悬架各工况受力计算公式表
车架动载荷计算公式是什么

车架动载荷计算公式是什么在汽车工程中,车架是汽车的骨架,承担着车身和动力系统的重要部分。
在设计车架时,需要考虑到车身的动载荷,以确保车架能够稳定地承载车身和动力系统的重量,并且具有足够的强度和刚度。
因此,车架动载荷的计算是车架设计中的重要一环。
车架动载荷计算公式是用来计算车架在不同工况下所承受的动态载荷的公式。
一般来说,车架的动载荷主要来自于车身的重量、悬挂系统的反力、操纵系统的反力以及车辆在行驶过程中的各种动态载荷。
因此,车架动载荷计算公式需要考虑到这些因素,并综合考虑车辆在不同工况下的动态载荷情况。
车架动载荷计算公式一般可以分为静态载荷和动态载荷两部分。
静态载荷是指车辆在静止状态下所承受的重力和静止时的各种反力,包括车身的重量、悬挂系统的反力等。
而动态载荷则是指车辆在运动过程中所承受的各种动态载荷,包括加速、制动、转向等过程中所产生的载荷。
静态载荷的计算公式一般比较简单,可以通过车身重量和悬挂系统的反力来计算。
而动态载荷的计算则需要考虑到车辆在不同工况下的加速度、制动力、侧向力等因素,需要进行复杂的动力学分析和计算。
一般来说,可以通过车辆的动力学模型和仿真软件来进行动态载荷的计算。
在实际的车架设计中,车架动载荷的计算是非常重要的。
通过合理的计算和分析,可以确保车架在不同工况下都具有足够的强度和刚度,能够稳定地承载车身和动力系统的重量,同时也能够保证车辆在行驶过程中的稳定性和安全性。
除了车架动载荷的计算,车架的材料选择和结构设计也是车架设计中的重要一环。
不同的材料和结构设计会对车架的强度和刚度产生影响,因此需要综合考虑材料的强度、刚度、重量以及成本等因素,来选择合适的车架材料和结构设计。
总之,车架动载荷的计算是车架设计中的重要一环,需要综合考虑车辆在不同工况下的动态载荷情况,通过合理的计算和分析来确保车架具有足够的强度和刚度,能够稳定地承载车身和动力系统的重量,同时也能够保证车辆在行驶过程中的稳定性和安全性。
悬架高度的计算公式

悬架高度的计算公式悬架高度是指车辆底盘与地面之间的垂直距离,它直接影响着车辆的通过性、行驶稳定性和舒适性。
在汽车工程中,悬架高度的计算是一个非常重要的问题,它需要考虑到车辆的重量、悬架系统的特性以及路面的情况等多个因素。
本文将介绍悬架高度的计算公式及其影响因素。
悬架高度的计算公式可以分为静态悬架高度和动态悬架高度两种情况。
静态悬架高度是指车辆在静止状态下的悬架高度,而动态悬架高度是指车辆在行驶过程中的悬架高度。
这两种情况下的计算公式略有不同。
首先我们来看静态悬架高度的计算公式。
静态悬架高度的计算需要考虑到车辆的重量、悬架系统的特性以及车辆的设计要求等因素。
一般来说,静态悬架高度可以通过以下公式来计算:H = H0 + ΔH。
其中,H表示静态悬架高度,H0表示悬架系统的设计高度,ΔH表示悬架系统的变形量。
悬架系统的设计高度是指车辆在设计状态下所设定的悬架高度,它是一个固定的数值。
而悬架系统的变形量则是指车辆在静态状态下由于自重和载荷的作用而导致的悬架变形,它是一个动态的数值,需要通过实际测试或者计算来得到。
在实际工程中,悬架系统的变形量可以通过有限元分析等方法来计算得到。
有限元分析是一种工程计算方法,它可以通过对车辆结构进行离散化,然后利用数值计算的方法来求解结构的变形和应力分布。
通过有限元分析,可以得到车辆在不同载荷下的悬架变形量,从而得到静态悬架高度。
除了静态悬架高度,动态悬架高度也是一个非常重要的参数。
动态悬架高度的计算需要考虑到车辆在行驶过程中的悬架变形、路面的不平度以及车辆的运动状态等因素。
一般来说,动态悬架高度可以通过以下公式来计算:Hd = H0 + ΔHd。
其中,Hd表示动态悬架高度,H0表示悬架系统的设计高度,ΔHd表示悬架系统的动态变形量。
与静态悬架高度类似,悬架系统的设计高度是一个固定的数值,而悬架系统的动态变形量则是一个动态的数值,需要通过实际测试或者计算来得到。
在实际工程中,动态悬架高度的计算需要考虑到车辆在行驶过程中的各种动态载荷,以及路面的不平度等因素。
基于比赛工况下的新型全地形巴哈赛车悬架设计

科技风2021年2月DOI:10.19392/ki.1671-7341.202106007基于比赛工况下的新型全地形巴哈赛车悬架设计吴晶涛汪子睿张楠欣阮观强上海电机学院上海201306摘要:本文介绍了一款基于恶劣的越野场地下的悬架设计基本思路与流程。
根据设计高通过性的车辆的需求,结合整车设计要求,初步确定悬架参数。
选择悬架基本类型,进行Adams运动仿真,满足设定性能参数,确定悬架硬点。
建立悬架零部件的概念模型,Adams运动仿真检查悬架运动间隙检查。
根据悬架概念设计结构,建立Adams弹性运动学模型,并设定目标,调整各较接点衬套刚度来满足设计目标,确定各较接点的衬套。
加载工况,分解各零部件受力、对零部件进行有限元受力分析,对零部件结构进行优化,根据悬架设定目标,计算稳定杆刚度和减振器阻尼,确定弹簧、稳定杆和减振器的设计参数。
样车制造,进行悬架主客观评价并调校。
关键词:悬架设计;开发流程;机械动态仿真中图分类号:U463.1文献标识码:BSutpentnondetngnbatedoncompernrnoncondnrnontWu Jingtao Wang Ziri Zhang Nanxin Ruan GuanqiangShanghai DianJi University Shanghai201306Abstract:This aoiiaeeiniooduaesihebasiaideaand pooaesoiasuspension design based on ihehaosh oi-ooad iieed undeogoound. According to the requirement of the vehicle with high throughput and the design requirement of the whole vehicle,the suspension parameters ao preliminarily determined.Select the basic type of suspension,caro out Adams motion simulation,meet the set performance parameters,determine the hard point of suspension.The conceptuai modei of suspension components is established,and the motion cleae-anco of suspension is checked by Adams motion simulation.According to the suspension conceptuai design structure,the Adams elastic konematocGmodeeoeGtabeohed,and thetaogetoGet.TheGtoineGoieach hongebuGhongoad.uGted tomeetthedeGogn taoget,and the bushing of each hinge point is determined.Loading conditions,decompose the forco of each component,caro out finite element analysis of the components,optimize the structure of the components,calculate the stiffness of the stabilizing od and the damper according to the suspension setting target,and determine the design parameters of the spring,the stabilizing od and the dampea Sample car manufactue-ing,subjective and objective evvluation and adjustment of suspension.Key word/:suspension design;development process;Mechanicai Dynamic Sniiulahon1绪论悬架是汽车上非常重要的构件,它把车轮与车身弹性的连接起来,其基本组成部分有弹簧、减震器与导向机构。
悬架控制臂多目标拓扑优化

悬架控制臂多目标拓扑优化康元春;李辉;高赞【摘要】为了对悬架控制臂进行轻量化,并保证轻量化的悬架控制臂仍能满足动静态性能要求,采用了多目标拓扑优化的方法。
首先以控制臂为柔性体在Adams/Car中建立悬架刚柔耦合模型并对该模型进行多体动力学分析,从而得到悬架控制臂在制动、转向及过凸包等极限工况时的边界条件;然后采用惯性释放的方法对悬架控制臂进行有限元静力分析及模态分析,并根据结果分析其动静态性能;再运用折衷规划法对该悬架控制臂进行多目标拓扑优化,并通过正交试验的方法确定目标函数的权重。
最终得到的新控制臂模型重量比原模型降低18.1%,总体刚度及低阶频率都有提高,各极限工况应力均小于许用应力。
结果表明,轻量化的悬架控制臂满足性能要求,验证了设计的合理性。
%To lightweight the suspension control arm and ensure it to meet the dynamic and static performance re-quirements, the multi-objective topology optimization method was adopted. Firstly, Adams/Car was used to estab-lish the rigid-flexible coupling model of suspension system and to get multi-body dynamics analysis. Therefore, the extreme boundary conditions of braking, steering and the convex hull were obtained. Then inertial release was used in finite element static and modal analysis, and dynamic and static performances analyzed according to the results. Finally, compromise programming approach was used to do multi-objective topology optimization, and at the same time, the optimization goal weight was determined by orthogonal test. Compared with the original model,the weight of the new model is reduced by 18. 1%, overall stiffness and lowfrequency are increased, and static stresses in all con-dition are still met. The result indicates that the lightweighted control arm meets the performance requirements. The design of control arm is verified.【期刊名称】《解放军理工大学学报(自然科学版)》【年(卷),期】2014(000)006【总页数】5页(P571-575)【关键词】控制臂;折衷规划法;多目标拓扑优化【作者】康元春;李辉;高赞【作者单位】湖北汽车工业学院汽车动力传动与电子控制湖北省重点实验室,湖北十堰442002;湖北汽车工业学院汽车动力传动与电子控制湖北省重点实验室,湖北十堰442002;湖北汽车工业学院汽车动力传动与电子控制湖北省重点实验室,湖北十堰442002【正文语种】中文【中图分类】U463.82汽车控制臂是一个典型的运动构件,汽车行驶时,其内端始终绕着与车身连接的球铰总成摆动,在进行拓扑优化减轻重量时有其特殊性[1]。
乘用车悬架系统台架试验标准规范

乘用车悬架系统台架试验规范1 范围本标准规定了乘用车悬架系统台架试验规范。
本标准适用于基础(新)底盘平台结构乘用车前、后悬架系统台架试验。
对于在基础平台上延伸车型(如油改电),若轴荷增加<10%,悬架系统的强度及耐久性可视同原基础平台车,若轴荷增加≥10%,悬架系统的强度及耐久性可参照使用。
2 规范性引用文件无3 术语和定义下列术语和定义适用于本标准。
3.1麦弗逊悬架 mcPherson suspension汽车独立悬架的一种结构类型,普遍应用于前悬架。
由滑柱、控制臂、副车架及稳定杆等部件组成。
3.2双叉臂悬架 double wishbone suspension汽车独立悬架的一种结构类型,适应于前后悬架。
由滑柱、上控制臂、下控制臂、副车架及稳定杆等部件组成。
3.3多连杆悬架 multilink rear suspension汽车独立悬架的一种结构类型,适应于后悬架。
是指单边由三根或三根以上连接拉杆构成,能够提供多个方向的控制力,使轮胎具有更加可靠的行驶轨迹的悬架机构。
3.4扭力梁后悬架 torsion beam rear suspension汽车半独立悬架的一种结构类型,适应于后悬架。
是通过一个扭力梁来平衡左右车轮的上下跳动,以减小车辆的摇晃,保持车辆的平稳性。
3.5 整体桥式非独立悬架 integral axle non independent suspension汽车非独立悬架一种结构类型,在乘用车领域多用于偏重越野的SUV车型。
通过一根硬轴将左右两个车轮相连。
3.6验证样件 validation sample试验过程中需要验证的工程样件,应是正式工装制造的样件。
验证样件经过一项台架耐久试验循环后不可重复使用。
3.7非验证样件 nonvalidation sample试验过程中不需要验证的样件,在试验中可重复使用。
4 符号(代号、缩略语)下列符号(代号、缩略语)适用于本文件。
g——重力加速度,单位为m/s2。
独立悬架系统零部件动态载荷计算方法

摘要在车辆行驶过程中,悬架系统各零部件承受并传递来自轮胎及车身的多种动态载荷,这些载荷是进行悬架系统的结构强度、疲劳分析必不可少的边界条件,也是指导悬架以及车身结构优化的重要参数。
本文结合多体动力学相关理论和Udwadia-Kalaba方程的约束处理方法,以轮心六分力为输入,对独立悬架系统各零部件的动态载荷计算方法及其应用展开了研究。
具体研究内容如下:首先以不含衬套连接的前双横臂、后五连杆悬架系统作为研究对象,基于Udwadia-Kalaba方程的基本思想,分别建立了无约束系统动力学模型、系统约束方程以及完整的前后悬架动力学模型;推导了系统总约束力的分解过程从而得到各零部件硬点载荷的解析表达式;在MATLAB中分别建立上述模型进行仿真计算,与ADAMS/Car的仿真结果进行对比,验证了方法的正确性。
②然后考虑含橡胶衬套的连接方式,建立了表征衬套动态特性的数学模型;针对前后悬架在衬套分布位置上的差异,以及与无衬套模型在建模方法上的区别与联系,分别推导了前后悬架动力学建模以及各硬点载荷的计算过程;在MATLAB及ADAMS/Car中进行仿真计算,验证了上述方法的正确性。
③其次以某SUV为对象开展了六分力测试试验,测量了实车在两种路面工况中的轮心六分力,结合前文建立的悬架动力学模型,预测得到了前悬架控制臂各硬点处的动态载荷;以预测载荷及六分力作为边界条件,对控制臂在两种工况下的疲劳寿命进行了分析。
④最后为便于方法的使用,分别完善了麦弗逊、四连杆等其余独立悬架的建模计算过程,在MATLAB/GUI中设计了一种独立悬架系统建模及动态载荷计算的仿真平台,实现了多种悬架的参数化建模。
本文将Udwadia-Kalaba方程应用到汽车独立悬架研究领域,结合多体动力学相关理论,详细地推导了独立悬架动力学建模及零部件动态载荷的计算过程。
研究过程中将理论与实践相结合,可为这一类含约束复杂机械系统的建模计算提供一种新思路。
悬架高度的计算公式为

悬架高度的计算公式为悬架高度的计算公式。
悬架高度是指车辆悬架系统中的悬架元件(例如弹簧、减震器等)离地面的距离。
它对车辆的行驶性能、驾驶舒适性和通过性都有着重要的影响。
因此,了解悬架高度的计算公式对于车辆的调校和改装具有重要意义。
悬架高度的计算公式可以根据车辆的悬架系统和车身结构来进行推导。
一般来说,悬架高度可以通过以下公式来计算:悬架高度 = 车身高度轮胎直径/2 轮胎气压弹簧压缩量。
其中,车身高度是指车辆车身底部到地面的垂直距离,轮胎直径是指轮胎外径的一半,轮胎气压是指轮胎内部的气压,弹簧压缩量是指悬架系统中弹簧的压缩量。
在这个公式中,车身高度是一个固定的数值,通常由车辆制造商在设计阶段确定。
轮胎直径和轮胎气压可以通过轮胎规格和实际使用情况来获取。
而弹簧压缩量则需要根据车辆的悬架系统和悬架元件的特性来进行计算。
弹簧压缩量的计算可以通过以下公式来进行:弹簧压缩量 = 车辆重量重心高度 / 弹簧刚度。
其中,车辆重量是指车辆整备质量,重心高度是指车辆重心到地面的垂直距离,弹簧刚度是指悬架系统中弹簧的刚度系数。
通过以上公式,我们可以看到悬架高度的计算涉及到车身高度、轮胎参数、弹簧压缩量等多个因素。
这些因素的准确获取和计算对于悬架高度的精确计算具有重要意义。
在实际应用中,悬架高度的计算可以帮助车辆制造商和改装爱好者进行车辆的调校和改装。
通过调整悬架高度,可以改变车辆的行驶性能和驾驶舒适性。
例如,降低悬架高度可以降低车辆的重心,提高车辆的操控性能;而提高悬架高度则可以增加车辆的通过性和通过性。
除此之外,悬架高度的计算还可以帮助车辆制造商进行车辆的设计和调校。
通过合理的悬架高度设计,可以使车辆在不同路况下都能够保持良好的行驶性能和驾驶舒适性。
总之,悬架高度的计算公式是车辆悬架系统中的重要参数,它对车辆的行驶性能、驾驶舒适性和通过性都有着重要的影响。
通过合理的悬架高度设计和调校,可以使车辆在不同路况下都能够表现出色的性能。
后桥桥壳强度计算(垂直、牵引、制动、侧滑工况)

后桥桥壳强度计算(垂直、牵引、制动、侧滑工况)根据《汽车车桥设计》的方法进行计算简算。
数据仅供参考。
这种计算只适合设计初期的粗略计算判断。
实际设计时,需结合有限元分析软件,以处理桥壳的细节尺寸,使应力分布在更合理的状态。
本例子计算的桥壳结构如下截图所示(悬架按普通板簧悬架,车辆承载的力作用于桥壳方截面上面的的板簧盖板上-下图中未画出上盖板):说明:折算到桥壳板簧座处的受力时,应该要用10T减去桥总成的重量的。
不过本例子中是按作用在板簧座处的力为额定载荷,到轮胎上时,是额定载荷+桥重量。
这样算更保险点。
相当于叠加了一点安全系数。
注2:上述表格中的计算都是基于水平路面进行的计算。
所以计算结果仅能作为基础参考数据,起到数据统计对比的价值。
如果车桥使用的路况很恶劣,需要额外考虑坡度、凹坑、凸起等其他因素。
附件-计算表格:桥壳强度计算.xlsx项目代号单位数值两板簧座之间的弯矩M M Nm 28665桥壳截面宽 B mm 135 桥壳板簧截面处的静弯曲应力σwj Mpa 98.7因是垂直静弯曲强度计算,所以按2.5倍计算。
地面对后驱动桥左轮的垂向反作用力Z2R N 88519.9地面对左右驱动轮的最大切向反作用力Pmax N 142135.4重力加速度g m/s^2 9.8驱动桥承受的侧向力P2 N板簧对桥壳的垂向作用力-左侧T2L N1565.8原则上讲a+b 的值越大越好。
但是受空间和质量的限制,又不能做的太大,所以一般情况按a+b ≈rr/4。
离)。
因为此值一般都比较小,所以就省略了。
A-A 截面的垂向弯矩 M Nm 41743.0总结:上述计算的汇总信息如下:例如:公路用桥时,1为*.*g ,2为*.*g ,3为*.*g ,4为*.*g 。
(*.*为某一统计经验数值(即几点几个g 。
g 代表额定载荷)。
当有多个方向受力时,需要叠加各个实际载荷方向的数值)恶劣路面用桥时可在上述条件下叠加一些载荷,或是要求更高的安全系数,即在相同载荷条件下,允许的最大应力值必须更小一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
悬架各工况受力计算公式表
悬架各工况受力计算公式表是汽车设计师们必备的一份文档,因为悬架是汽车上最重要的零部件之一,它直接关系到汽车的运行性能和安全性。
本文将详细介绍悬架各工况受力的计算公式表,以帮助读者更好地理解。
首先,悬架是一个复杂的系统,由若干个部件组成,包括弹簧、减震器、传动轴、控制臂、节流阀等。
在实际工作过程中,悬架各部件都会承受不同的受力状态,如纵向加速、横向转向、制动、加速、刹车等。
而悬架各部件所承受的受力状态也是不同的,因此,针对不同的受力状态,悬架各部件的受力计算公式也是不同的。
以下是悬架各工况受力计算公式表:
1. 纵向加速时,控制臂承受的力矩计算公式为:M = ma / FZ,其中m是汽车质量,a是车辆纵向加速度,FZ是轮胎垂直载荷。
2. 横向转向时,控制臂承受的力矩计算公式为:M = Fy * h,其中Fy是横向力,h是控制臂与地面垂直距离。
3. 制动时,制动力矩的计算公式为:M = W * (R - r) / 2,其中W是车辆重量,R是轮胎半径,r是制动器半径。
4. 加速时,驱动轴承受的力矩计算公式为:M = T /
i * η * r,其中T是发动机输出扭矩,i是变速器传动比,η是传动效率,r是驱动轴半径。
5. 刹车时,制动器受到的压缩应力计算公式为:σ =
F / A,其中F是制动力,A是制动器面积。
6. 路面颠簸时,减震器吸收的能量计算公式为:E = 1 / 2 * k * δ^2,其中k是减震器弹簧刚度,δ是减震器伸缩位移。
以上是悬架各工况受力计算公式表的部分内容,这些公式可以帮助汽车设计师了解悬架各部件在不同工况下所
承受的受力情况,从而优化设计方案,提高汽车的性能和
安全性。
总之,悬架各工况受力计算公式表是非常重要的一个文档,它涉及到汽车设计的方方面面,设计师们应该积极
学习和掌握这些公式,以更好地提高汽车的性能和安全
性。