[例1]:求下列二次函数的最值:(1)求函数322-+=x x y 的最值. 解:4)1(2-+=x y当1-=x 时,y 有最小值4-,无最大值.(2)求函数322-+=x x y 的最值.)30(≤≤x 解:4)1(2-+=x y∵30≤≤x ,对称轴为1-=x∴当12330有最大值时;当有最小值时y x y x =-=.[例2]:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?解:设涨价(或降价)为每件x 元,利润为y 元,1y 为涨价时的利润,2y 为降价时的利润 则:)10300)(4060(1x x y -+-=)60010(102---=x x6250)5(102+--=x当5=x ,即:定价为65元时,6250max =y (元))20300)(4060(2x x y +--=)15)(20(20+--=x x 6125)5.2(202+--=x当5.2=x ,即:定价为57.5元时,6125max =y (元) 综合两种情况,应定价为65元时,利润最大.[练习]:1.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.如何提高售价,才能在半个月内获得最大利润? 解:设每件价格提高x 元,利润为y 元, 则:)20400)(2030(x x y --+= )20)(10(20-+-=x x 4500)5(202+--=x 当5=x ,4500max =y (元)答:价格提高5元,才能在半个月内获得最大利润.2.某旅行社组团去外地旅游,30人起组团,每人单价800元.旅行社对超过30人的团给予优惠,即旅行团每增加一人,每人的单价就降低10元.你能帮助分析一下,当旅行团的人数是多少时,旅行社可以获得最大营业额? 解:设旅行团有x 人)30(≥x ,营业额为y 元, 则:)]30(10800[--=x x y )110(10--=x x 30250)55(102+--=x 当55=x ,30250max =y (元)答:当旅行团的人数是55人时,旅行社可以获得最大营业额.[例3]: 某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表: 若日销售量y 是销售价x 的一次函数. ⑴求出日销售量y (件)与销售价x (元)的函数关系式;⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?解:⑴设一次函数表达式为b kx y +=.则1525,220k b k b +=⎧⎨+=⎩ 解得⎩⎨⎧=-=401b k ,•即一次函数表达式为40+-=x y .⑵ 设每件产品的销售价应定为x 元, 所获销售利润为w 元y x w )10(-=)40)(10(+--=x x400502-+-=x x225)25(2+--=x 当25=x ,225max =y (元)答:产品的销售价应定为25元时,每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点: ⑴在“当某某为何值时,什么最大(或最小、最省)”的设问中, “某某”要设为自变量,“什么”要设为函数;⑵求解方法是依靠配方法或最值公式,而不是解方程. 3.(2006十堰市)市“健益”超市购进一批20元/千克的绿色食品,如果以30•元/千克销售,那么每天可售出400千克.由销售经验知,每天销售量y (千克)•与销售单价x (元) (30≥x )存在如下图所示的一次函数关系式. ⑴试求出y 与x 的函数关系式;⑵设“健益”超市销售该绿色食品每天获得利润P 元,当销售单价为何值时,每天可获得最大利润?最大利润是多少? ⑶根据市场调查,该绿色食品每天可获利润不超过4480元,•现该超市经理要求每天利润不得低于4180元,请你帮助该超市确定绿色食品销售单价x 的范围(•直接写出答案). 解:⑴设y=kx+b 由图象可知,3040020,:402001000k b k k b b +==-⎧⎧⎨⎨+==⎩⎩解之得, 即一次函数表达式为100020+-=x y )5030(≤≤x . ⑵ y x P )20(-=)100020)(20(+--=x x 200001400202-+-=x x∵020<-=a ∴P 有最大值.当35)20(21400=-⨯=x 时,4500max =P (元)(或通过配方,4500)35(202+--=x P ,也可求得最大值)答:当销售单价为35元/千克时,每天可获得最大利润4500元.⑶∵44804500)35(2041802≤+--≤x 16)35(12≤-≤x ∴31≤x ≤34或36≤x≤39.作业布置: 1.二次函数1212-+=x x y ,当x=_-1,_时,y 有最_小_值,这个值是23-. 2.某一抛物线开口向下,且与x 轴无交点,则具有这样性质的抛物线的表达式可能为12--=x y (只写一个),此类函数都有_大_值(填“最大”“最小”).3.不论自变量x 取什么实数,二次函数y =2x 2-6x +m 的函数值总是正值,你认为m 的取值范围是29>m ,此时关于一元二次方程2x 2-6x +m =0的解的情况是_有解_(填“有解”或“无解”)解:29)23(22-+-=m x y ∵0)23(22≥-x ,要使0>y ,只有029>-m ∴29>m4.小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L 是 4.5米 .解:当05.3=y 时,21 3.55y x =-+05.3= 45.052⨯=x ,5.1=x 或5.1-=x (不合题意,舍去)5.在距离地面2m 高的某处把一物体以初速度V 0(m/s )竖直向上抛出,•在不计空气阻力的情况下,其上升高度s (m )与抛出时间t (s )满足:S=V 0t-12gt 2(其中g 是常数,通常取10m/s 2),若V 0=10m/s ,则该物体在运动过程中最高点距离地面__7_m .解:t t s 1052+-=5)1(52+--=t当1=t 时,5max =s ,所以,最高点距离地面725=+(米).6.影响刹车距离的最主要因素是汽车行驶的速度及路面的摩擦系数.有研究表明,晴天 在某段公路上行驶上,速度为V (km/h )的汽车的刹车距离S (m )可由公式S=1100V 2确定;雨天行驶时,这一公式为S=150V 2.如果车行驶的速度是60km/h ,•那么在雨天 行驶和晴天行驶相比,刹车距离相差_36_米.7.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_5_元,最大利润为_625_元.解:设每件价格降价x 元,利润为y 元, 则:)20)(70100(x x y +--=600102++-=x x 625)5((2+--=x当5=x ,625max =y (元)答:价格提高5元,才能在半个月内获得最大利润.8.如图,一小孩将一只皮球从A 处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A 距地面的距离OA 为1 m ,球路的最高点B (8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1 m) .xyA B O解:设9)8(2+-=x a y ,将点A )1,0(代入,得81-=a12819)8(8122++-=+--=x x x y令0=y ,得09)8(812=+--=x y98)8(2⨯=-x268±=x ,)0,268(+C ,∴5.242688≈++=OC (米)9.(2006年青岛市)在2006年青岛崂山北宅樱桃节前夕,•某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:销售价x (元/千克) … 25 242322…销售量y (千克)… 2000 2500 3000 3500 …(1)在如图的直角坐标系内,作出各组有序数对(x ,y )所对应的点.连接各点并观察所得的图形,判断y 与x 之间的函数关系,并求出y 与x 之间的函数关系式; (2)若樱桃进价为13元/千克,试求销售利润P (元)与销售价x (元/千克)之间的函数关系式,并求出当x 取何值时,P 的值最大? 解:(1)由图象可知,y 是x 的一次函数,设y=kx+b ,• ∵点(•25,2000),(24,2500)在图象上,∴200025500,:25002414500k bk k b b =+=-⎧⎧⎨⎨=+=⎩⎩解得 , ∴y=-500x+14500. (2)P=(x-13)·y=(x-13)·(-500x+14500))37744144142(500)37742(500)29)(13(50022+-+--=+--=---=x x x x x x=-500(x-21)2+32000∴P 与x 的函数关系式为P=-500x 2+21000x-188500,当销售价为21元/千克时,能获得最大利润,最大利润为32000元.10.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg 放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg 蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x 天后每千克活蟹的市场价为p 元,写出p 关于x 的函数关系式; (2)如果放养x 天后将活蟹一次性出售,并记1000 kg 蟹的销售总额为Q 元,写出Q 关于x 的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q -收购总额)? 解:(1)由题意知:p=30+x,(2)由题意知:活蟹的销售额为(1000-10x)(30+x)元,死蟹的销售额为200x 元.∴Q=(1000-10x)(30+x)+200x=-10x 2+900x+30000. (3)设总利润为W 元则:W=Q -1000×30-400x=-10x 2+500x=-10(x 2-50x) =-10(x -25)2+6250.当x=25时,总利润最大,最大利润为6250元. 答:这批蟹放养25天后出售,可获最大利润.11.(2008湖北恩施)为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元) .(1)求y与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少? (3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元? 解:)802)(20()20(+--=-=x x w x y)40)(20(2---=x x)80060(22+--=x x 200)30(22+--=x160012022-+-=x x当30=x ,200max =y (元)(1)y 与x 之间的的函数关系式为;160012022-+-=x x y(2)当销售价定为30元时,每天的销售利润最大,最大利润是200元. (3) 150200)30(22=+--x ,25)30(2=-x28351>=x (不合题意,舍去)252=x答:该农户想要每天获得150元的销售利润,销售价应定为25元.12.(2008河北)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式9051012++=x x y ,投入市场后当年能全部售出,且在甲、乙两地每吨的售价,(万元)均与满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售吨时,,请你用含的代数式表示甲地当年的年销售额,并求年利润(万元)与之间的函数关系式;(2)成果表明,在乙地生产并销售吨时,(为常数),且在乙地当年的最大年利润为35万元.试确定的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?解:(1)甲地当年的年销售额为万元;.(2)在乙地区生产并销售时, 年利润.由,解得或.经检验,不合题意,舍去,.(3)在乙地区生产并销售时,年利润,将代入上式,得(万元);将代入,得(万元).,应选乙地.。
2021年中考数学专项训练--二元一次方程分式方程应用题---不等式类利润最大问题(含解析)

二元一次方程分式方程应用题---不等式类利润最大问题一、解答题(共18题;共175分)1.某文具店经销甲、乙两种不同的笔记本,已知:两种笔记本的进价之和为10元,甲种笔记本每本获利2元,乙种笔记本每本获利1元,小玲同学买4本甲种笔记本和3本乙种笔记本共用了47元.(1)甲、乙两种笔记本的进价分别是多少元?(2)该文具店购入这两种笔记本共60本,花费不超过296元,则购买甲种笔记本多少本时文具店获利最大?2.茶为国饮,茶文化是中国传统文化的重要组成部分,这也带动了茶艺、茶具、茶服等相关文化的延伸及产业的发展,在“春季茶叶节”期间,某茶具店老板购进了、两种不同的茶具.若购进种茶具1套和种茶具2套,需要250元;若购进种茶具3套和种茶具4套则需要600元.(1)、两种茶具每套进价分别为多少元?(2)由于茶具畅销,老板决定再次购进、两种茶具共80套,茶具工厂对两种类型的茶具进行了价格调整,种茶具的进价比第一次购进时提高了,种茶具的进价按第一次购进时进价的八折;如果茶具店老板此次用于购进、两种茶具的总费用不超过6240元,则最多可购进种茶具多少套?(3)若销售一套种茶具,可获利30元,销售一套种茶具可获利20元,在(2)的条件下,如何进货可使再次购进的茶具获得最大的利润?最大的利润是多少?3.郴州市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?4.深圳某居民小区计划对小区内的绿化进行升级改造,计划种植A,B两种观赏盆栽植物700盆.其中A种盆栽每盆16元,B种盆栽每盆20元.相关资料表明:A,B两种盆栽的成活率分别为93%和98%.(1)若购买这两种盆栽共用11600元,则A,B两种盆栽各购买了多少盆?(2)要使这批盆栽的成活率不低于95%,则A种盆栽最多可购买多少盆?(3)在(2)的条件下,应如何选购A,B两种盆栽,使购买盆栽的费用最低,此时最低费用为多少?5.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?6.某学校计划购进A,B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.7.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动,某工程队承担了一段长1500米的道路绿化工程,施工时有两种绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?8.深圳市某校对初三综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100 分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80 分时,该生综合评价为A 等.(1)小明同学的测试成绩和平时成绩两项得分之和为185 分,而综合评价得分为91 分,则小明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70 分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?9.某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元;购进A种机器人3个和B种机器人2个共需14万元.请解答下列问题:(1)求A,B两种机器人每个的进价;(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种种机器人的总个数不少于28个,且该公司购买的A、B两种种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?10.为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品,若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出4000元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B钟纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少?11.某商场销售甲,乙两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(毛利润=(售价进价)×销售量)(1)该商场计划购进甲,乙两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少甲种教学设备的购进数量,增加乙种教学设备的购进数量,已知乙种教学设备增加的数量是甲种教学设备减少数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问甲种教学设备购进数量至多减少多少套?12.为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A、B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.(1)若购买这批学习用品用了26000元,则购买A、B两种学习用品各多少件?(2)若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?13.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.14.植树节期间,某单位欲购进A、B两种树苗,若购进A种树苗3棵,B种树苗5颗,需2100元,若购进A种树苗4颗,B种树苗10颗,需3800元.(1)求购进A、B两种树苗的单价;(2)若该单位准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵?15.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?16.甲、乙两人准备整理一批新到的实验器材,若甲单独整理需要40分钟完工,若甲、乙共同整理20分钟后,乙需再单独整理20分钟才能完工.(1)问乙单独整理多少分钟完工?(2)若乙因工作需要,他的整理时间不超过30分钟,则甲至少整理多少分钟才能完工?17.惠好商场用24000元购进某种玩具进行销售,由于深受顾客喜爱,很快脱销,惠好商场又用50000元购进这种玩具,所购数量是第一次购进数量的2倍,但每套进价比第一次多了10元.(Ⅰ)惠好商场第一次购进这种玩具多少套?(Ⅱ)惠好商场以每套300元的价格销售这种玩具,当第二次购进的玩具售出时,出现了滞销,商场决定降价促销,若要使第二次购进的玩具销售利润率不低于12%,剩余的玩具每套售价至少要多少元?18.某修理厂需要购进甲、乙两种配件,经调查,每个甲种配件的价格比每个乙种配件的价格少0.4万元,且用16万元购买的甲种配件的数量与用24万元购买的乙种配件的数量相同.(1)求每个甲种配件、每个乙种配件的价格分别为多少万元;(2)现投入资金80万元,根据维修需要预测,甲种配件要比乙种配件至少要多22件,问乙种配件最多可购买多少件.答案解析部分一、解答题1.【答案】(1)解:设甲种笔记本的进价为m元,乙种笔记本的进价为n元..由题意得,解得,答:甲种笔记本的进价是6元/本,乙种笔记本的进价是4元/本.(2)解:设购入甲种笔记本x本,则购入乙种笔记本(60﹣x)本,根据题意得6x+4(60﹣x)≤296,解得n≤28,设利润为y元,则y=2x+(60﹣x),即y=x+60,∵k=1>0,∴y随x的增大而增大,∴当x=28时文具店获利最大.答:购入甲种笔记本最多28本,此时获利最大.【解析】【分析】(1)设甲种笔记本的进价为m元,乙种笔记本的进价为n元.根据王同学买4本甲种笔记本和3本乙种笔记本共用了47元,列出方程组即可解决问题;(2)设购入甲种笔记本x本,根据购入这两种笔记本共60本,花费不超过296元,列出不等式求出x的取值范围;设利润为y元,根据题意得出y与x的函数关系式,再根据一次函数的性质解答即可.2.【答案】(1)解:设种茶具每套进价为元,种茶具每套进价为元,解之得:.∴种茶具每套进价为100元,种茶具每套进价为75元.(2)解:设再次购进种茶具套,则购进种茶具套,,,,,∴最多可购进种茶具30套.(3)解:设总利润为元,则.∵,随的增大而增大,又∵,∴当时最大(元),∴当购进种茶具30套时,种茶具的数量:(套),∴再次购进种茶具30套,种茶具50套可使利润最大,最大利润为1900元.【解析】【分析】(1)设种茶具每套进价为元,种茶具每套进价为元,根据题目中的等量关系列出方程进而求解即可.(2)设再次购进种茶具套,则购进种茶具套,此次用于购进、两种茶具的总费用不超过6240元,列出不等式,即可求解.(3)设总利润为元,则.根据一次函数的性质即可求解.3.【答案】(1)设A种奖品每件x元,B种奖品每件y元,根据题意得:,解得:,答:A种奖品每件16元,B种奖品每件4元;(2)设A种奖品购买a件,则B种奖品购买(100﹣a)件,根据题意得:16a+4(100﹣a)≤900,解得:a≤ ,∵a为整数,∴a≤41,答:A种奖品最多购买41件.【解析】【分析】(1)根据两种情况下购买的总价列出二元一次方程组并求解;(2)设出A种奖品购买a件,则B种奖品购买(100﹣a)件。
2021初三数学第二章 分式方程的应用专项训练 - 商品销售利润问题

2021初三数学第二章分式方程的应用专项训练 - 商品销售利润问题2021初三数学第二章分式方程的应用专项训练――商品销售利润问题(附答案详解)1.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元. (1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?2.随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:(1)每个茶壶的批发价比茶杯多110元;(2)一套茶具包括一个茶壶与四个茶杯;(3)600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.3.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,某公司生产A,B两种机械设备,每台B种设备的成本是A种设备的1.5倍,公司若投入16万元生产A种设备,36万元生产B种设备,则可生产两种设备共10台.请解答下列问题:(1)A、B两种设备每台的成本分别是多少万元?(2)若A,B两种设备每台的售价分别是6万元,10万元,公司决定生产两种设备共60台,计划销售后获利不低于126万元,且A种设备至少生产53台,求该公司有几种生产方案;(3)在(2)的条件下,销售前公司决定从这批设备中拿出一部分,赠送给“一带一路”沿线的甲国,剩余设备全部售出,公司仍获利44万元,赠送的设备采用水路运输和航空运输两种方式,共运输4次,水路运输每次运4台A种设备,航空运输每次运2台B种设备(运输过程中产生的费用由甲国承担).直接写出水路运输的次数.4.2021年12月3日至5日,第四届世界互联网大会在浙江省乌镇举行.会议期间,某公司的无人超市,让人们感受到互联网新零售带来的全新体验.小张购买了钥匙扣和毛绒玩具两种商品共15件,离开超市后,收到短信显示,购买钥匙扣支付240元,购买毛绒玩具支付180元.已知毛绒玩具的单价是钥匙扣单价的1.5倍,那么钥匙扣和毛绒玩具的单价各是多少?5.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?感谢您的阅读,祝您生活愉快。
2021年中考二轮复习数学利润最值问题 拉分题训练课件

解:(1)y与x之间的函数表达式是y=-20x+2600; (2)(x-50)(-20x+2600)=24000,解得,x1=70,x2=110, ∵尽量给客户优惠,∴这种衬衫定价为70元; (3)由题意可得,w=(x-50)(-20x+2600)=-20(x-90)2+32000, ∵该衬衫的每件利润不允许高于进货价的30%,每件售价不低于进货价, ∴x≥50,(x-50)÷50≤30%,解得,50≤x≤65, ∴当x=65时,w取得最大值,此时w=19500. 答:售价定为65元可获得最大利润,最大利润是19500元.
2.(锦州模拟)某公司购进一批受环境影响较大的商品,需要在特定的环境 中才能保存.已知该商品成本y (元/件)与保存的时间第x (天)之间的关系满足y =x2-4x+100,该商品售价p (元/件)与保存时间第x (天)之间满足一次函数关 系,其对应数据如下表:
(1)求商品的售价p (元/件)与保存时间第x (天)之间的函数关系式; (2)求保存第几天时,该商品不赚也不亏; x(天) … 5 7 … (3)请你帮助该公司确定在哪一天卖出, p (元/件) … 248 264 … 每件商品能获得最大利润,此时每件商品的售价是多少?
利润最值问题
【例1】(2020·丹东24题8分)某服装批发市场销售一种衬衫,衬衫每件进货 价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与 每件的售价x(元)满足一次函数关系,部分数据如下表:
(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围) (2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实 惠,该如何给这种衬衫定价? (3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬 衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是 多少?
人教版九年级数学上册《21.3 销售利润问题》专项练习题-附带答案

人教版九年级数学上册《21.3 销售利润问题》专项练习题-附带答案【典例1】2021年是中国历史上的超级航天年 渝飞航模专卖店看准商机 8月初推出了“天问一号”和“嫦娥五号”两款模型.每个“天问一号”模型的售价是90元 每个“嫦娥五号”模型的售价是100元.(1)若8月份销售“天问一号”模型的数量比“嫦娥五号”模型数量多200个 销售两种模型的总销售额为56000元 求销售“天问一号”模型和“嫦娥五号”模型的数量各是多少?(2)该店决定从9月1日起推出“逐梦航天、仰望星空”优惠活动 9月份 每个“天问一号”模型的售价与8月份相同 销量比8月份增加54a %;每个“嫦娥五号”模型的售价在8月份的基础上降价a % 销量比8月份增加32a %. ①用含有a 的代数式填表(不需化简):9月份的售价(元) 9月份销量 “天问一号”模型90 “嫦娥五号”模型①据统计 该店在9月份的销售总额比8月份的销售总额增加1314a % 求a 的值.(1)设8月份该店售出的“天问一号”模型x 个 “嫦娥五号”模型y 个 利用总价=单价×数量 结合“该店在8月份售出这两款模型共200个 销售总额为56000元” 即可得出关于x y 的二元一次方程组 解之即可求出8月份该店售出的“天问一号”和“嫦娥五号”模型的数量;(2)①根据关键描述语“9月份 每个“天问一号”模型的售价与8月份相同 销量比8月份增加54a %;每个“嫦娥五号”模型的售价在8月份的基础上降价a % 销量比8月份增加32a %”计算; ①利用总价=单价×数量 结合该店在9月份的销售总额比8月份的销售总额增加1314a % 即可得出关于a 的一元二次方程 解之取其正值即可得出a 的值.解:(1)设8月份该店售出的“天问一号”模型x 个 “嫦娥五号”模型y 个根据题得:{x =y +20090x +100y =56000. 解得:{x =400y =200. 答:销售“天问一号”模型和“嫦娥五号”模型的数量各是400个与200个;(2)①①9月份 “嫦娥五号”模型的售价在8月份的基础上降价a % “天问一号”模型的销量比8月份增加54a % “嫦娥五号”模型的销量比8月份增加32a % ①9月份 “天问一号”模型的销量为400(1+54a %)个 “嫦娥五号”模型的销量为200(1+32a %)个“嫦娥五号”模型的售价为100(1﹣a %);故答案为:100(1﹣a %);400(1+54a %);200(1+32a %);①依题意得:90×400(1+54a %)+100(1﹣a %)×200(1+32a %)=(90×400+100×200)(1+1314a %) 整理得:3a 2﹣30a =0.解得:a 1=10 a 2=0(不合题意 舍去).答:a 的值为10.1.(2021秋•开封期末)随着人们购物方式观念的转变 网络购物给人们生活带来了方便.直播购物逐渐走进了人们的生活.某电商在抖音上对一款成本价为30元的小商品进行直播销售 如果按每件40元销售 每月可卖出600件 通过市场调查发现 每件小商品售价每上涨1元 销售件数减少10件.为了实现平均每月10000元的销售利润 每件商品售价应定为多少元?这时电商每月能售出商品多少件?【思路点拨】设每件商品售价应定为x 元 则每件的销售利润为(x ﹣30)元 每月的销售量为600﹣10(x ﹣40)=(1000﹣10x )件 利用每月销售该商品获得的总利润=每件的销售利润×每月的销售量 即可得出关于x 的一元二次方程 解之即可得出x 的值 再将其代入(1000﹣10x )中即可求出每月的销售量. 【解题过程】解:设每件商品售价应定为x 元 则每件的销售利润为(x ﹣30)元 每月的销售量为600﹣10(x ﹣40)=(1000﹣10x )件依题意得:(x ﹣30)(1000﹣10x )=10000整理得:x 2﹣130x +4000=0解得:x1=50 x2=80.当x=50时1000﹣10x=1000﹣10×50=500;当x=80时1000﹣10x=1000﹣10×80=200.答:当每件商品售价定为50元时电商每月能售出商品500件;当每件商品售价定为80元时电商每月能售出商品200件.2.(2021秋•镇江期末)某体育用品商店举行“年终狂欢”促销活动某种运动鞋零售价每双240元如果一次性购买超过10双那么每多购1双所购运动鞋的单价降低6元但单价不能低于160元.一位顾客购买这样的运动鞋支付了3600元求这位顾客购买了多少双鞋?【思路点拨】利用总价=单价×数量可求出购买10双鞋所需费用由该值小于3600可得出购买数量超过10 设这位顾客购买了x双鞋则每双鞋的售价为(300﹣6x)元利用总价=单价×数量即可得出关于x的一元二次方程解之即可得出x的值再结合单价不能低于160元即可得出这位顾客购买了20双鞋.【解题过程】解:①240×10=2400(元)2400<3600①购买数量超过10.设这位顾客购买了x双鞋则每双鞋的单价为240﹣6(x﹣10)=(300﹣6x)元依题意得:x(300﹣6x)=3600整理得:x2﹣50x+600=0解得:x1=20 x2=30.当x=20时300﹣6x=300﹣6×20=180>160 符合题意;当x=30时300﹣6x=300﹣6×30=120<160 不符合题意舍去.答:这位顾客购买了20双鞋.3.(2021秋•泰兴市期末)某服装厂生产一批服装成本为180元/件.当销售单价为200元/件时月销售量为2000件经市场调研发现销售单价每涨1元月销售量将减少2件.根据物价部门的规定这批服装的利润率不得超过100% 若该服装厂这个月销售总额为540000元则销售单价为多少元/件?【思路点拨】设销售单价为x元/件则月销售量为(2400﹣2x)件利用销售总额=销售单价×销售数量即可得出关于x的一元二次方程解之即可得出x的值再结合利润率不得超过100% 即可得出销售单价为300元/件.【解题过程】解:设销售单价为x元/件则月销售量为2000﹣2(x﹣200)=(2400﹣2x)件依题意得:x(2400﹣2x)=540000整理得:x2﹣1200x+270000=0解得:x1=300 x2=900.①成本为180元/件且这批服装的利润率不得超过100%①售价不得超过360元/件①x2=900不符合题意舍去.答:销售单价为300元/件.4.(2021秋•长安区校级期末)某公司自主研发一款健康的产品﹣﹣燕窝饮品主要成分是水果和燕窝.经过一段时间的门店销售发现当售价是40元/杯每天可售出60杯.若每杯每降低1元就会多售出3杯.已知每杯饮品的实际成本是20元每天的其他费用是300元物价局规定每件销售品的利润率不得高于成本的80%.若每天的毛利润可达到600元.(1)求该饮品的售价;(2)为支持今年的“洪灾”行动该门店每卖一杯饮品向某救助基金会捐款1元求该店每月(按30天计算)的捐款金额.【思路点拨】(1)设该饮品的售价为x元则每杯的销售利润为(x﹣20)元每天的销售量为60+3(40﹣x)=(180﹣3x)杯利用每天的毛利润=每杯的销售利润×每天的销售量﹣每天的其他费用即可得出关于x的一元二次方程解之即可得出x的值再结合每件销售品的利润率不得高于成本的80% 即可得出该饮品的售价为30元;(2)利用该店每月(按30天计算)的捐款金额=每天的销售量×1×30 即可求出结论.【解题过程】解:(1)设该饮品的售价为x元则每杯的销售利润为(x﹣20)元每天的销售量为60+3(40﹣x)=(180﹣3x)杯依题意得:(x﹣20)(180﹣3x)﹣300=600整理得:x2﹣80x+1500=0解得:x1=30 x2=50.又①每件销售品的利润率不得高于成本的80%①x=30.答:该饮品的售价为30元.(2)(180﹣3×30)×1×30=(180﹣90)×1×30=90×1×30=2700(元).答:该店每月(按30天计算)的捐款金额为2700元.5.(2021秋•晋中期末)2021年12月9日在神舟十三号载人飞船上翟志刚、王亚平、叶光富三位航天员为广大青少年开讲“天宫课堂”第一课这是中国空间站首次太空授课活动.在此期间我校“对话太空”兴趣小组举行了航天科普知识有奖竞答活动并购买“神舟载人飞船”模型作为奖品学校在商店里了解到:如果一次性购买数量不超过10个每个模型的单价为40元;如果一次性购买数量超过10个每多购买一个每个模型的单价均降低0.5元但每个模型最低单价不低于30元若学校为购买“神舟载人飞船”模型一次性付给商店900元请求出学校购买“神舟载人飞船”模型的数量.【思路点拨】利用总价=单价×数量可求出购买10个“神舟载人飞船”模型的费用由该值小于900可得出学校购买“神舟载人飞船”模型的数量超过10个设学校购买了“神舟载人飞船”模型的数量为x个则每个“神舟载人飞船”模型的价格为(45﹣0.5x)元利用总价=单价×数量即可得出关于x的一元二次方程解之即可得出x 的值再结合每个模型最低单价不低于30元即可得出学校购买“神舟载人飞船”模型的数量.【解题过程】解:①40×10=400(元)400<900①学校购买“神舟载人飞船”模型的数量超过10个.设学校购买了“神舟载人飞船”模型的数量为x个则每个“神舟载人飞船”模型的价格为40﹣0.5(x﹣10)=(45﹣0.5x)元依题意得:(45﹣0.5x)x=900整理得:x2﹣90x+1800=0解得:x1=30 x2=60.当x=30时45﹣0.5x=45﹣0.5×30=30 符合题意;当x =60时 45﹣0.5x =45﹣0.5×60=15<30 不符合题意 舍去.答:学校购买“神舟载人飞船”模型的数量为30个.6.(2021秋•沙坪坝区校级期末)随着人们对健康生活的追求 有机食品越来越受到人们的喜爱和追捧 某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销 可以在标价基础上打8折购进这批产品 结果实际比计划多购进400千克.(1)实际购买时 该农产品多少元每千克?(2)据预测 该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元 已知冷库存放这批农产品 每天需要支出各种费用合计为280元 同时 平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售 该公司可获得利润19600元?【思路点拨】(1)设该农产品标价为x 元/千克 则实际价格为0.8x 元/千克 利用数量=总价÷单价 结合实际比计划多购进400千克 即可得出关于x 的分式方程 解之经检验后即可得出x 的值 再将其代入0.8x 中即可求出结论;(2)设存放a 天后一次性卖出可获得19600元 利用利润=销售单价×销售数量﹣冷库存放这批农产品所需费用﹣进货总成本 即可得出关于a 的一元二次方程 解之即可得出结论.【解题过程】解:(1)设该农产品标价为x 元/千克 则实际价格为0.8x 元/千克依题意得:400000.8x −40000x =400解得:x =25经检验 x =25是原方程的解 且符合题意①0.8x =0.8×25=20.答:实际购买时该农产品20元/千克.(2)设存放a 天后一次性卖出可获得19600元依题意得:(20+0.5a )(4000020−8a )﹣280a ﹣40000=19600化简得:a 2﹣140a +4900=0解得:a 1=a 2=70.答:存放70天后一次性出售可获利19600元.7.(2022•尤溪县开学)2021年是我国脱贫胜利年 我国在扶贫方面取得了巨大的成就 技术扶贫也使得某县的一个电子器件厂扭亏为盈.该电子器件厂生产一种电脑显卡2019年该类电脑显卡的成本是200元/个2020年与2021年连续两年在技术扶贫的帮助下改进技术降低成本2021年该电脑显卡的成本降低到162元/个.(1)若这两年此类电脑显卡成本下降的百分率相同求平均每年下降的百分率;(2)2021年某商场以高于成本价10%的价格购进若干个此类电脑显卡以216.2元/个销售时平均每天可销售20个为了减少库存商场决定降价销售.经调查发现单价每降低5元每天可多售出10个如果每天盈利1120元单价应降低多少元?【思路点拨】(1)设平均下降率为x利用2021年该类电脑显卡的出厂价=2019年该类电脑显卡的出厂价×(1﹣下降率)2即可得出关于x的一元二次方程解之取其符合题意的值即可得出结论;(2)设单价应降低m元则每个的销售利润为(38﹣m)元每天可售出(20+2m)个利用每天销售该电脑显卡获得的利润=每个的销售利润×日销售量即可得出关于m的一元二次方程解之即可得出m的值即可得出结论.【解题过程】解:(1)设平均下降率为x依题意得200(1﹣x)2=162.解得x1=0.1=10% x2=1.9(不合题意舍去).答:平均下降率为10%.(2)设单价应降低m元则每个的销售利润为(216.2﹣m﹣162×110%)=(38﹣m)元每天可售出(20+2m)个依题意得:(38﹣m)(20+2m)=1120.整理得m2﹣28m+180=0.解得m1=10 m2=18.①为了减少库存①m=18答:单价应降低18元.8.(2021秋•九龙坡区期末)某商城在2022年元旦节期间举行促销活动一种热销商品进货价为每个14元标价为每个20元.(1)商城举行了“感恩老客户”活动对于老客户商城连续两次降价每次降价的百分率相同最后以每个16.2元的价格售出求商城每次降价的百分率;(2)市场调研表明:当每个售价20元时平均每天能够售出40个当每个售价每降1元时平均每天就能多售出10个在保证每个商品的售价不低于进价的前提下商城要想销售这种商品平均每天的销售额为1280元求每个商品应降价多少元?【思路点拨】(1)设商城每次降价的百分率为x利用经过两次降价后的价格=原价×(1﹣每次降价的百分率)2即可得出关于x的一元二次方程解之取其符合题意的值即可得出结论;(2)设每个商品应降价y元则平均每天可售出(40+10y)个利用销售总额=销售单价×销售数量即可得出关于y的一元二次方程解之即可得出y值再结合要保证每个商品的售价不低于进价即可得出每个商品应降价4元.【解题过程】解:(1)设商城每次降价的百分率为x依题意得:20(1﹣x)2=16.2解得:x1=0.1=10% x2=1.9(不合题意舍去).答:商城每次降价的百分率为10%.(2)设每个商品应降价y元则平均每天可售出(40+10y)个依题意得:(20﹣y)(40+10y)=1280整理得:y2﹣16y+48=0解得:y1=4 y2=12.当y=4时20﹣y=20﹣4=16>14 符合题意;当y=12时20﹣y=20﹣12=8<14 不符合题意舍去.答:每个商品应降价4元.9.(2022•沙坪坝区校级开学)春节期间某水果店购进了100千克水蜜桃和50千克苹果苹果的进价是水蜜桃进价的1.2倍水蜜桃以每千克16元的价格出售苹果以每千克20元的价格出售当天两种水果均全部售出水果店获利1800元.(1)求水蜜桃的进价是每千克多少元?(2)第一批水蜜桃售完后该水果店又以相同的进价购进了300千克水蜜桃商家见第一批水果卖得很好于是第一天将水蜜桃价格涨价到每千克17元的价格出售售出了8a千克由于水蜜桃不易保存第二天水果店将水蜜桃的价格在原先每千克16元的基础上还降低了0.1a元到了晚上关店时还剩20千克没有售出店主便将剩余水蜜桃分发给了水果店员工们结果这批水蜜桃的利润为2980元求a的值.【思路点拨】(1)设水蜜桃的进价是每千克x元则苹果的进价是每千克1.2x元利用总利润=每千克的销售利润×销售数量即可得出关于x的一元一次方程解之即可求出水蜜桃的进价;(2)利用销售利润=销售单价×销售数量﹣进货成本即可得出关于a的一元二次方程解之取其正值即可得出结论.【解题过程】解:(1)设水蜜桃的进价是每千克x元则苹果的进价是每千克1.2x元依题意得:(16﹣x)×100+(20﹣1.2x)×50=1800解得:x=5.答:水蜜桃的进价是每千克5元;(2)17×8a+(16﹣0.1a)×(300﹣8a﹣20)﹣5×300=2980整理得:0.8a2﹣20a=0解得:a1=25 a2=0(不合题意舍去).答:a的值是25.10.(2021秋•黔江区期末)火锅是重庆人民钟爱的美食之一.解放碑某火锅店为抓住“十一”这个商机于九月第一周推出了A、B两种火锅套餐5桌A套餐与10桌B套餐的总售价为1600元其中A套餐比B 套餐每桌贵20元.(1)求A套餐的售价是多少元?(2)第一周A套餐的销售量为800桌B套餐的销售量为1300桌.为了更好的了解市场火锅店决定从第二周开始对A B套餐的销售价格都进行调整其中A套餐的销售价格比第一周的价格下调a% 发现销售量比第一周增加了13a% B套餐的销售价格比第一周的价格下调了12a% 发现销售量比第一周增加了140桌最终第二周A套餐的销售总额比B套餐的销售总额少了48000元.求a的值.【思路点拨】(1)设A套餐的售价是x元则B套餐的售价是(x﹣20)元根据5桌A套餐与10桌B套餐的总售价为1600元即可得出关于x的一元一次方程解之即可得出结论;(2)根据销售总额=销售单价×销售数量结合第二周A套餐的销售总额比B套餐的销售总额少了48000元即可得出关于a的一元二次方程解之取其正值即可得出结论.【解题过程】解:(1)设A 套餐的售价是x 元 则B 套餐的售价是(x ﹣20)元依题意得:5x +10(x ﹣20)=1600解得:x =120.答:A 套餐的售价是120元.(2)依题意得:(120﹣20)(1−12a %)×(1300+140)﹣120(1﹣a %)×800(1+13a %)=48000 整理得:3.2a 2﹣80a =0解得:a 1=25 a 2=0(不合题意 舍去).答:a 的值为25.11.(2021秋•莆田期末)某商场以每千克20元的价格购进某种榴莲 计划以每千克40元的价格销售.为了让顾客得到更大的实惠 现决定降价销售 已知这种榴莲的销售量y (kg )与每千克降价x (元)(0<x <10)之间满足一次函数关系 其图象如图所示.(1)求y 关于x 的函数解析式.(2)该商场在销售这种榴莲中要想获利1105元 则这种榴莲每千克应降价多少元?【思路点拨】(1)观察函数图象 根据图象上点的坐标 利用待定系数法即可求出y 关于x 的函数解析式;(2)利用该商场在销售这种榴莲中获得的总利润=每千克的销售利润×销售量 即可得出关于x 的一元二次方程 解之即可得出x 的值 再结合要让顾客得到更大的实惠 即可得出这种榴莲每千克应降价7元.【解题过程】解:(1)设y 关于x 的函数解析式为y =kx +b (k ≠0)将(2 60) (4 70)代入y =kx +b 得:{2k +b =604k +b =70解得:{k =5b =50①y 关于x 的函数解析式为y =5x +50(0<x <10).(2)依题意得:(40﹣x ﹣20)(5x +50)=1105整理得:x 2﹣10x +21=0解得x 1=3 x 2=7.又①要让顾客得到更大的实惠①x =7.答:这种榴莲每千克应降价7元.12.(2022•平度市校级开学)为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备 每台设备成本价为6万元 经过市场调研发现 每台售价为8万元时 月销售量为120台;每台售价为9万元时 月销售量为110台.假定该设备的月销售量y (单位:台)和销售单价x (单位:万元)成一次函数关系.(1)求月销售量y 与销售单价x 的函数关系式;(2)根据相关规定 此设备的销售单价不得低于10万元 如果该公司想获得240万元的月利润.则该设备的销售单价应是多少万元?【思路点拨】(1)根据点的坐标 利用待定系数法即可求出年销售量y 与销售单价x 的函数关系式;(2)设此设备的销售单价为x 万元/台 则每台设备的利润为(x ﹣6)万元 销售数量为(﹣10x +200)台 根据总利润=单台利润×销售数量 即可得出关于x 的一元二次方程 解之取其不小于10的值即可得出结论.【解题过程】解:(1)设年销售量y 与销售单价x 的函数关系式为y =kx +b (k ≠0)将x =8时 y =120;x =9时 y =110代入y =kx +b 得{8k +b =1209k +b =110解得:{k =−10b =200①年销售量y 与销售单价x 的函数关系式为y =﹣10x +200;(2)设此设备的销售单价为x 万元/台则每台设备的利润为(x ﹣6)万元 销售数量为(﹣10x +200)台根据题意得:(x ﹣6)(﹣10x +200)=240.整理 得:x 2﹣26x +144=0解得:x 1=8 x 2=18.①此设备的销售单价不得低于10万元①x =18.答:该设备的销售单价应是18万元/台.13.(2021秋•本溪期末)某服装厂批发应季T 恤衫 其单价y (元)与批发数量x (件)(x 为正整数)之间的函数关系如图所示.(1)直接写出y 与x 的函数关系式;(2)若每件T 恤衫的成本价是45元 当100<x ≤500件(x 为正整数)时 服装厂如果想获得8000元利润 求一次批发多少件时所获利润为8000元?【思路点拨】(1)分0<x ≤100、100<x ≤500及x >500三种情况考虑 当0<x ≤100且x 为正整数时 y =80;当100<x ≤500且x 为正整数时 利用待定系数法可求出y 与x 的函数关系式;当x >500且x 为正整数时 y =60;(2)由(1)可知:当100<x ≤500且x 为正整数时 y =−120x +85 利用总利润=每件的销售利润×销售数量 即可得出关于x 的一元二次方程 解之即可得出结论.【解题过程】解:(1)当0<x ≤100且x 为正整数时 y =80;当100<x ≤500且x 为正整数时 设y 与x 的函数关系式为y =kx +b (k ≠0)将(100 80) (500 60)代入y =kx +b 得:{100k +b =80500k +b =60解得:{k =−120b =85①此时y 与x 的函数关系式为y =−120x +85;当x >500且x 为正整数时 y =60.故y 与x 的函数关系式为y ={ 80(0<x ≤100且x 为正整数)−120x +85(100<x ≤500且x 为正整数)60(x >500且x 为正整数).(2)当100<x ≤500且x 为正整数时 y =−120x +85. 依题意得:(y ﹣45)x =8000即(−120x +85﹣45)x =8000整理得:x 2﹣800x +160000=0解得:y 1=y 2=400. 答:一次批发400件时所获利润为8000元.14.(2022•大渡口区模拟)某脐橙种植园的脐橙有线上和线下两种销售方式.已知去年12月份该脐橙种植园在线上、线下的销售价格分别为10元/千克、8元/千克.12月份一共销售了3000千克 总销售额为26000元.(1)去年12月份该脐橙种植园在线上、线下销售脐橙各多少千克?(2)元旦后是脐橙销售旺季.今年1月份 为了促销 该脐橙种植园决定在去年12月份基础上将在线上、线下的销售价格都降低12m% 预计在线上、线下的销售量将在去年12月份的基础上分别增长3m %、25% 要使1月份该脐橙的总销售额达到30000元 求m 的值.【思路点拨】(1)设去年12月份该脐橙种植园在线上销售脐橙x 千克 线下销售脐橙y 千克 利用总销售额=销售单价×销售数量 结合12月份一共销售了3000千克且总销售额为26000元 即可得出关于x y 的二元一次方程组 解之即可得出结论;(2)利用总销售额=销售单价×销售数量 结合要使1月份该脐橙的总销售额达到30000元 即可得出关于m 的一元二次方程 解之取其正值即可得出结论.【解题过程】解:(1)设去年12月份该脐橙种植园在线上销售脐橙x 千克 线下销售脐橙y 千克依题意得:{x +y =300010x +8y =26000解得:{x =1000y =2000. 答:去年12月份该脐橙种植园在线上销售脐橙1000千克 线下销售脐橙2000千克.(2)依题意得:10(1−12m %)×1000(1+3m %)+8(1−12m %)×2000×(1+25%)=30000整理得:1.5m 2﹣150m =0解得:m 1=100 m 2=0(不合题意 舍去).答:m 的值为100.15.(2022•沙坪坝区校级开学)新春佳节期间 家家户户需购置大量年货 其中零食和水果是必需品.某小区商贩大批购进旺旺大礼包和沙田柚 已知购进4个旺旺大礼包和5个沙田柚共需120元 购进2个旺旺大礼包和3个沙田柚共需62元.(1)请求出每个旺旺大礼包和沙田柚的进价.(2)年前该商贩将旺旺大礼包进价提高60%出售 沙田柚售价每个8元 每天可销售沙田柚50个 年后需求量下降 该商贩决定在年前售价的基础上降价促销以增加销量 尽可能多地减少库存 若旺旺大礼包每降价2元 每天销量在40个的基础上增加10个 年后沙田柚打7.5折出售 每天销量在年前基础上增加10个 若要使年后每天利润达到780元 则旺旺大礼包售价需降低多少元出售?【思路点拨】(1)设每个旺旺大礼包的进价为x 元 沙田柚的进价为y 元 根据“购进4个旺旺大礼包和5个沙田柚共需120元 购进2个旺旺大礼包和3个沙田柚共需62元” 即可得出关于x y 的二元一次方程组 解之即可得出每个旺旺大礼包和沙田柚的进价;(2)设每个旺旺大礼包降低m 元出售 则每天的销量为(40+5m )个 利用总利润=每个的销售利润×销售数量 即可得出关于m 的一元二次方程 解之即可得出m 的值 再结合要尽可能多地减少库存 即可得出旺旺大礼包售价需降低4元出售.【解题过程】解:(1)设每个旺旺大礼包的进价为x 元 沙田柚的进价为y 元依题意得:{4x +5y =1202x +3y =62解得:{x =25y =4. 答:每个旺旺大礼包的进价为25元 沙田柚的进价为4元.(2)设每个旺旺大礼包降低m 元出售 则每天的销量为40+m 2×10=(40+5m )个依题意得:(25×60%﹣m )(40+5m )+(8×75%﹣4)×(50+10)=780整理得:m 2﹣7m +12=0解得:m 1=3 m 2=4.又①要尽可能多地减少库存①m =4.答:旺旺大礼包售价需降低4元出售.16.(2022•渝中区校级开学)2022年北京冬奥会吉祥物冰墩墩和雪容融在一开售时 就深受大家的喜欢.某供应商今年2月第一周购进一批冰墩墩和雪容融 已知一个冰墩墩的进价比一个雪容融的进价多40元 购买20个冰墩墩和30个雪容融的价格相同.(1)今年2月第一周每个冰墩墩和雪容融的进价分别是多少元?(2)今年2月第一周 供应商以100元每个售出雪容融140个 150元每个售出冰墩墩120个.第二周供应商决定调整价格 每个雪容融的售价在第一周的基础上下降了m 元 每个冰墩墩的价格不变 由于冬奥赛事的火热进行 第二周雪容融的销量比第一周增加了m 个 而冰墩墩的销量比第一周增加了0.2m 个 最终商家获利5160元 求m .【思路点拨】(1)设今年2月第一周每个冰墩墩的进价为x 元 每个雪容融的进价为y 元 根据“一个冰墩墩的进价比一个雪容融的进价多40元 购买20个冰墩墩和30个雪容融的价格相同” 即可得出关于x y 的二元一次方程组 解之即可得出今年2月第一周每个冰墩墩和雪容融的进价;(2)利用总利润=每个的销售利润×销售数量 即可得出关于m 的一元二次方程 解之取其正值即可得出结论.【解题过程】解:(1)设今年2月第一周每个冰墩墩的进价为x 元 每个雪容融的进价为y 元依题意得:{x −y =4020x =30y解得:{x =120y =80. 答:今年2月第一周每个冰墩墩的进价为120元 每个雪容融的进价为80元.(2)依题意得:(100﹣m ﹣80)(140+m )+(150﹣120)(120+0.2m )=5160整理得:m 2+114m ﹣1240=0解得:m 1=10 m 2=﹣124(不合题意 舍去).答:m 的值为10.17.(2021秋•北碚区校级期末)某画室的同学们 将自己创作的画作制成了精美的书签套盒 并在网上进行售卖 备受欢迎 某商店老板了解后决定购进一批该书签在店内销售.经过对接 画室给出的进价是10元/盒.(1)据调查 商店老板计划首月销售1680盒 每盒售价12元 经过首月试销售 老板发现单盒书签每增长1元 月销量就将减少20盒.若老板希望书签月销量不低于1620盒 则每盒售价最高为多少元?。
中考数学总复习《一次函数最大利润问题》专项提升训练(带有答案)

中考数学总复习《一次函数最大利润问题》专项提升训练(带有答案)学校:___________班级:___________姓名:___________考号:___________1.为迎接新春佳节的到来,一水果店计划购进甲、乙两种新出产的水果共160千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种5 8 乙种 9 13 (1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?2.某商贸公司购进某种商品,经过市场调研,整理出这种商品在第(148)x x ≤≤天的售价与日销售量的相关信息如表:时间x (天)130x ≤< 3048x ≤≤ 售价30x + 60 日销售量(kg ) 2120x -+已知这种商品的进价为20元/kg ,设销售这种商品的日销售利润为y 元.(1)求y与x的函数关系式;(2)第几天的销售利润最大?最大日销售利润为多少?3.某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍..设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大销售总利润是多少元?4.近日,我校正在创建“绿色校园”,为了进一步美化校园,我校计划购买A、B两种花卉装点校道,学校采购人员去花卉基地调查发现:购买2盆A种花和1盆B种花需要13元,购买3盆A种花和2盆B种花需要22元.(1)求A、B两种花的单价各为多少元?(2)学校若购买A、B两种花共1000盆,且购买的B种花不少于500盆,但不多于700盆.①设购买的B种花m盆,总费用为W元,求W关于m的函数关系式;①请你帮小李设计一种购花方案使总花费最少?并求出最少费用为多少元?5.某水果商从外地购进某种水果若干箱,需要租赁货车运回.经了解,当地运输公司有大、小两种型号货车,其运力和租金如表:运力(箱/辆)租金(元/辆)大货车45400小货车35320(1)若该水果商计划租用大、小货车共8辆,其中大货车x辆,共需付租金y元,请写出y与x的函数关系式;(2)在(1)的条件下,若这批水果最多有315箱,所租用的8辆货车可一次将购进的水果全部运回,请给出最节省费用的租车方案,并求出最低费用.6.某农业生态园引进种植一种新品种水果,这种水果成本为10元/千克,现将这种水果投放超市进行销售.经过调查,得到如表数据:销售单价x(元/千克)…10202530…每天销售量y(千克)…500400350300…(1)把如表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)若该水果销售单价为32元/千克,每天的销量是多少?每天获得的利润是多少?7.某教育科技公司销售A,B两种多媒体,这两种多媒体的进价与售价如表所示:A B进价(万元/套)3 2.4售价(万元/套) 3.3 2.8(1)若该教育科技公司计划购进A,B两种多媒体共50套,共需资金132万元,该公司计划购进A,B两种多媒体各多少套?(2)若该教育科技公司计划购进A,B两种多媒体共50套,其中购进A种多媒体m套()1020m ≤≤,当把购进的两种多媒体全部售出,求m 为何值时,能获得最大利润,最大利润是多少万元?8.某商店决定购买甲、乙两种型号的文具共10件.已知用90元购买甲型号的文具数与用75元购买乙型号的文具数相同.每件文具价格及每件利润如下表所示.类型甲 乙 价格(元/件)m 3m - 利润(元/件)2 3 (1)求m 的值;(2)受疫情影响,商店老板这个月准备用不超过168元购买甲、乙两种文具,问有多少种购买方案?并求出这个月获得利润最小时甲、乙文具的数量.9.舒城汽车城某经销商分两次购进甲、乙两种型号的新能源汽车.第一次购进甲型号汽车10辆和乙型号汽车15辆,售完共获利36万元;第二次购进甲型号汽车15辆和乙型号汽车20辆,售完共获利51万元.(1)求销售甲、乙两种型号汽车每辆的利润;(2)根据前两次销售情况,决定再次购进甲、乙两种型号的汽车共50辆,且乙型号汽车的数量不少于甲型号汽车数量的1.5倍,设再次购进甲型汽车m 辆,这50辆汽车的总销售利润为W 万元.①求W 关于m 的函数关系式,并写出自变量的取值范围;①如何购进这两种汽车,才能使销售利润最大?最大利润是多少?10.某花店每天购进16支某种花,然后出售,如果当天售不完,那么剩下的这种花进行作废处理.该花店记录了10天该种花的日需求量(n 为正整数,单位:支),统计如下表: 日需求量n 13 14 15 16 17 18天数 1 1 2 4 1 1(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当16n <时,日利润y (单位:元)关于n 的函数表达式为:1080y n =-;当16n ≥时,日利润为80元.①当1318n ≤≤时,问该花店的日利润最多是多少元?①求该花店这10天中日利润为70元的天数.11.某服装店一次性购进甲、乙两种保暖内衣共100件进行销售,甲,乙两种保暖内衣的进价与售价分别如下表所示:甲乙进价80元/件100元/件售价120元/件150元/件设购进甲种保暖内衣的数量为x(件).(1)除了进货成本以外,从进货到销售完这批内衣的过程中还要支付运费和销售员工工资共1000元.设销售完这批保暖内衣的总利润为y(元),请求出y与x之间的函数关系式;(2)在(1)的情况下,根据市场需求调研发现,甲种保暖内衣的购进数量x大于或等于50件,求购进甲种内衣多少件时,这批保暖内衣销售完获利最多最多可获利多少元?12.某商场投入资金购进甲、乙两种矿泉水共400箱,矿泉水的进价与售价(单位:元/箱)如下表:矿泉水类别进价(元/箱)售价(元/箱)甲2436乙3248(1)若该商场为购进甲、乙两种矿泉水共用11520元,则该商场购进甲、乙两种矿泉水各多少箱? (2)若设购进甲种矿泉水m 箱,甲、乙两种矿泉水全部售完后商场共获得利润为w 元.直接写出w 与m 之间的函数关系式.13.某商场经销一种儿童玩具,该种玩具的进价是每个15元,经过一段时间的销售发现,该种玩具每天的销售量y (个)与每个的售价x (元)之间的函数关系如图所示.(1)求y 关于x 的函数关系式,并求出当某天的销售量为78个时,该玩具的销售利润;(2)每天的销售量不低于18个的情况下,若要每天获得的销售利润最大,求该玩具每个的售价是多少?最大利润是多少?(3)根据物价部门规定,这种玩具的售价每个不能高于45元.该商场决定每销售一个这种玩具就捐款n 元(17n ≤≤),捐款后发现,该商场每天销售这种玩具所获利润随售价的增大而增大,求n 的取值范围.14.某水果店购进甲、乙两种苹果的进价分别为8元/kg ,12元/kg ,这两种苹果的销售额y (元)与销售量()kg x 之间的关系如图所示.(1)求甲种苹果的销售额y 与销售量x 之间的函数关系式;(2)求点B 的坐标,并写出点B 表示的实际意义;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为(30)kg a a >时,它们的利润和为1650元,求a 的值.15.某网店直接从工厂购进A 、B 两款自拍杆,进货价和销售价如表:类别A 款自拍杆B 款自拍杆 进货价(元/个)30 25 销售价(元/个) 45 37(1)网店第一次用850元购进A 、B 两款自拍杆共30个,求这两款自拍杆分别购进多少个?(2)第一次购进的自拍杆售完后,该网店计划再次购进A 、B 两款自拍杆共80个(进货价和销售价都不变),且进货总价不高于2200元.如何购进A 、B 两款自拍杆,才能使所获得的销售利润最大?最大利润值为多少?参考答案: 1.(1)甲种水果购进110千克,则乙种水果购进50千克(2)安排购买甲种水果40千克,乙种水果120千克,才能使水果店在销售完这批水果时获利最多,此时利润为600元.2.(1)()()2210012001308048003048x x x y x x ⎧-++≤<⎪=⎨-+≤≤⎪⎩(2)第25天的销售利润最大,最大日销售利润为2450元3.(1)每台A 型电脑和B 型电脑的销售利润分别为160元、240元(2)8024000y x =-+①②购进A 型34台,B 型66台时,销售总利润最大,最大销售总利润为21280元.4.(1)A 种花的单价为4元,B 种花的单价为5元(2)①4000W m =+;①A 种花500盆,B 种花500盆,最少费用4500元5.(1)802560y x =+(2)最节省费用的租车方案是大货车4辆,小货车4辆,最低费用是2880元6.(1)10600y x =-+(2)销售单价定为32元时,每天的销量是280千克,每天获得的利润是6160元.7.(1)购进A 种多媒体20套,B 种多媒体30套;(2)进A 种多媒体10套时,能获得最大利润,最大值是19万元.8.(1)m 的值为18第 11 页 共 11 页 (2)商店老板这个月准备用不超过168元购买甲、乙两种文具共有6种方案;这个月获得利润最小时甲文具6件,乙文具4件9.(1)销售甲、乙两种型号汽车每辆的利润分别为1.8,1.2(2)①()0.660020W m m =+<≤①当20m =时,W 取得最大值,最大利润为0.6206072W =⨯+=万元10.(1)4;(2)①80元;①2天.11.(1)y 与x 之间的函数关系式为104000y x =-+(2)购进甲种内衣50件时,这批保暖内衣销售完获利最多,最多可获利3500元12.(1)购进甲种矿泉水160箱,乙种矿泉水240箱;(2)w 与m 的函数关系式为:()464000400w m m =-+≤≤.13.(1)当某天的销售量为78个时,该玩具的销售利润2262元(2)要每天获得的销售利润最大,该玩具每个的售价是42.5元,最大利润为2268.75元(3)57n ≤≤14.(1)20y x =(2)点B 的坐标为()601200,,点B 表示的实际意义是当销售量为60kg 时,甲和乙的销售额相同,都是1200元(3)90a =15.(1)网店第一次购进20个A 款自拍杆,10个B 款自拍杆(2)A 、B 两款自拍杆各购进40个时,销售利润最大,最大利润为1080元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年中考数学专项训练---利润问题(含解析)一、解答题(共5题;共25分)1.(2021九上·沙依巴克期末)某百货商店服装在销售过程中发现,某品牌童装平均每天可售出20件,每件盈利40元,经市场调查发现,在进货不变的情况下,若每件童装每降价1元,日销售量将增加2件,当每件童装降价多少元时,这种童装一天的销售利润最多?最多利润是多少?2.(2021九上·原州期末)某商品现在的售价为每件60元,每星期可卖出300件.市场调查发现:每件涨价1元,每星期要少卖出10件.已知商品的进价为每件40元,如何涨价才能使利润最大?最大利润是多少?3.(2020九上·槐荫期末)某商店经营一种文具,已知成批购进时的单价是20元.调查发现销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,且每件文具售价不能高于40元,设每件文具的销售单价上涨了x元时(x为正整数),月销售利润为y元.写出求y与x的函数关系式,每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?4.(2021九上·铁西期末)某超市购进一种商品,进货单价为每件10元在销售过程中超市按相关规定.销售单价不低于1元且不高于19元如果该商品的销售单价x(单位:元/件)与日销售量y(单位:件)满足一次函数关系,设该商品的日销售利润为w元,那么当该商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?5.(2021九上·本溪期末)某商品在商场的售价为每件60元,每星期可卖出300件,甲、乙两位网红主播在直播间为商场售货.甲主播每件商品每涨价1元,每星期少卖出10件;改为乙时,每降价1元,每星期可多卖出18件.已知商品的进价为每件40元,通过计算你认为甲、乙每星期谁能使利润最大?二、综合题(共16题;共210分)6.(2021九上·台州期末)网络销售已经成为一种比较热门的销售方式,某电商购进一种单价30元的商品,为减少库存.未来30天,这种商品将开展“每天降价1元”的促销活动,即从活动开始的第一天起每天的销售单价均比前一天降1元,通过市场调查发现,该商品的销售单价每降1元,每天销售量增加3件,活动前的销售单价为100元,每天销售15件,设活动开始后的第t天(t为正整数)所获的利润为w(元). (1)求出w与t之间的函数关系式;(2)哪一天所获利润最大,最大利润是多少元?(3)若每销售一件商品需缴纳电商平台推广费用a元(a>0),在这30天内,要使每天缴纳电商平台推广费用后的利润随着t的增大而则增大,求a的取值范围.7.(2021九上·杭州期末)某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)在前50天销售过程中,为了给顾客发放福利,每售出一件商品就返还2a元给顾客,且要求售价不低于80元,但是前50天的销售中,仍可以获得最大利润5850元,求出a的值.8.(2021九上·巧家期末)某服装店经营汉服,进价为每套145元,根据市场调查,销售单价是195元时平均每天销售量是40套,而销售价每降低10元,平均每天就可以多售出10套.假定每套汉服降价元,服装店每天销售汉服的利润是元.(1)求与之间的函数关系式.(2)为了薄利多销,当每套汉服售价是多少元时,服装店每天销售汉服的利润为1400元?9.(2021九上·和平期末)某水果店销售某种水果,由市场行情可知,从1月至12月,这种水果每千克售价(元)与销售时间(,为正整数)月之间存在如图1所示(图1的图象是线段)的变化趋势,每千克成本(元)与销售时间(,为正整数)月满足函数表达式,其变化趋势如图2所示(图2的图象是抛物线).(1)求关于的函数表达式(不需要写出自变量的取值范围)(2)求关于的函数表达式(不需要写出自变量的取值范围)(3)求哪个月出售这种水果,每千克所获得的收益最大.10.(2021九上·新抚期末)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的50%,设销售这种衬衫每月的总利润为w (元),求w与x之间的函数关系式,x为多少时,w有最大值,最大利润是多少?11.(2021九上·崇左期末)某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B 型汽车的进货单价多2万元,经销商花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相等.销售中发现A型汽车的每周销量(台)与售价x(万元/台)满足函数关系式,B型汽车的每周销量(台)与售价x(万元/台)满足函数关系式.(1)求A,B两种型号的汽车的进货单价;(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A,B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元?12.(2020九上·聊城期末)某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;(2)求x与y之间的函数关系式:(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?13.(2020九上·长春期末)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,该山区组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋成本10元,试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如表:(1)若日销售量y(袋)是每袋的销售价x(元)的一次函数,求y与x之间的函数关系式;(2)假设后续销售情况与试销阶段效果相同,设每日销售土特产的利润为w(元);①求w与x之间的函数关系式;②要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?14.(2020九上·五常期末)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且每件的利润率不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数(1)若该服装获得利润为(元),试写出利润与销售单价之间的关系式;销售单价定为多少时,商场可获得利润最大,最大利润是多少元?(2)若该商场获得利润不低于元,试确定销售单价的取值范围.15.(2020九上·六安期末)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)16.(2020九上·淮北期末)某酒店试销售某种套餐,试销一段时间后发现,每份套餐的成本为7元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过10元,每天可销售300份;若每份售价超过10元,每提高1元,每天的销售量就减少30份,设该店每份套餐的售价为元(为正整数),每天的销售量为份,每天的利润为元.(1)直接写出与的函数关系式;(2)求出与的函数关系式;并求出利润的最大值.17.(2021九上·西林期末)某商店购进一批冬季保暖内衣,每套进价为100元,售价为130元,每星期可卖出80套.现因临近春节,商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20套.设保暖内衣售价为元,每星期的销量为件.(1)求商家降价前每星期的销售利润为多少元?(2)求与之间的函数关系式.(3)当每件售价定为多少时,每星期的销售利润最大?最大销售利润是多少?18.(2021九上·乌苏期末)为积极应对人口老龄化,让老年人老有所依、老有所安。
上海市某养老机构的建设稳步推进,拥有的养老床位及养老建筑也不断增加.(1)该市的养老床位数从2018年底的2万个增长到2020年底的2.88万个,求该市这两年拥有的养老床位数的平均年增长率;(2)该市某社区今年准备新建一养老中心,如果计划赡养200名老人,建筑投入平均50000元/人,且计划赡养的老人每增加1人,建筑投入平均减少200元/人,求新建该养老中心需申报的最高建筑投入是多少元?19.(2021九上·大洼期末)某商场经销一种儿童服装,当每件售价为60元时,每星期可卖出300件,为促销,该商场决定降价销售,经市场调查发现:当每件降价1元时,每星期可卖出20件.已知每件童装的进价为40元.设每件童装售价为...x 元,每星期销售利润为y 元. (1)每星期可多卖出多少件; (2)求y 与x 之间的函数关系式;(3)当每件童装售价为多少元时,每星期销售利润最大,最大利润是多少? (4)当每件童装售价为多少元时,每星期可获得6000元销售利润?20.(2021九上·江都期末)红星公司生产的某种时令商品每件成本为20元,经过市场调研发现,这种商品在未来40天内的日销售量m (件)是时间t (天)的一次函数,当 时,;当时 ;未来40天内,前20天每天的价格(元/件)与时间t (天)的函数关系式为( 且t 为整数),后20天每天的价格 (元/件)与时间t (天)的函数关系式为 (且t 为整数).下面我们就来研究销售这种商品的有关问题: (1)求(件)与t (天)之间的函数关系式;(2)请预测未来40天中哪一天的日销售利润最大,最大日销售利润是多少? (3)在实际销售的前20天中,该公司决定每销售一件商品就捐赠a 元利润()给希望工程.公司通过销售记录发现,前20天中,每天扣除捐赠后的日销售利润随时间t (天)的增大而增大,求 的取值范围.21.(2021九上·甘州期末)张掖市化工材料经销公司购进一种化工材料若干千克,价格为每千克30元,物价部门规定其销售单价不高于每千克70元,不低于每千克30元,经市场调查发现,日销售量y (千克)是销售单价x (元)的一次函数,且当x =60时,y =80,x =50时,y =100 (1)求y 与x 的函数关系式,并写出自变量x 的取值范围(2)设该公司销售该材料日获利w (元),当销售单价为多少元时,该公司日获利最大?最大利润是多少元?答案解析部分一、解答题1.【答案】解:设每件童装降价x元,利润为y元,,∴当时,y取得最大值,此时,即每件童装降价15元时,每天销售这种童装的利润最高,最高利润是1250元.【解析】【分析】设每件童装降价x元,利润为y元,利用利润y=每一件的利润×销售量,可得到y与x 之间的函数解析式,再将函数解析式转化为顶点式,利用二次函数的性质可求解.2.【答案】解:设每件涨价元,每星期售出商品的利润为元当涨价元时,每星期少卖件,实际卖出件,则销售额为元,由于买进商品需付元.因此,所得利润即:配方得:∵-10<0∴当x=5时,y有最大值为6250可知,涨价元时,即定价元,利润最大,最大利润元.【解析】【分析】设每件涨价x元,每星期售出商品的利润为y元,用含x的代数式表示出实际卖出的件数及销售额,然后根据利润=售价-进价,列出y与x之间的函数解析式,将其函数解析式转化为顶点式,利用二次函数的性质可求解.3.【答案】解:当销售单价上涨了x元时,销量是件,∵每件文具售价不能高于40元,∴,列式:,整理得:,利用配方法写成顶点式:,∴当时,有最大值,最大值是,∵是正整数,∴取6或7,当时,,当时,,答:当售价定为36或37时,月销售利润最大,最大是2720元.【解析】【分析】根据题意可知一件文具的利润为(30+x-20)元,月销售为(230-10x)件,然后根据月销售利润=一件文具的利润乘以数量列出函数关系式即可;将二次函数的一般式化为顶点式结合x的取值范围求解即可。