统计公差分析方法概述

合集下载

统计公差分析方法概述

统计公差分析方法概述

统计公差分析方法概述公差分析是设计和制造过程中的重要环节,用于评估产品的尺寸和形状的变化并确定其质量要求。

它帮助确定制造过程中允许的变化范围,以确保产品的功能和性能满足设计要求。

下面是公差分析方法的概述:1.公差概念和术语:公差是表示产品尺寸和形状变异的一种度量,是设计要求和制造能力之间的差异。

了解公差的基本概念和术语对于进行有效的公差分析非常重要。

例如,公差带、公差上限、公差下限、公差等级等。

2.公差链:公差链是将不同部件的公差延伸到整个产品装配中的一种方法。

通过分析公差链,可以确定整个装配的总体公差,并评估其对产品性能的影响。

公差链分析通常采用功能环或冗余环的方法。

3.公差配合:公差配合是指零件之间在装配时的相互作用。

公差配合分析可以确定零件之间的配合方式,并对其作用进行评估。

常见的公差配合包括配合间隙、过盈配合和间隙配合等。

4. 公差分析工具:公差分析通常使用一些专门的工具来辅助。

例如,一维公差分析工具(如Matlab、Excel等)用于分析单个尺寸的公差,根据统计数据计算出尺寸的上下限。

使用二维和三维CAD软件进行公差堆叠分析,可以在装配设计阶段模拟零件堆叠时产生的误差变化。

5.公差分配:公差分配是将总体公差分配给不同的零件以实现装配要求的过程。

公差分配通常基于设计要求、制造能力和装配要求等考虑因素。

公差分配需要根据装配关系和功能要求来确定每个零件的公差。

6.公差检验:公差分析的最后一步是进行公差检验,以确保产品的尺寸和形状在规定的公差范围内。

公差检验可以通过测量和检测工具来进行,例如卡尺、测量仪器、投影仪等。

公差检验是确保产品质量和性能的关键步骤。

7.公差优化:公差优化是指通过优化公差的分配和设计来最小化产品的尺寸和形状变化,以提高产品的质量和性能。

公差优化可以通过使用计算机辅助设计(CAD)软件和专业的公差优化工具来实现。

总之,公差分析是设计和制造中的关键环节,有助于确保产品质量和性能满足要求。

公差分析简介及实例分析

公差分析简介及实例分析

=0.00+0.25/-0.35mm
使用统计分析进行的公差分析
1.以相关各尺寸之设计中心值作为平均值X 2.以相关各尺寸之设计公差范围作为其对应标准偏差6σ 3.依公式进行计算 分别得出配合后共面度中心值及其偏差范围 计算得: X = (0.30+2.625)+(0.45+0.05)-(3.35+0.025)=0.05mm 3σ= 0.102+0.0252+0.052+0.0252+0.052+0.052 =0.136mm 合计: 共面度=0.05± 0.136mm (0.186~-0.086) 查表得: Z1 =3*(0.10-0.05)/0.136=1.103
CONTACT: DIM 0.45± 0.05 DIM 0.00+0.10/-0.00
使用极端情况进行的 一般公差分析
共面度: =HOUSING高+CONTACT高-SHELL高 =[(0.30± 0.10)+(2.60+0.05/-0.00)] +[(3.35± 0.05)+(0.00+0.05/-0.00)] -[(0.45± 0.05)+(0.00+0.10/-0.00)]
分类:
极端情况公差分析V.S.统计分析 (完全互换法) (大数互换法)
A极端情况公差分析
即在建立好的一條尺寸链上 保証各环(尺寸)公差均向一个 方向上累积.也仍然滿足封闭環的装配性及功能要求
方法分类:
a.正计算: 已知尺寸链上各尺寸的基本尺寸及极限偏差 求封闭环的尺寸及极限偏差用于校核功能性 b.反计算: 已知封闭环尺寸的基本尺寸及极限偏差
* 3.产品开发设计的需要 产品设计一般分为 原形设计 和 二次生产设计 不进行公差分析意味着将在制造时冒很大的风险

统计学公差分析理论课件

统计学公差分析理论课件

上偏差
目标 规格范围
两种主要的变异类型
1. 加工制程的变异
– 材料特性的不同 – 设备或模具的错误 – 工序错误 / 操作员的错误
– 模具磨损 – 标准错误
2. 组装制程的变异
– 工装夹具错误 – 组装设备的精度
4
变异的控制
变异的控制
从加工制造
解决方案
制成的选择 制程的控制 (SPC)
产品的检查
从产品设计
= 第i个尺寸对称公差.
5. 确定公差分析的方法
6. 按要求计算变异
最大间隙 Xmin = dGap – Ttot = 1.00 – 0.58 = 0.42 最小间隙 Xmax = dGap + Ttot = 1.00 + 0.58 = 1.58
最小间隙的要求 (dGap >0) 完全达到
23
13.00 ±0.20
35.00 ±? 10.00 ±0.15 12.00 ±0.10
20.00 ±0.30
45.00 ±? 15.00 ±0.25
零件 4
10.00 ±0.15
零件 3
零件 2 零件 1
14
堆叠公差分析过程
1. 确定组装要求
2. 建立封闭尺寸链图 3. 转换名义尺寸,将公差 转成对称公差 4. 按要求计算名义尺寸
LSL
USL
Process variation 3s
Process variation 3s
mean - LSL
USL - mean
Tolerance range
11
一般公差分析的理论
这部分主要是说明怎样应用公差分析这个工具,去确保产品适合最终确定的产品功能和品 质的要求的过程。

公差分析讲义

公差分析讲义
无类似工程数据时 在设计的最初阶段适用Min/Max 公差分析 Min/Max 公差分析是非常保守的方法. 此方法是假定所有的部品全都在限界 尺寸时的情况, 但此种情况计划不会 发生.
RSS
用于 制作模具的设计图纸出图前, 即 已收集到工程数据时 使用. RSS 公差分析方法 根据部品的变化量来 决定系统不良的可能性 根据RSS进行 6σ 设计时, 预想会发生 4.3ppm 不良
μ 1 + μ2 + μ3 + μ4
如果两部品的尺寸相互独立, 平均和标准偏差的共分散就是 “0”, 所以只进行加减计算即可
μx+y= μx + μy μx-y = μx – μy σ2x+y = σ2x + σ2y σ2x-y = σ2x + σ2y (X + Y)的平均 (X - Y)的平均 (X + Y)的分散 (X - Y)的分散
+
A
Block Box(右侧) Gap
B1 Block 1 的 大小
B2 Block 2 的 大小
B3 Block 3 的 大小
B4 Block 4 的 大小
Gap = A – B1 – B2 – B3 – B4
Gap比 0.0 小时, 会出现干扰. 平均Gap: μgap= μe - μ1+2 = 80.0 - 79.0 = 1.0mm Gap的标准偏差:
gap gap
e 1 2
2 2
2
0 . 3408
2
0 . 2032
2
0 . 1270
2
gap 0 . 3877
理想的 6σ 水平的设计是 :
- 确认是否满足顾客要求 - 确认标准偏差

统计公差分析方法概述

统计公差分析方法概述

统计公差分析方法概述一、引言公差设计问题可以分为两类:一类就是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸与公差,确定装配后需要保证的封闭环公差;另一类就是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸与公差,求解组成环的经济合理公差。

公差分析的方法有极值法与统计公差方法两类,根据分布特性进行封闭环与组成环公差的分析方法称为统计公差法、本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。

二、Worst Case Analysis极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。

<例>Vector loop:E=A+B+C,根据worst case analysis可得D(Max、)=(20+0、3)+(15+0、25)+(10+0、15)=45、7,出现在A、B、C偏上限之状况D(Min、)=(20-0、3)+(15-0、25)+(10-0、2)=44、3,出现在A,B、C偏下限之状况45±0、7适合拿来作设计不?Worst Case Analysis缺陷:•设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难;•公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为1-0、9973=0、0027;在组装完毕后所有零件都有缺陷的机率为:0、0027^3=0、3。

这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都就是接近极限尺寸的情况非常罕见。

三、统计公差分析法•由制造观点来瞧,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。

统计学公差分析理论

统计学公差分析理论
+ 比WC法,其成本较低。 - 太多的假设
So一些指导原则,什么时候当用 WC 和 RSS 方法
• 在堆叠中,如果少于4个尺寸的 • 如果对这个制造工艺了解不足够的
• 在堆叠中,如果有4个或多于4个尺寸的 • 只要有可能就尝试用它 • 当对制造工艺非常了解(旧的类似零件)
Nokia 专案的公差分析
最小间隙的要求 (dGap >0) 完全达到
第六步 – 计算变异, WC or RSS ?
1. 确定组装要求
2. 建立封闭尺寸链图 3. 转换名义尺寸,将公差 转成对称公差 4. 按要求计算名义尺寸
5. 确定公差分析的方法
6. 按要求计算变异
以上的计算结果 WC: 最小间隙 Xmin = –0.10 mm RSS: 最小间隙 Xmin = 0.42 mm
LSL
Process variation 3s
Process variation 3s
mean - LSL
USL - mean
Tolerance range
USL
一般公差分析的理论
这部分主要是说明怎样应用公差分析这个工具,去确保产品适合最终确定的产品功能和品 质的要求的过程。
公差分析的优点
公差分析:
• 在堆叠公差时,有以下几种方法:
– 手工. – 用电子数据表,比如Nokia Excel 模板. 这在
NOKIA是首选的方法! – 用公差分析软件,比如 VisVSA™.
• 这份教材重点是讲用NOKIA模板分析一个尺 寸的堆叠。按组装要求,分为六步来分析。
第一步 – 确定组装要求
1. 确定组装要求
C 1.45±0.10
B 0.50±0.10
在弹力作用下将 没有间隙

第4部分:公差分析指南

第4部分:公差分析指南

22
DFMA
谢 谢 !
23
3.当公差分析的结果不满足要求时:

DFMA
减少尺寸链的长度; A为54.00±0.20,C为25.00±0.15,D为28.50±0.15
优化的设计
18
四. 公差分析指南
3.当公差分析的结果不满足要求时:

DFMA
使用定位特征; 好处:
定位特征可以提供较精密的尺寸公差 定位特征的尺寸可以放置于比较容易进行尺寸管控的区域 使用定位特征时可以减少和避免对其他尺寸的公差要求,只需严格管控定 位特征的相关尺寸,就可以满足产品设计要求 因为定位特征精度高,使用定位特征有利于减少零件之间的尺寸公差累积
DFMA
制造工艺能力决定了公差分析中公差的设定; 二维图纸中公差标注与公差分析中的公差一致; 对公差分析中的尺寸需要进行制程管控;
制造工艺 能力
公差分析中 公差的设定
二维图样零 件公差标注
零件尺寸 制程管控
15
四. 公差分析指南
3.当公差分析的结果不满足要求时: 不推荐的做法:

DFMA
调整尺寸链中的尺寸公差大小; 降低目标尺寸判断标准;
100±0.20
3
一. 公差分析的介绍
2.公差的本质:

DFMA
公差是产品设计和产品制造的桥梁和纽带,是保证产品以优异的质量、 优良的性能和较低的成本进行制造的关键。
设计 功能 性能 外观 可装配性 设计限制 稳健性设计 设计意图 产品质量 客户满意
公差
制造 制造费用 装配费用 制造方法选择 机器 夹具 检验 不良率 返工率
推荐的做法:

减少尺寸链的长度; 使用定位特征;

统计学公差分析理论

统计学公差分析理论

Ppk
min
mean - LSL
3 sLT
,
USL 3
mean sLT
Sample mean Nominal value
参数
• Ppk 是制程性能指标 • sLT 是长期标准差 • LSL是规格的下限 • USL是规格的上限 • mean 是实际制程的平均值
LSL
Process variation 3s
Process variation 3s
mean - LSL
USL - mean
Tolerance range
USL
一般公差分析的理论
这部分主要是说明怎样应用公差分析这个工具,去确保产品适合最终确定的产品功 能和品质的要求的过程。
公差分析的优点
公差分析:
• 验证设计是否达到预期的品质水平. • 带较少缺点的良率产品. • 预防生产重工和延误. • 降低产品的返修率 (降低成本).
2 2 2 2
1
2
3
4
tot
Ti 2
i 1
让我们用 WC 和 RSS来计算这些变量,然后做个比较!
第六步 – 计算变异, WC
1. 确定组装要求
极值法 (WC)
• 间隙变量是个体公差的总和.
2. 建立封闭尺寸链图 3. 转换名义尺寸,将公差 转成对称公差 4. 按要求计算名义尺寸
5. 确定公差分析的方法
C (d3 )
B (d2 )
A (d1 )
3. 转换名义尺寸,将公差 转成对称公差
4. 按要求计算名义尺寸
• 名义值间隙是:
n
dGap
di
i 1
5. 确定公差分析的方法 6. 按要求计算变异
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计公差分析方法概述(总5
页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
统计公差分析方法概述(2012-10-23 19:45:32)
分类:公差设计统计六标准差
统计公差分析方法概述
一.引言
公差设计问题可以分为两类:一类是公差分析(Tolerance Analysis ,又称正计算) ,即已知组成环的尺寸和公差,确定装配后需要保证的封闭环公差;另一类是公差分配(Tolerance Allocation ,又称反计算) ,即已知装配尺寸和公差,求解组成环的经济合理公差。

公差分析的方法有极值法和统计公差方法两类,根据分布特性进行封闭环和组成环公差的分析方法称为统计公差法.本文主要探讨统计公差法在单轴向(One Dimension)尺寸堆叠中的应用。

二.Worst Case Analysis
极值法(Worst Case ,WC),也叫最差分析法,即合成后的公差范围会包括到每个零件的最极端尺寸,无论每个零件的尺寸在其公差范围内如何变化,都会100% 落入合成后的公差范围内。

<例>Vector loop:E=A+B+C,根据worst case analysis可得
D(Max.)=(20++(15++(10+=,出现在A、B、C偏上限之状况
D(Min.)=++=,出现在A,B、C偏下限之状况
45±适合拿来作设计吗
Worst Case Analysis缺陷:
设计Gap往往要留很大,根本没有足够的设计空间,同时也可能造成组装困难;
公差分配时,使组成环公差减小,零件加工精度要求提高,制造成本增加。

以上例Part A +Part B+ Part C,假设A、B、C三个部材,相对于公差规格都有3σ的制程能力水平,则每个部材的不良机率为=;在组装完毕后所有零件都有缺陷的机率为:^3=。

这表明几个或者多个零件在装配时,同一部件的各组成环,恰好都是接近极限尺寸的情况非常罕见。

三.统计公差分析法
由制造观点来看,零件尺寸之误差来自于制程之变异,此变异往往呈现统计分布的型态,因此设计的公差规格常被视为统计型态。

统计公差方法的思想是考虑零件在机械加工过程中尺寸误差的实际分布,运用概率统计理论进行公差分析和计算,不要求装配过程中100 %的成功率(零件的100 %互换) ,要求在保证一定装配成功率的前提下,适当放大组成环的公差,降低零件(组成环) 加工精度,从而减小制造和生产成本。

在多群数据的线性叠加运算中,可以进行叠加的是『变异』值。

四.方和根法
计算公式(平方相加开根号)
假设每个尺寸的Ppk 指标是并且制程是在中心
上例中Part A +Part B+ Part C
T=
比较Worst case与统计公差法
公差合成后所得的公差范围缩小了,对设计者而言,较小的公差范围意味着较准确的组装与配合,累积下来的误差也会减少。

在公差分配的情况时,每个零件所得到的公差范围变大了,对制造者而言,较大的公差范围意味着较容易制作及控制生产质量,有利于制造者。

使用RSS的假设条件
使用RSS统计公差分析方法的前提是,制造加工出来的零件尺寸数值是比较集中于中心值,输出呈正态分布
如果公差叠加分析里面一个单独的公差是在±3σ的过程控制下生产的,那么RSS公差叠加分析的结果也是代表了±3σ,也就是说,输入的过程控制等级也代表了输出的工程控制等级
五.六标准差分析
在实际当中,更加有可能的是用来制造公差叠加分析里面的特征的制程通常都没有控制在同一个等级.公差分析里面的公差有可能是有几个是±2σ,有几个是±3σ。

六标准差分析:允许每个组立部件有不同的制程水平,甚至是不同的分布型态。

六.公差分析步骤
①.建立公差回路图(封闭尺寸链)
②.确认Loop中各尺寸的设计值与公差
③.确认Loop中各尺寸的制程能力水平(Cp,Cpk)
④.选择适当的法则与工具,进行公差分析
⑤.根据分析结果作出判断
为了避免复杂的计算,实务上采用EXECL表格.这是美国犹他州( Utah ) Brigham Young University 机械工程学系的Dr. Ken Chase 所建立的, 请到这里下载:
CATS 1D Tolerance Stack-up :档案微盘下载->。

相关文档
最新文档