匀变速直线运动的位移与速度的关系练习题及答案解析

合集下载

新人教版必修2020学年高中物理第二章4匀变速直线运动的速度与位移的关系练习含解析

新人教版必修2020学年高中物理第二章4匀变速直线运动的速度与位移的关系练习含解析

4匀变速直线运动的速度与位移的关系基础巩固1.两个小车在水平面上做加速度相同的匀减速直线运动,若它们的初速度之比为1∶2,它们运动的最大位移之比为()A.1∶2B.1∶4C.1∶D.2∶1解析由0-=2ax得,故=2=,B正确。

答案B2.在一次交通事故中,交通警察测量出肇事车辆的刹车痕迹是30 m,该车辆最大刹车加速度是15 m/s2,该路段限速60 km/h。

则该车是否超速()A.超速B.不超速C.无法判断D.刚好是60 km/h解析设车的初速度为v,则v2=2ax,得v=30m/s=108km/h>60km/h,车超速,选项A正确。

答案A3.一颗子弹以大小为v的速度射进一墙壁但未穿出,射入深度为x,如果子弹在墙内穿行时做匀变速直线运动,则子弹在墙内运动的时间为()A. B. C. D.解析由和x=t得t=,B选项正确。

答案B4.一小球沿斜面以恒定的加速度滚下并依次通过A、B、C三点,已知AB=6 m,BC=10 m,小球通过AB、BC所用的时间均为2 s,则小球经过A、B、C三点时的速度分别为()A.2 m/s,3 m/s,4 m/sB.2 m/s,4 m/s,6 m/sC.3 m/s,4 m/s,5 m/sD.3 m/s,5 m/s,7 m/s解析=aT2,a=m/s2=1m/s2v B=m/s=4m/s由v B=v A+aT,得v A=v B-aT=(4-1×2)m/s=2m/s,v C=v B+aT=(4+1×2)m/s=6m/s,B正确。

答案B5.一个从静止开始做匀加速直线运动的物体,第10 s内的位移比第9 s内的位移多10 m,则下列说法正确的是()A.物体的加速度为1 m/s2B.物体的加速度为10 m/s2C.第10 s内的位移为500 mD.第10 s内的平均速度为50 m/s解析根据x2-x1=at2,即a=10m/s2,选项B正确,A错误;前10s内位移x10=at2=500m,前9s内位移x9=at2=405m,则第10s内位移为x10-x9=95m,平均速度为95m/s,选项C、D错误。

2019_2020版高中物理刷题首选卷第二章第四节匀变速直线运动的速度与位移的关系(对点练巩固练)(含解析)

2019_2020版高中物理刷题首选卷第二章第四节匀变速直线运动的速度与位移的关系(对点练巩固练)(含解析)

第四节 匀变速直线运动的速度与位移的关系一、选择题1.(v 2-v 20=2ax )关于公式x =v 2-v 202a,下列说法正确的是( )A .此公式只适用于匀加速直线运动B .此公式适用于匀减速直线运动C .此公式只适用于位移为正的情况D .此公式不可能出现a 、x 同时为负值的情况 答案 B解析 公式x =v 2-v 202a适用于匀变速直线运动,既适用于匀加速直线运动,也适用于匀减速直线运动,既适用于位移为正的情况,也适用于位移为负的情况,B 正确,A 、C 错误。

当物体做匀加速直线运动,且规定初速度的反方向为正方向时,a 、x 就会同时为负值,D 错误。

2.(v 2-v 20=2ax )在一次交通事故中,交通警察测量出肇事车辆的刹车痕迹是30 m ,该车辆的刹车加速度是15 m/s 2,该路段限速为60 km/h ,则该车( )A .超速B .不超速C .是否超速无法判断D .行驶速度刚好是60 km/h 答案 A解析 该车辆的末速度为零,由v 2-v 20=2ax ,可计算出初速度v 0=-2ax =2×15×30 m/s =30 m/s =108 km/h ,该车严重超速,A 正确。

3.(v 2-v 20=2ax )汽车进行刹车实验,若速率从8 m/s 匀减速至零要用时1 s ,按规定,速率为8 m/s 的汽车刹车后拖行路程不得超过5.9 m ,那么上述刹车实验的拖行路程是否符合规定( )A .拖行路程为8 m ,符合规定B .拖行路程为8 m ,不符合规定C .拖行路程为4 m ,符合规定D .拖行路程为4 m ,不符合规定 答案 C解析 由题意可知,该实验的汽车的加速度a =0-v t =0-81 m/s 2=-8 m/s 2,再由运动学公式,可得位移s =0-v 22a =0-822×(-8)m =4 m ,C 正确。

4.(v 2-v 20=2ax )美国“华盛顿号”航空母舰上有帮助飞机起飞的弹射系统,已知“F -18大黄蜂”型战斗机在跑道上加速时产生的加速度为4.5 m/s 2,起飞速度为50 m/s 。

物理必修一 2.4匀变速直线运动位移与速度的关系 基础知识+练习题

物理必修一 2.4匀变速直线运动位移与速度的关系 基础知识+练习题

2.4匀变速直线运动位移与速度的关系学习目标:1、知道位移速度公式,会用公式解决实际问题。

2、掌握匀变速直线运动的位移、速度、加速度和时间之间的相互关系,会用公式解决匀变速直线运动的问题。

学习内容:一、匀变速直线运动的位移与速度的关系 1.公式:ax v v t 2202=- 2.推导:3.物理意义:二、推论:匀变速直线运动 中间位移速度某段位移内中间位置的瞬时速度2X v 与这段位移的初、末速度0v 与t v 的关系为:()220221t x v v v +=【例一】射击时,火药在枪简内燃烧.燃气膨胀,推动弹头加速运动.我们把子弹在枪筒中的运动看作匀加速直线运动,假设子弹的加速度是a=5×l05m /s 2,枪筒长:x=0.64m ,计算子弹射出枪口时的速度.【例二】汽车以加速度a=2 m/s 2做匀加速直线运动,经过A 点时其速度v A =3m/s,经过B 点时速度v B =15m/s ,则A 、B 之间的位移为多少?【例三】由静止开始做匀加速直线运动的物体, 已知经过x 位移时的速度是v ,求位移为x/3时的速度v ’ 是多大?【例四】做匀加速直线运动的列车驶出车站,车头经过站台上的工作人员面前时,速度大小为s m /1,车尾经过该工作人员时,速度大小为s m /7。

若该工作人员一直站在原地没有动,则车身的正中部经过他面前时的速度大小为多少?【例五】如图所示,物体以4 m/s 的速度自斜面底端A 点滑上光滑斜面,途经斜面中点C ,到达斜面最高点B .已知v A ∶v C =4∶3,从C 点到B 点历时(3-2) s ,试求:(1)到达斜面最高点B 时的速度;(2)斜面的长度.匀变速直线运动小结:基本公式:1.速度与时间关系:2.位移与时间关系:3.速度与位移关系:推论:1.t时间内平均速度(中间时刻速度):2.相邻相等时间内位移增量:3.中间位移速度:课堂练习1.一辆载满乘客的客机由于某种原因紧急着陆,着陆时的加速度大小为6m/s2,着陆前的速度为60m/s,问飞机着陆后12s内滑行的距离为多大?2.一个做匀加速直线运动的物体,初速度v=2.0m/s,它在第3秒内通过的位移为4.5m,则它的加速度为多少?3.一质点做初速度为零的匀加速直线运动,若在第3秒末至第5秒末的位移为40m,则质点在前4秒的位移为多少?4.滑雪运动员由静止从A点匀加速下滑,随后在水平面上做匀减速直线运动,最后停止于C点,已知AB=4m,BC=6m,整个运动用时10s,则沿AB和BC运动的加速度a1、a2大小分别是多少?5.某飞机起飞的速度是50m/s,在跑道上加速时可能产生的最大加速度是4m/s2,求飞机从静止到起飞成功需要跑道最小长度为多少?6.一个做匀加速直线运动的物体,连续通过两段长为s的位移所用的时间分别为t1、t2,求物体的加速度?7.从斜面上某位置,每隔0.1 s释放一个小球,在连续释放几个后,对在斜面上的小球拍下照片,如图所示,测得x AB =15 cm,x BC =20 cm,试求(1)小球的加速度.(2)拍摄时B球的速度v B=?(3)拍摄时x CD=?课后练习1.一辆农用“小四轮”漏油,假如每隔1 s漏下一滴,车在平直公路上行驶,一同学根据漏在路面上的油滴分布情况,分析“小四轮”的运动情况(已知车的运动方向).下列说法正确的是()A.当沿运动方向油滴始终均匀分布时,车可能做匀速直线运动B.当沿运动方向油滴间距逐渐增大时,车一定在做匀加速直线运动C.当沿运动方向油滴间距逐渐增大时,车的加速度可能在减小D.当沿运动方向油滴间距逐渐增大时,车的加速度可能在增大2.质点做直线运动的位移x与时间t的关系为x=5t+t2(各物理量均采用国际单位制单位),则该质点( )A.第1 s内的位移是5 mB.前2 s内的平均速度是6 m/sC.任意相邻的1 s内位移差都是1 mD.任意1 s内的速度增量都是2 m/s3.汽车由静止开始做匀加速直线运动,速度达到v时立即做匀减速直线运动,最后停止,运动的全部时间为t,则汽车通过的全部位移为()A.13v t B.12v tC.23v t D.14v t4.某物体做直线运动,物体的速度—时间图线如图所示,若初速度的大小为v0,末速度的大小为v,则在时间t1内物体的平均速度是()A.等于(v0+v)/2B.小于(v0+v)/2C.大于(v0+v)/2D.条件不足,无法比较5.在做“探究小车速度随时间变化的规律”的实验中,取一段如图2-9所示的纸带研究其运动情况.设O点为计数的起始点,在四个连续的计数点中,相邻计数点间的时间间隔为0.1 s,若物体做理想的匀加速直线运动,则计数点“A”与起始点O 之间的距离x1为________cm,打计数点“A”时物体的瞬时速度为________m/s,物体的加速度为________m/s2. 6.做匀加速直线运动的物体,从某时刻起,在第3 s内和第4 s内的位移分别是21 m和27 m,求加速度和“开始计时”时的速度.7.在一次救援当中,为了救助伤员,直升机需要悬停在800 m的高空,用绳索将伤员从地面拉起,假设在某一次救助伤员时,悬绳以0.4 m/s2的加速度将静止于地面的伤员拉起,达到4 m/s的速度时,变为匀速上升,试求:(1)伤员加速运动的时间和位移;(2)伤员从地面到直升机需要多长时间.。

知识讲解:匀变速直线运动的速度与位移的关系【基础版】

知识讲解:匀变速直线运动的速度与位移的关系【基础版】

匀变速直线运动的速度与位移的关系【学习目标】1、会推导公式2202t v v ax -=2、掌握公式2202t v v ax -=,并能灵活应用【要点梳理】要点一、匀变速直线运动的位移与速度的关系根据匀变速运动的基本公式 0t v v at =+, 2012x v t at =+, 消去时间t ,得2202t v v ax -=.即为匀变速直线运动的速度—位移关系.要点诠释:①式是由匀变速运动的两个基本关系式推导出来的,因为不含时间,所以若所研究的问题中不涉及时间这个物理量时利用该公式可以很方便, 应优先采用.②公式中四个矢量t v 、0v 、a 、x 也要规定统一的正方向. 要点二、匀变速直线运动的四个基本公式(1)速度随时间变化规律:0t v v at =+. (2)位移随时间变化规律:2012x v t at =+. (3)速度与位移的关系:2202t v v ax -=.(4)平均速度公式:02t x v v +=,02tv v x t +=. 要点诠释:运用基本公式求解时注意四个公式均为矢量式,应用时,要选取正方向.公式(1)中不涉及x ,公式(2)中不涉及t v ,公式(3)中不涉及t ,公式(4)中不涉及a ,抓住各公式特点,灵活选取公式求解.共涉及五个量,若知道三个量,可选取两个公式求出另两个量. 要点三、匀变速直线运动的三个推论 要点诠释:(1)在连续相邻的相等的时间(T)内的位移之差为一恒定值,即△x =aT 2(又称匀变速直线运动的判别式). 推证:设物体以初速v 0、加速度a 做匀加速直线运动,自计时起时间T 内的位移 21012x v T aT =+. ① 在第2个时间T 内的位移220112(2)2x v T a T x =+-2032v T aT =+. ②即△x =aT 2. 进一步推证可得①122222n n n n x x x x x a T T T ++--∆===323n nx x T +-==… ②x 2-x 1=x 3-x 2=…=x n -x n-1,据此可补上纸带上缺少的长度数据.(2)某段时间内中间时刻的瞬时速度等于这段时间内的平均速度 即022tt v v v v +==. 推证:由v t =v 0+at , ① 知经2t时间的瞬时速度 022t tv v a =+. ② 由①得0t at v v =-,代入②中,得00/20001()2222t t t t v v v v v v v v v +=+-=+-=,即022tt v v v +=. (3)某段位移内中间位置的瞬时速度2x v 与这段位移的初、末速度v 0与v t的关系为2x v =推证:由速度-位移公式2202t v v ax -=, ①知220222x xv v a-=. ② 将①代入②可得22220022t x v v v v --=,即2x v =要点四、初速度为零的匀加速直线运动的几个比例式要点诠释:初速度为零的匀加速直线运动是一种特殊的匀变速直线运动,它自己有着特殊的规律,熟知这些规律对我们解决很多运动学问题很有帮助.设以t =0开始计时,以T 为时间单位,则(1)1T 末、2T 末、3T 末、…瞬时速度之比为v 1:v 2:v 3:…=1:2:3:…. 可由v t =at ,直接导出(2)第一个T 内,第二个T 内,第三个T 内,…,第n 个T 内的位移之比为:x 1:x 2:x 3:x n =1:3:5:…:(2n-1).推证:由位移公式212x at =得2112x aT =, 2222113(2)222x a T aT aT =-=,22311(3)(2)22x a T a T =-252aT =. 可见,x 1 : x 2 : x 3 : … : x n =1 : 3 : 5 : … : (2n-1).即初速为零的匀加速直线运动,在连续相等的时间内位移的比等于连续奇数的比.(3)1T 内、2T 内、3T 内、…、位移之比为:222123123x x x =:::…:::…, 可由公式212x at =直接导出. (4)通过连续相同的位移所用时间之比 1231(21)(32)(1)n t t t t n n =----::::::::.推证:由212x at =知1t = 通过第二段相同位移所用时间21)t ==,同理:3t ==,则12311)n t t t t ⋅⋅⋅=⋅⋅⋅::::::::.要点五、纸带问题的分析方法(1)“位移差法”判断运动情况,设时间间隔相等的相邻点之间的位移分别为x 1、x 2、x 3…. ①若x 2-x 1=x 3-x 2=…=1n n x x --=0,则物体做匀速直线运动. ②若x 2-x 1=x 3-x 2=…=1n n x x --=△x ≠0,则物体做匀变速直线运动.(2)“逐差法”求加速度,根据x 4-x 1=x 5-x 2=x 6-x 3=3aT 2(T 为相邻两计数点的时间间隔),有 41123x x a T -=,52223x x a T -=,63323x x a T -=, 然后取平均值,即1233a a a a ++=6543212()()9x x x x x x T ++-++=.这样使所给数据全部得到利用,以提高准确性.要点诠释:①如果不用“逐差法”求,而用相邻的x 值之差计算加速度,再求平均值可得:32546521222215x x x x x x x x a T T T T ----⎛⎫=+++ ⎪⎝⎭6125x x T -=.比较可知,逐差法将纸带上x 1到x 6各实验数据都利用了,而后一种方法只用上了x 1和x 6两个实验数据,实验结果只受x 1和x 6两个数据影响,算出a 的偶然误差较大.②其实从上式可以看出,逐差法求平均加速度的实质是用(x 6+x 5+x 4)这一大段位移减去(x 3+x 2+x 1)这一大段位移,那么在处理纸带时,可以测量出这两大段位移代入上式计算加速度,但要注意分母(3T)2而不是3T 2. (3)瞬间速度的求法在匀变速直线运动中,物体在某段时间t 内的平均速度与物体在这段时间的中间时刻2t时的瞬时速度相同,即2t v v =.所以,第n 个计数点的瞬时速度为:12n n n x x v T++=. (4)“图象法”求加速度,即由12n n n x x v T-+=,求出多个点的速度,画出v-t 图象,直线的斜率即为加速度.【典型例题】类型一、公式2202t v v ax -=的应用 例1、一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l ,当火车头经过某路标时的速度为v 1,而车尾经过这个路标时的速度为v 2,求: (1)列车的加速度a ;(2)列车中点经过此路标时的速度v ; (3)整列火车通过此路标所用的时间t .【答案】(1)22212v v a l -= (2)v = (3)122l t v v =+【解析】火车的运动情况可以等效成一个质点做匀加速直线运动,某一时刻速度为v 1,前进位移l ,速度变为v 2,所求的v 是经过2l处的速度.其运动简图如图所示.(1)由匀变速直线运动的规律得22212v v al -=,则火车的加速度为22212v v a l-=.(2)火车的前一半通过此路标时,有22122l v v a -=, 火车的后一半通过此路标时,有22222l v v a-=, 所以有222212v v v v -=-,故v =.(3)火车的平均速度122v v v +=,故所用时间122l lt v v v ==+. 【总结升华】对于不涉及运动时间的匀变速直线运动问题的求解,使用2202t v v ax -=可大大简化解题过程.举一反三【变式1】在风平浪静的海面上,有一战斗机要去执行一项紧急飞行任务,而航空母舰的弹射系统出了故障,无法在短时间内修复.已知飞机在跑道上加速时,可能产生的最大加速度为5m/s 2,起飞速度为50m/s ,跑道长为100 m .经过计算发现在这些条件下飞机根本无法安全起飞.航空母舰不得不在海面上沿起飞方向运动,从而使飞机获得初速度,达到安全起飞的目的,那么航空母舰行驶的速度至少为多大? 【答案】18.4m /s【解析】若飞机从静止起飞,经过跑道100 m 后,速度为v . 由v2=2ax.知s s 50m/s v =<.故航空母舰要沿起飞方向运动.取航空母舰为参考系,31.6m/s t v ===, 故航空母舰行驶的速度至少为(5031.6)m/s 18.4m/s v '=-=.【高清课程:匀变速直线运动中速度与位移的关系 第5页】【变式2】某飞机着陆时的速度是216km/h ,随后匀减速滑行,加速度的大小是2m/s 2。

高中物理必修一匀变速直线运动的速度与位移的关系练习题测试题及答案解析

高中物理必修一匀变速直线运动的速度与位移的关系练习题测试题及答案解析

4.匀变速直线运动的速度与位移的关系(本栏目内容,在学生用书中分册装订!)1.一质点从A点由静止开始以加速度a运动,到达B点的速度是v,又以2a的加速度运动,到达C点的速度为2v,则AB∶BC等于()A.1∶3B.2∶3C.1∶4 D.3∶4解析:设AB段位移为x1,BC段位移为x2,由速度—位移公式得:v2=2ax1,(2v)2-v2=2(2a)x2,联立得:x1∶x2=2∶3.答案: B2.从静止开始做匀加速直线运动的物体,0~10 s的位移是10 m,那么在10~20 s的位移是()A.20 m B.30 mC.40 m D.60 m解析:当t=10 s时,Δx=12a(2t)2-12at2=32at2=12at2·3=10×3 m=30 m.答案: B3.汽车以5 m/s的速度在水平路面上匀速前进,紧急制动时以-2 m/s2的加速度在粗糙水平面上滑行,则在4 s内汽车通过的路程为()A.4 m B.36 mC.6.25 m D.以上选项都不对解析:根据公式v=v0+at得t=-v0a=52s=2.5 s,即汽车经2.5 s就停下来,则4 s内通过的路程为x=-v22a=522×2m=6.25 m.答案: C4.物体的初速度是v0,以不变的加速度a做直线运动,如果要使速度增加到初速度的n倍,那么经过的位移是()A.v202a(n2-1) B.v202a(n-1)C.v202a n2 D.v202a(n-1)2解析:据公式v2-v20=2ax知,(n v0)2-v20=2ax,x=v202a(n2-1).答案: A5.有一列火车正在做匀加速直线运动.从某时刻开始计时,第1 min内发现火车前进了180 m,第6 min内发现火车前进了360 m.火车的加速度为()A.0.01 m/s2B.0.05 m/s2C.36 m/s2D.180 m/s2解析:对于匀变速直线运动在连续相等时间内,位移之差为恒量,即Δx=aT2,在本题中时间T为60 s,x1=180 m,x6=360 m,则由x6-x1=5aT2,解得a=0.01 m/s2.答案: A6.如图所示,滑雪运动员不借助雪杖,由静止从山坡匀加速滑过x1后,又匀减速在平面上滑过x2后停下,测得x2=2x1.设运动员在山坡上滑行的加速度大小为a1,在平面上滑行的加速度大小为a2,则a1∶a2为()A.1∶1 B.1∶2C.2∶1 D.2∶1解析:设运动员滑至斜坡末端处的速度为v,此速度又为减速运动的初速度,由位移与速度的关系式有v2=2a1x1,0-v2=-2a2x2,故a1∶a2=x2∶x1=2∶1.答案: B7.我国高速公路的最高车速限制为120 km/h.设某人驾车以最高时速沿平直高速公路行驶,该车刹车时产生的加速度大小为5 m/s2,司机的反应时间(从意识到应该刹车至操作刹车的时间)为0.6~0.7 s.若前方车辆突然停止,则该司机应与前车至少保持多大的距离才比较安全?解析:在司机的反应时间内,汽车做匀速运动,位移为vΔt,采取刹车措施后,刹车位移为v22a,故安全车距x=vΔt+v22a=1203.6×0.7 m+12023.62×2×5m≈134.4 m,即该司机应与前车至少保持134.4 m才比较安全.答案:134.4 m8.竖直升空的火箭,其速度—时间图象如图所示,由图可知以下说法正确的是() A.火箭在40 s时速度方向发生变化B.火箭上升的最大高度为48 000 mC.火箭经过120 s落回地面D.火箭经过40 s到达最高点解析:火箭在40 s时速度方向没有发生变化,一直沿正方向向上运动,故选项A错误;火箭上升的最大高度h=12×120 s×800 m/s=48 000 m,故选项B正确;火箭经过120 s上升到最大高度,故选项C、D错误.答案: B9.完全相同的3块木块并排固定在水平面上,一颗子弹以速度v水平射入,若子弹在木块中做匀减速直线运动,且穿过第3块木块后子弹的速度恰好为零,则子弹依次射入每块木块时的速度之比和穿过每块木块所用的时间之比分别是()A.v1∶v2∶v3=3∶2∶1B.v1∶v2∶v3=3∶2∶1C.t1′∶t2′∶t3′=1∶2∶ 3D.t1′∶t2′∶t3′=(3-2)∶(2-1)∶1解析:采用逆向转换,将子弹的匀减速直线运动看作反向的初速度为零的匀加速直线运动,可得v1∶v2∶v3=2a·3x∶2a·2x∶2a·x=3∶2∶1,选项A错误,B正确;t1′∶t2′∶t3′=(3-2)∶(2-1)∶1,选项C错误,D正确.答案:BD10.一个做匀加速直线运动的物体,先后经过相距为x的A、B两点时的速度分别为v和7v,从A到B的运动时间为t,则下列说法不正确的是()A.经过AB中点的速度为4vB.经过AB中间时刻的速度为4vC.通过前x2位移所需时间是通过后x2位移所需时间的2倍D.前t2时间通过的位移比后t2时间通过的位移少1.5v t解析:由匀变速直线运动的规律得,物体经过AB中点的速度为v x2=v2+(7v)23=5v,A错误;物体经过AB中间时刻的速度为v t2=v+7v2=4v,B正确;通过前x2位移所需时间t1=vx2-va=4va,通过后x2位移所需时间t2=7v-vx2a=2va,C正确;前t2时间通过的位移x1=v+4v2×t2=54v t,后t2时间通过的位移x2=4v+7v2×t2=114v t,Δx=x2-x1=1.5v t,D正确.答案: A11.如图所示,物体以4 m/s 的速度自斜面底端A 点滑上光滑斜面,途经斜面中点C ,到达斜面最高点B .已知v A ∶v C =4∶3,从C 点到B 点历时(3-2) s ,试求:(1)物体到达斜面最高点的速度; (2)斜面的长度.解析: (1)由已知可知,v A ∶v C =4∶3, 所以v c =3 m/s.又因为C 点为AB 中点,故v C =v 2A +v 2B2. 即v 2A +v 2B =2v 2C ,可得42+v 2B =2×32,所以v B = 2 m/s. (2)由x BC =v C +v B 2t =3+22×(3-2) m =72m 得 斜面长度x =2x BC =7 m. 答案: (1) 2 m/s (2)7 m12.一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l ,火车头经过某路标时的速度为v 1,而火车尾经过此路标时的速度为v 2,求:(1)火车的加速度a ;(2)火车中点经过此路标时的速度v ; (3)整列火车通过此路标所用的时间t .解析: (1)从火车头经过路标到火车尾经过此路标,火车的位移x =l ,由速度与位移的关系v 22-v 21=2ax得a =v 22-v 212l(2)从火车头经过路标到火车中点经过此路标,有 v 2-v 21=2a ·l 2从火车中点经过路标到火车尾经过此路标,有 v 22-v 2=2a ·l 2 联立两式,得v =v 21+v 222(3)火车通过此路标的过程中,由位移公式l =v 1+v 22t 得t =2lv 1+v 2即整列火车通过此路标所用时间为2lv 1+v 2.v22-v212l(2) v21+v222(2)2lv1+v2答案:(1)。

2.4匀变速直线运动的速度与位移的关系(习题)

2.4匀变速直线运动的速度与位移的关系(习题)

课题:2.4匀变速直线运动的速度与位移的关系姓名:班级:类型一、公式222tv v ax-=的应用例1、一列从车站开出的火车,在平直轨道上做匀加速直线运动,已知这列火车的长度为l,当火车头经过某路标时的速度为v1,而车尾经过这个路标时的速度为v2,求:(1)列车的加速度a;(2)列车中点经过此路标时的速度v;(3)整列火车通过此路标所用的时间t举一反三【变式1】在风平浪静的海面上,有一战斗机要去执行一项紧急飞行任务,而航空母舰的弹射系统出了故障,无法在短时间内修复.已知飞机在跑道上加速时,可能产生的最大加速度为5m/s2,起飞速度为50m/s,跑道长为100 m.经过计算发现在这些条件下飞机根本无法安全起飞.航空母舰不得不在海面上沿起飞方向运动,从而使飞机获得初速度,达到安全起飞的目的,那么航空母舰行驶的速度至少为多大?【变式2】某飞机着陆时的速度是216 m/h,随后匀减速滑行,加速度的大小是2m/s2。

机场的跑道至少要多长才能使飞机安全地停下来?类型二、匀变速直线运动公式的灵活运用例2、一个做匀加速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是24 m 和64 m,每一个时间间隔为4s,求质点的初速度和加速度.【总结升华】(1)运动问题的求解一般均有多种解法,进行一题多解训练可以熟练地掌握运动规律,提高灵活运用知识的能力.从多种解法的对比中进一步明确解题的基本思路和方法,从而提高解题能力.(2)对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑用判别式△=aT2求解,这种解法往往更简捷.举一反三【变式1】一个冰球在冰面上滑行,依次通过长度都是L的两段距离,并继续向前运动,它通过第一段距离的时间为t,通过第二段距离的时间为2t,如果冰球在冰面上的运动可看做匀变速直线运动,求冰球在第一段距离末时的速度.【变式2】跳伞运动员做低空跳伞表演,他从224m的高空离开飞机开始下落,最初未打开降落伞,自由下落一段距离打开降落伞,运动员以12.5m/s2的加速度匀减速下降,为了运动员的安全,要求运动员落地的速度不得超过5m/s(g=10m/s2).求:运动员打开降落伞时,离地面的高度至少为多少?类型三、初速度为零的匀加速直线运动的几个比例式的应用例3、一滑块自静止开始从斜面顶端匀加速下滑,第5s末的速度是6 m/s,试求:(1)第4s末的速度;(2)运动后7s内的位移;(3)第5s内的位移.举一反三【变式1】一物体沿斜面顶端由静止开始做匀加速直线运动,最初3 s内的位移为1,最后3s 内的位移为2,已知2- 1=6m;1: 2=3:7,求斜面的总长.【总结升华】切忌认为物体沿斜面运动了6s,本题中前3s的后一段时间与后3 s的前一段时间是重合的.类型四、纸带问题的处理例4、在测定匀变速直线运动的加速度的实验中,用打点计时器记录纸带运动的时间,计时器所用电源的频率为50 H .如图所示为小车带动的纸带上记录的一些点,在每相邻的两点之间都有四个点未画出.按时间顺序取0、1、2、3、4、5六个点,用刻度尺量出1、2、3、4、5点到0点的距离如图所示.(1)小车做什么运动?(2)若小车做匀变速直线运动,那么当打第3个计数点时小车的速度为多少?小车的加速度为多少?【总结升华】用逐差法求加速度,碰到奇数个位移,如本题中只有1至3五个位移,就去掉中间的一个位移而求解.举一反三【变式】某同在测定匀变速直线运动的加速度时,得到了在不同拉力下的A、B、C、D、…等几种较为理想的纸带,并在纸带上每5个点取一个计数点,即相邻两计数点问的时间间隔为0.1s,将每条纸带上的计数点都记为0、1、2、3、4、5、…,如图所示甲、乙、丙三段纸带,分别是从三条不同纸带上撕下的.(1)在甲、乙、丙三段纸带中,属于纸带A的是.(2)打A纸带时,物体的加速度大小是m/s2.例5:一辆汽车刹车前速度为90km/h,刹车获得的加速度大小为10m/s2,求:(1)汽车刹车开始后10s内滑行的距离x0;(2)从开始刹车到汽车位移为30m时所经历的时间t;(3)汽车静止前1s内滑行的距离x/;拓展:汽车刹车是单向运动,其速度减小到零就停止运动,分析运动过程要分清楚各阶段的运动性质,即汽车在减速,还是已经停止。

匀变速直线运动的速度与位移的关系习题

匀变速直线运动的速度与位移的关系习题

第4节匀变速直线运动的速度与位移的关系1.当物体做匀速直线运动时,物体的位移为x=______.当物体做变速直线运动时,可用平均速度求解物体的位移,即x=______.2.匀变速直线运动的物体的位移与速度满足关系式:__________________________.该关系式适用于匀加速和匀减速直线运动,且该公式为矢量式,在规定正方向后可用________表示x和a的方向.3.描述一段匀变速直线运动共有5个物理量:初速度v0、末速度v、加速度a、位移x、时间t,如果问题中的已知量和未知量都不涉及时间,利用______________求解,往往会使问题变得简单、方便.4.如图1所示,一辆正以8 m/s的速度沿直线行驶的汽车,突然以1 m/s2的加速度加速行驶,则汽车行驶了18 m时的速度为________ m/s.图15.现在的航空母舰上都有帮助飞机起飞的弹射系统,已知“F-A15”型战斗机在跑道上加速时产生的加速度为4.5 m/s2,起飞速度为50 m/s.若该飞机滑行100 m时起飞,则弹射系统必须使飞机具有的初速度为()A.30 m/s B.40 m/sC.20 m/s D.10 m/s6.汽车在平直公路上以20 m/s的初速度开始做匀减速直线运动,最后停止.已知加速度的大小为0.5 m/s2,求汽车通过的路程.【概念规律练】知识点一利用v2-v20=2ax求位移1.在全国铁路第六次大提速后,火车的最高时速可达250 km/h,若某列车正以216 km/h 的速度匀速行驶,在列车头经路标A时,司机突然接到报告要求紧急刹车,因前方1 000 m 处有障碍物还没有清理完毕,若司机听到报告后立即以最大加速度a=2 m/s2刹车,问该列车是否发生危险?知识点二利用v2-v20=2ax求速度2.一物体从斜面顶端由静止开始匀加速下滑,它到达斜面底端时的速度是 2 m/s,则经过斜面中点时的速度是________ m/s.3.汽车以10 m /s 的速度行驶,刹车后的加速度大小为3 m/s 2,求它向前滑行12.5 m 后的瞬时速度.知识点三 位移中点速度的计算4.一个做匀加速直线运动的物体,通过A 点的瞬时速度是v 1,通过B 点的瞬时速度是v 2,那么它通过A 、B 中点的瞬时速度是( ) A.v 1+v 22 B.v 2-v 12C. v 22-v 212D. v 22+v 212【方法技巧练】一、匀变速直线运动基本公式的应用5.一物体从斜面上某点由静止开始做匀加速直线运动,经过3 s 后到达斜面底端,并在水平地面上做匀减速直线运动,又经9 s 停止,则物体在斜面上的位移与水平面上的位移之比是( )A .1∶1B .1∶2C .1∶3D .13∶1 6.物体从静止开始做匀加速直线运动,加速度为1 m/s 2,求: (1)物体在2 s 内的位移;(2)物体在第2 s 内的位移;(3)物体在第二个2 s 内的位移.二、追及问题的解题技巧7.小车从静止开始以1 m /s 2的加速度前进,车后相距x 0=25 m 处,与车运动方向相同的某人同时开始以6 m/s 的速度匀速追车,问能否追上?若追不上,求人、车间的最小距离为多少?1.物体从长为L 的光滑斜面顶端开始下滑,滑到底端的速率为v .如果物体以v 0=v2的初速度从斜面底端沿斜面上滑,上滑时的加速度与下滑时的加速度大小相同,则可以达到的最大距离为( ) A.L 2 B.L 3 C.L4D.2L 2.物体的初速度为v 0,以加速度a 做匀加速直线运动,如果要使物体速度增加到初速度的n 倍,则物体发生的位移为( ) A.(n 2-1)v 202a B.n 2v 202aC.(n -1)v 202aD.(n -1)2v 202a3.图2如图2所示,物体A 在斜面上由静止匀加速滑下x 1后,又匀减速地在水平面上滑过x 2后停下,测得x 2=2x 1,则物体在斜面上的加速度a 1与在水平面上的加速度a 2的大小关系为( ) A .a 1=a 2 B .a 1=2a 2C .a 1=12a 2 D .a 1=4a 24.某物体做初速度为零的匀加速直线运动,当其运动速度等于其末速度的13时,剩余的路程占其全程的( ) A.13 B.23 C.19 D.895.物体由静止做匀加速直线运动,第3 s 内通过的位移是3 m ,则( ) A .第3 s 内平均速度是3 m/s B .物体的加速度是1.2 m/s 2 C .前3 s 内的位移是6 m D .3 s 末的速度是3.6 m/s6.一个做匀加速直线运动的物体,先后经过A 、B 两点的速度分别是v 和7v ,经过AB 的时间是t ,则下列判断中错误的是( ) A .经过A 、B 中点的速度是4v B .经过A 、B 中间时刻的速度是4vC .前t 2时间通过的位移比后t2时间通过的位移少1.5v tD.前x2位移所需时间是后x2位移所需时间的2倍7.小球由静止开始运动,在第1 s内通过的位移为1 m,在第2 s内通过的位移为2 m,在第3 s内通过的位移为3 m,在第4 s内通过的位移为4 m,下列描述正确的是()A.小球在这4 s内的平均速度是2.5 m/sB.小球在3 s末的瞬时速度是3 m/sC.小球在前3 s内的平均速度是3 m/sD.小球在做匀加速直线运动8.一质点做匀减速直线运动,第5 s末速度为v,第9 s末速度为-v,则质点在运动过程中()A.第7 s末的速度为零B.5 s内和9 s内位移大小相等,方向相反C.第8 s末速度为-2v成为最能评定汽车性能的指标之一.一般以0~100 km/h加速时间是否超过10 秒来衡量汽车加速性能的优劣.据报道,一辆新款国产汽车能在8秒内把汽车从静止加速到100 km/h,则供汽车加速的平直公路长度至少为多大?10.一辆汽车以72 km/h行驶,现因故紧急刹车并最终停止运动.已知汽车刹车过程加速度的大小为5 m/s2,则从开始刹车经过5 s,汽车通过的距离是多少?第4节匀变速直线运动的速度与位移的关系课前预习练1.vt v t2.v2-v20=2ax正负3.v2-v20=2ax4.10解析初速度v0=8 m/s,位移x=18 m,加速度a=1 m/s2,根据v2-v20=2ax,v=v20+2ax=82+2×1×18 m /s =10 m /s .5.B [设弹射初速度为v 0,由题意知x =100 m ,加速度a =4.5 m /s 2,末速度v =50 m /s ,根据v 2-v 20=2ax ,v 0=v 2-2ax =502-2×4.5×100 m /s =40 m /s .] 6.40 m解析 汽车的加速度a =-0.5 m /s 2,末速度v =0,根据v 2-v 20=2axx =0-2022×(-5) m =40 m . 课堂探究练 1.无危险解析 设列车从刹车开始到停止运动滑行位移为x , 则v 0=216 km /h =60 m /s ,v =0.取列车前进方向为正方向,则a =-2 m /s 2. 由关系式v 2-v 20=2ax 得: 02-602=-2×2x x =900 m因x =900 m <1 000 m 所以,该列车无危险. 2.1解析 根据匀变速直线运动的中间位移处的瞬时速度公式v 中=v 20+v22得v 中= (2)22m /s =1 m /s . 3.5 m /s解析 设汽车的初速度方向为正方向,则v 0=10 m /s , a =-3 m /s 2,x =12.5 m 由推导公式v 2-v 20=2ax 得:v 2=v 20+2ax =[102+2×(-3)×12.5] m 2/s 2=25 m 2/s 2所以v 1=5 m /s ,v 2=-5 m /s (舍去)即汽车向前滑行12.5 m 后的瞬时速度大小为5 m /s ,方向与初速度方向相同. 点评 匀变速直线运动的基本规律都是以矢量方程表示的,选用方程后注意选取正方向,确定好各个物理量的正负,由此将矢量运算转化为标量运算.在没有特殊说明的情况下,一般以初速度的方向为正方向. 4.D [由v 2-v 20=2ax 得对前半程有v 2中-v 21=2a·x 2① 对后半程有v 22-v 2中=2a·x 2② ①②联立可得:v 中= v 21+v 222]5.C [物体在斜面上运动时,v =3a 1,平均速度v 1=32a 1,x 1=v 1t 1=92a 1;物体在水平面上运动时,v 2=3a 12,x 2=v 2t 2=27a 12.所以x 1∶x 2=1∶3.]6.(1)2 m (2)1.5 m (2)6 m解析 2 s 内的位移是前2 s 内的位移,第2 s 内的位移是第1 s 末到第2 s 末这1 s 内的位移;第二个2 s 内的位移是第2 s 末到第4 s 末这2 s 内的位移.由匀变速直线位移公式x =v 0t +12at 2(1)x 1=12at 21=12×1×22 m =2 m(2)第1 s 末的速度(第2 s 初的速度)v 1=v 0+at =1 m /s ,故第2 s 内位移x 2=v 1t +12at 2=(1×1+12×1×12) m =1.5 m (3)第2 s 末的速度v 2=v 0+at ′=1×2 m /s =2 m /s ,也是物体第二个2 s 的初速度,故物体在第2个2 s 内的位移x 3=v 2t ′+12at ′2=(2×2+12×1×22) m =6 m7.见解析解析 解法一:物理法人的速度只要大于车的速度,两者的距离就越来越小;人的速度小于车的速度,两者的距离就越来越大,那么,当两者速度相等时,是人追上车的临界条件.两者速度相等时,有v =at ,t =v a =61 s =6 s ,人的位移:x 1=vt =6×6 m =36 m ,车的位移x 2=v 20-02a =622×1m =18 m .x 2+x 0=18 m +25 m =43 m >x 1=36 m ,因此人追不上车.最小距离为:Δx =x 2+x 0-x 1=43 m -36 m =7 m . 解法二:图象法作出人与车的v -t 图象,如右图所示,可以看出人追车的最大距离就是图中有斜线部分的三角形的面积,该面积所对应的位移x =6×62m =18 m <25 m ,说明人追不上车,人与车的最小距离Δx min =x 0-x =25 m -18 m =7 m . 课后巩固练 1.C2.A [设位移为x ,由题意知末速度为nv 0 由v 2-v 20=2ax 得:x =v 2-v 202a =n 2v 20-v 202a =(n 2-1)v 202a .选项A 正确.] 3.B 4.D5.ABD [第3 s 内的平均速度v =x t =31 m /s =3 m /s ,A 正确;前3 s 内的位移x 3=12at 23,前2秒内的位移x 2=12at 22,故Δx =x 3-x 2=12at 23-12at 22=3 m ,即12a·32-12a·22=3 m ,解得a =1.2 m /s 2,选项B 正确;将a 代入x 3得x 3=5.4 m ,C 错误;v 3=at 3=1.2×3 m /s =3.6 m /s ,D 亦正确.]6.A [平均速度v AB =7v +v2=4v ,即中间时刻的瞬时速度.中点位移处的速度v x2= (7v )2+v 22=5v.由Δx =a(t2)2和7v =v +at ,可以判断C 对.由x 2=5v +v 2t 1和x 2=5v +7v 2·t 2得t 1=2t 2.] 7.A [由初速度为零的匀加速直线运动的规律知,第1 s 内,第2 s 内,第3 s 内,…第n s 内通过的位移之比为1∶3∶5∶…∶(2n -1),而这一小球的位移分别为1 m,2 m,3 m ,…所以小球做的不是匀加速直线运动,匀加速直线运动的规律也就不适用于这一小球,所以B 、D 选项不正确.至于平均速度,4 s 内的平均速度v 1=x 1+x 2+x 3+x 4t 4=1 m +2 m +3 m +4 m 4 s =2.5 m /s ,所以A 选项正确;3 s 内的平均速度v 2=x 1+x 2+x 3t 3=1 m +2 m +3 m 3 s=2 m /s ,所以C 选项不正确.]8.AD 9.111.2 m解析 汽车的初速度v 0=0,末速度v =100 km /h =27.8 m /s ,t =8 s a =v -v 0t =27.8-08 m /s 2=3.475 m /s 2,根据v 2-v 20=2ax 得 x =v 2-v 202a =27.82-02×3.475m =111.2 m .本题还有两种方法,即根据x =v t 或x =12at 2来解,试试看,比较一下哪种方法最简单.10.40 m解析 本题应先分析清楚,汽车在5 s 内是正在刹车还是已经停车.若正在刹车,可用位移公式直接求;若停车时间t<5 s ,则刹车过程的距离即是所求的距离. 设汽车由刹车开始至停止运动所用的时间为t 0,v 0=72 km /h =20 m /s由v =v 0+at 0得:t 0=v -v 0a =0-20-5s =4 s .可见,该汽车刹车后经过4 s 就已经静止,后1 s 是静止的.因为汽车最终静止,可直接利用0-v 20=2ax 求出刹车距离 即x =v 2-v 202a =0-2022×(-5)m =40 m .若用基本位移公式x =v 0t +12at 2求,时间t 应取4 s 而不是5 s .。

第二章 第4节 匀变速直线运动的速度与位移的关系

第二章  第4节  匀变速直线运动的速度与位移的关系

第4节匀变速直线运动的速度与位移的关系必考要求:d 加试要求:d1.匀变速直线运动的速度—位移关系式:v 2-v 02=2ax 。

2.公式v 2-v 02=2ax ,在不涉及时间t 时,解决问题更方便。

3.匀变速直线运动某段位移中点位置的瞬时速度v x 2= v 02+v 22。

4.在匀变速直线运动中,某段过程中间时刻的瞬时 速度等于该过程的平均速度,还等于该过程初、末速度的平均值,即v t 2=v =v 0+v2。

5.在匀变速直线运动中,连续相等时间内的位移差 为Δx =aT 2。

匀变速直线运动的速度与位移关系1.关系式:v 2-v 02=2ax 。

2.推导:由匀变速直线运动的速度公式:v =v 0+at 和位移公式:x =v 0t +12at 2消去时间即得。

3.若v 0=0,速度与位移的关系为:v 2=2ax 。

合作探究——议一议(1)应用v 2-v 02=2ax 分析匀变速直线运动有何优势?提示:因公式v 2-v 02=2ax 不涉及物体运动的时间,故在不要求计算时间时,应用该式分析匀变速直线运动较简便,特别是求解刹车问题中的刹车距离时比较简便。

(2)建造滑梯时,若已知小孩在滑梯上下滑的加速度和在滑梯底端的安全速度,如何设计出滑梯的长度?提示:因为v 和a 已知且小孩初速度为零,根据v 2-v 02=2ax可知x =v 22a,要想保证小孩安全,则滑梯长度x 满足x ≤v 22a。

1.适用条件:匀变速直线运动。

2.v 2-v 02=2ax 为矢量式,x 、v 0、a 都是矢量,应用时必须选取统一的正方向,一般选初速度v 0的方向为正方向。

(1)匀加速直线运动,a 取正值;匀减速直线运动,a 取负值。

(2)位移与正方向相同取正值;位移与正方向相反,取负值。

1.A 、B 、C 三点在同一条直线上,某物体自A 点从静止开始做匀加速直线运动,经过B 点时速度为v ,到C 点时速度为2v ,则AB 和BC 两段距离大小之比是( )A .1∶4B .1∶3C .1∶2D .1∶1解析:选B 根据公式v 2-v 02=2ax ,可得AB 两段距离为:x 1=v 22a ,BC 段的距离为:x 2=(2v )2-v 22a =3v 22a,故x 1∶x 2=1∶3,B 正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(本栏目内容,在学生用书中以活页形式分册装订!)
1.一辆汽车由静止开始做匀加速直线运动,从开始运动到驶过第一个100 m距离时,速度增加了10 m/s.汽车驶过第二个100 m时,速度的增加量是()
A.m/s B.m/s
C.10 m/s D.20 m/s
解析:由v2=2ax可得v2=2v1,故速度的增加量Δv=v2-v1=(2-1)v1≈ m/s.
答案: A
2.一物体从斜面顶端由静止开始匀加速下滑,经过斜面中点时速度为2 m/s,则物体到达斜面底端时的速度为()
A.3 m/s B.4 m/s
C.6 m/s D.2 2 m/s
答案: D
3.汽车从静止起做匀加速直线运动,速度达到v时立即做匀减速直线运动,最后停止,全部时间为t,则汽车通过的全部位移为()
A.v t B.v t 2
C.2v t D.v t 4
解析:求全程位移利用平均速度公式有x=v1t1+v2t2=0+v
2t1+
v+0
2t2=v⎝



t1
2
+t2
2
=1
2
v t.
答案: B
4.一物体由静止开始做匀加速直线运动,在t s内通过位移x m,则它从出发开始通过x/4 m所用的时间为()
t
答案: B
5.把物体做初速度为零的匀加速直线运动的总位移分成等长的三段,按从开始到最后的顺序,经过这三段位移的平均速度之比为()
A.1∶3∶5 B.1∶4∶9
C.1∶2∶ 3 D.1∶(2+1)∶(3+2)
答案: D
6.汽车以5 m/s的速度在水平路面上匀速前进,紧急制动时以-2 m/s2的加速度在粗糙水平面上滑行,则在4 s内汽车通过的路程为()
A.4 m B.36 m
C.m D.以上选项都不对
解析:根据公式v=v0+at得:t=-v0
a
=5
2s=s,即汽车经s就停下来.则4 s内通过的路程为:
x=-v2
2a
=52
2×2
m=m.
答案: C
7.如右图所示,滑雪运动员不借助雪杖,由静止从山坡匀加速滑过x1后,又匀减速在平面上滑过x2后停下,测得x2=2x1,设运动员在山坡上滑行的加速度大小为a1,在平面上滑行的加速度大小为a2,则a1∶a2为()
A.1∶1 B.1∶2
C.2∶1 D.2∶1
解析:设运动员滑至斜坡末端处的速度为v,此速度又为减速运动的初速度,由位移与速度的关系式有
v2=2a1x1,0-v2=-2a2x2,故a1∶a2=x2∶x1=2∶1.
答案: B
8.物体做直线运动,在t时间内通过的路程为x,在中间位置x/2处的速度为v1,且在中间时刻t/2处的速度为v2,则v1和v2的关系错误的是()
A.当物体做匀加速直线运动时,v1>v2
B .当物体做匀减速直线运动时,v 1>v 2
C .当物体做匀速直线运动时,v 1=v 2
D .当物体做匀减速直线运动时,v 1<v 2
解析: 物体做匀变速直线运动,有v 2t -v 20=2ax 知v x 22-v 20=2a x 2 由以上两式得v x 2=v 20+v 2t 2
讨论:由于v t 2=v 0+v t 2,v x 2=v 20+v 2t 2
则v x 22-v t 22=v 20+v 2t 2-?v 0+v t ?24=?v 0-v t ?24
≥0,当且仅当v 0=v t 时等号成立,故只要物体做匀变速运动,则一定有v x 2>v t 2
. 答案: D
9.如右图所示,光滑斜面AE 被分成四个长度相等的部分,即AB =BC =
CD =DE ,一物体由A 点静止释放,下列结论不正确的是( )
A .物体到达各点的速度之比v
B ∶v
C ∶v
D ∶v
E =1∶2∶3∶2
B .物体到达各点所经历的时间t E =2t B =2t
C =2t
D / 3
C .物体从A 运动到E 的全过程平均速度v =v B
D .物体通过每一部分时,其速度增量v B -v A =v C -v B =v D -v C =v
E -v D
解析: 由v 2t -v 20=2ax 及v 0=0得v B ∶v C ∶v D ∶v E =1∶2∶3∶2,即A 正确.由x =12
at 2得t =2x a ,则t B =2x a ,t C =2×2x a ,t D =2×3x a ,t E =2×4x a ,由此可知B 正确.由x AB x BE =13得t AB =t BE ,即B 点为AE 段的时间中点,故v =v B ,C 正确.对于匀变速直线运动,若时间相等,速度增量相等,故D 错误,只有D 符合题意.
答案: D
10.如下图所示的位移(x )—时间(t )图象和速度(v )—时间(t )图象中给出四条图线,甲、乙、丙、丁代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是( )
A .甲车做直线运动,乙车做曲线运动
B .0~t 1时间内,甲车通过的路程大于乙车通过的路程
C .0~t 2时间内,丙、丁两车在t 2时间相距最远
D .0~t 2时间内,丙、丁两车的平均速度相等
解析: 在x -t 图象中表示的是直线运动的物体的位移随时间变化情况,而不是物体运动的轨迹,由甲、乙两车在0~t 1时间内做单向的直线运动,故在这段时间内两车通过的位移和路程均相等,A 、B 选项均错.在v -t 图象中,t 2时刻丙、丁速度相等,故两者相距最远,C 选项正确.由图线可知,0~t 2时间内丙位移小于丁的位移,故丙的平均速度小于丁的平均速度,D 选项错误.
答案: C
11.汽车正以10 m/s 的速度在平直公路上行驶,突然发现正前方有一辆自行车以4 m/s 的速度做同方向的匀速直线运动,汽车立即关闭油门做加速度为6 m/s 2的匀减速运动,汽车恰好不碰上自行车,求关闭油门时汽车离自行车多远?
解析: 汽车在关闭油门减速后的一段时间内,其速度大于自行车的速度,因此汽车和自行车之间的距离在不断缩小,当这个距离缩小到零时,若汽车的速度减至与自行车相同,则能满足题设中的汽车恰好不碰上自行车的条件,所以本题要求的汽车关闭油门时离自行车的距离x ,应是汽车从关闭油门做减速运动到速度与自行车速度相等时发生的位移x 汽与自行车在这段时间内发生的位移x 自之差,如下图所示.v 汽=10 m/s ,v 自=4 m/s.
汽车减速至与自行车同速时刚好不碰上自行车是这一问题的临界条件.
汽车减速到4 m/s 时发生的位移和运动时间分别为
x 汽=v 2自-v 2汽2a =16-1002×?-6?
m =7 m , t =v 自-v 汽a =4-10-6
s =1 s. 这段时间内自行车发生的位移
x 自=v 自t =4×1 m =4 m.
汽车关闭油门时离自行车的距离
x =x 汽-x 自=7 m -4 m =3 m.
答案: 3 m
12.一辆巡逻车最快能在10 s 内由静止加速到最大速度50 m/s ,并能保持这个速度匀速行驶.在平直的高速公路上,该巡逻车由静止开始启动加速,追赶前方2 000 m 处正以35 m/s 的速度匀速行驶的一辆违章卡车.则
(1)巡逻车至少需要多少时间才能追上卡车?
(2)在追赶的过程中,巡逻车和卡车的最大距离是多少?
解析: (1)巡逻车的最大加速度
a =v t 1=5010
m/s 2=5 m/s 2, 巡逻车以最大加速度加速阶段的位移
x 1=12at 21=12
×5×102 m =250 m , 设巡逻车至少需要时间t 才能追上卡车,
则有x 1+v (t -10)=2 000+35t
把x 1=250 m 、v =50 m/s 代入上式解得
t =150 s ;
(2)当两车速度相等时距离最远,巡逻车此时的速度v ′=35 m/s ,经历时间t ′=
v ′a =7 s ,发生位移
x ′=12at ′2=12
×5×72 m = m , 两车的最大距离
Δx =(2 000+35t ′)-x ′=2 m
答案: (1)150 s (2)2 m。

相关文档
最新文档