系统动力学与动态系统描述-方程

系统动力学与动态系统描述-方程
系统动力学与动态系统描述-方程

系统动力学与动态系统描述

李旭教授

复旦大学管理学院

从库存系统开始认识SD方程

?对右图的库存系统考虑:

–库存是如何变化的?

–如何进行订货决策?

–如何用数学方法描述?

?库存变化规律:

?销售量的描述:

?决策过程描述:

?辅助计算描述:

方程及其理解

?SD方程的概念:

–SD方程是在流图基础上对系统要素之间的关系定量描述的一组数学关系式;

–SD方程是从一组已知的初始状态开始确定下一组状态的递推关系式;

–SD方程中要有一个恰当的时间间隔,以完成方程的递推;

?SD方程的理解:

–SD方程的实质是微分方程组,由于规模和非线性等原因不能求得解析解,所以只能求其数值解。即差分化处理后仿真;

–按照上述规则递推就可以得到各个变量随时间变化的曲线。即系统的变化过程。

SD方程的种类?水平方程(L)

?速率方程(R)

?辅助方程(A)

?常量方程(C)

?初值方程(N)

SD方程中的时间描述

?为了完成递推计算,需要首先明确三个基本时间参数:时点、区间、差分步长。

?时间参数的描述:

–K:现在时刻;

–J:前一个时刻;

–L:下一个时刻;

–JK:时刻J和K之间的区间;

–KL:时刻K和L之间的区间;

–DT:差分步长。

水平方程(L)

?反映系统状态随时间的变化,是变化对时间的积累。因此具有固定的形式:

?SD中采用差分方程的形式:

L 方程的理解

?对水平方程的理解:

–水平方程是一个一阶差分方程,具有固定的表现形式;

–水平方程是一个有记忆的量,方程中一定有其前一时刻的状态值;

–水平方程是将决策变成行动,即将速率变量转换成水平量的方程,因此方程中一定含有速率量;

–水平方程是变化对时间的积累,因此方程中一定含有

DT,并且DT 只能出现在水平方程中。

速率方程(R)

观测状态

偏差行动→R 目标状态

?方程原理:

–系统变化的自然规律。例如,人口的死亡。

–人们控制系统的主观愿望。例如,订货决策。?一般形式:

R 方程的理解

?速率方程的实质是自然规律或决策策略,由这些规律或决策策略改变系统的状态;

?速率方程最终是水平变量和常量的函数,但为了更好地描述决策过程或表达清楚,速率方程中经常包括辅助变量;

?速率方程中不出现具有积分意义的差分步长DT。

常见R 方程的形式

?R = Level×Const

–例如:

?R = Level/Life

–例如:

常见R 方程的形式

?R = (Goal-Level)/Adjustment

–例如:

?R = Normal×Effect

–例如:EIR:监禁率;

PC:监狱容量;

ASL:平均服刑期

CR:容量比;

ECTS:容量比对服刑期的影响

ATS:实际服刑时间

常见R 方程的形式

?R = Normal + Effect

–例如:

被捕食者死亡数量

被捕食者自

=+

然死亡数量

捕食者吃

掉的数量

辅助方程(A)

?从理论上看:

–水平方程

完全确定和计–速率方程

算系统的状态–常量、初始条件

?问题:

–计算式过于冗长、复杂;

–不便于描述自然规律或决策过程;

–不便于利用中间结果分析问题。

辅助方程(A)

?辅助方程及其作用:

–A方程是计算R方程的子方程,即用于计算辅助变量的取值;

–A方程描述自然规律或决策过程;

–A方程一般具有实际意义。

?辅助方程的建立:

–建立辅助方程一般采用“跟踪”法,按逻辑顺序计算;

–变量之间的运算规则,可以根据实际意义确定;

–量纲分析是建立辅助方程的重要技巧;

–辅助方程之间不能出现“环”。

辅助方程之间的“环”

?环:辅助变量“闭合”引用:

B

A C

D

?用水平变量解开“环”:

B

A

C

D

人口问题(1)

人口问题(1)

人口问题(2)

人口问题(2)

库存问题(1)

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

(完整版)系统动力学模型案例分析

系统动力学模型介绍 1.系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 (2)建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验和模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和做各种政策实验。 3.建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

系统动力学模型案例分析学习资料

系统动力学模型案例 分析

系统动力学模型介绍 1?系统动力学的思想、方法 系统动力学对实际系统的构模和模拟是从系统的结构和功能两方面同时进行的。系统的结构是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能是指系统中各单元本身及各单元之间相互作用的秩序、结构和功能,分别表征了系统的组织和系统的行为,它们是相对独立的,又可以在一定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系和相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识和理解程度,其中也包含着大量的实际工作经验,是属定性方面的信息。因此,系统动力学对系统的结构和功能同时模拟的方法,实质上就是充分利用了实际系统定性和定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2.建模原理与步骤 任务j调研 * 问气定义 划定界限 建力方程* 政策分析与模空便用系统分析结构分析*

(1)建模原理 用系统动力学方法进行建模最根本的指导思想就是系统动力学的系统观和方法论。系统动力学认为系统具有整体性、相关性、等级性和相似性。系统内部的反馈结构和机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就是针对实际应用情况,从变化和发展的角度去解决系统问题。系统动力学构模和模拟的一个最主要的特点,就是实现结构和功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只是实际系统某些本质特征的简化和代表,而不是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量和确定系统边界。系统动力学模型的一致性和有效性的检验,有一整套定性、定量的方法,如结构和参数的灵敏度分析,极端条件下的模拟试验和统计方法检验等等,但评价一个模型优劣程度的最终标准是客观实践,而实践的检验是长期的,不是一二次就可以完成的。因此,一个即使是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化和新的目标。 ⑵建模步骤 系统动力学构模过程是一个认识问题和解决问题的过程,根据人们对客观事物 认识的规律,这是一个波浪式前进、螺旋式上升的过程,因此它必须是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系 统分析、结构分析、模型建立、模型试验和模型使用五大步骤 这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都是交叉、反复进行的。 第一步系统分析的主要任务是明确系统问题,广泛收集解决系统问题的有关数据、资料和信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量和信息反馈机制。 第三步模型建立是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验是借助于计算机对模型进行模拟试验和调试,经过对模型各种 性能指标的评估不断修改、完善模型。 第五步模型使用是在已经建立起来的模型上对系统问题进行定量的分析研究和 做各种政策实验。 3?建模工具 系统动力学软件VENSIM PLE软件 4.建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系是用因果链来连接的。因果链是 一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭

系统动力学与案例分析

系统动力学与案例分析 一、系统动力学发展历程 (一)产生背景 第二次世界大战以后,随着工业化的进程,某些国家的社会问题日趋严重,例如城市人口剧增、失业、环境污染、资源枯竭。这些问题范围广泛,关系复杂,因素众多,具有如下三个特点:各问题之间有密切的关联,而且往往存在矛盾的关系,例如经济增长与环境保护等。 许多问题如投资效果、环境污染、信息传递等有较长的延迟,因此处理问题必须从动态而不是静态的角度出发。许多问题中既存在如经济量那样的定量的东西,又存在如价值观念等偏于定性的东西。这就给问题的处理带来很大的困难。 新的问题迫切需要有新的方法来处理;另一方面,在技术上由于电子计算机技术的突破使得新的方法有了产生的可能。于是系统动力学便应运而生。 (二)J.W.Forrester等教授在系统动力学的主要成果: 1958年发表著名论文《工业动力学——决策的一个重要突破口》,首次介绍工业动力学的概念与方法。 1961年出版《工业动力学》(Industrial Dynamics)一书,该书代表了系统动力学的早期成果。 1968年出版《系统原理》(Principles of Systems)一书,论述了系统动力学的基本原理和方法。 1969年出版《城市动力学》(Urban Dynamics),研究波士顿市的各种问题。 1971年进一步把研究对象扩大到世界范围,出版《世界动力学》(World Dynamics)一书,提出了“世界模型II”。 1972年他的学生梅多斯教授等出版了《增长的极限》(The Limits to Growth)一书,提出了更为细致的“世界模型III”。这个由罗马俱乐部主持的世界模型的研究报告已被翻译成34种语言,在世界上发行了600多万册。两个世界模型在国际上引起强烈的反响。 1972年Forrester领导MIT小组,在政府与企业的资助下花费10年的时间完成国家模型的研究,该模型揭示了美国与西方国家的经济长波的内在机制,成功解释了美国70年代以来的通货膨胀、失业率和实际利率同时增长的经济问题。(经济长波通常是指经济发展过程中存在的持续时间为50年左右的周期波动) (三)系统动力学的发展过程大致可分为三个阶段: 1、系统动力学的诞生—20世纪50-60年代 由于SD这种方法早期研究对象是以企业为中心的工业系统,初名也就叫工业动力学。这阶段主要是以福雷斯特教授在哈佛商业评论发表的《工业动力学》作为奠基之作,之后他又讲述了系统动力学的方法论和原理,系统产生动态行为的基本原理。后来,以福雷斯特教授对城市的兴衰问题进行深入的研究,提出了城市模型。 2、系统动力学发展成熟—20世纪70-80年代 这阶段主要的标准性成果是系统动力学世界模型与美国国家模型的研究成功。这两个模型的研究成功地解决了困扰经济学界长波问题,因此吸引了世界范围内学者的关注,促进它在世界范围内的传播与发展,确立了在社会经济问题研究中的学科地位。 3、系统动力学广泛运用与传播—20世纪90年代-至今 在这一阶段,SD在世界范围内得到广泛的传播,其应用范围更广泛,并且获得新的发展.系统动力学正加强与控制理论、系统科学、突变理论、耗散结构与分叉、结构稳定性分析、灵敏度分析、统计分析、参数估计、最优化技术应用、类属结构研究、专家系统等方面的联系。许多学者纷纷采用系统动力学方法来研究各自的社会经济问题,涉及到经济、能源、交通、环境、生态、生物、医学、工业、城市等广泛的领域。 (四)国内系统动力学发展状况 20世纪70年代末系统动力学引入我国,其中杨通谊,王其藩,许庆瑞,陶在朴,胡玉奎等专家学者是先驱和积极倡导者。二十多年来,系统动力学研究和应用在我国取得飞跃发展。我国成立国内系统动力学学会,国际系统动力学学会中国分会,主持了多次国际系统动力学大会和有关会议。 目前我国SD学者和研究人员在区域和城市规划、企业管理、产业研究、科技管理、生态环保、海洋经济等应用研究领域都取得了巨大的成绩。 二、系统动力学的原理 系统动力学是一门分析研究信息反馈系统的学科。它是系统科学中的一个分支,是跨越自然科学和社会科学的横向学科。系统动力学基于系统论,吸收控制论、信息论的精髓,是一门认识系统问题和解决系统问题交叉、综合性的新学科。从系统方法论来说,系统动力学的方法是结构方法、功能方法和历史方法的统一。 系统动力学是在系统论的基础上发展起来的,因此它包含着系统论的思想。系统动力学是以系统的结构决定着系统行为前提条件而展开研究的。它认为存在系统内的众多变量在它们相互作用的反馈环里有因果联系。反馈之间有系统的相互联系,构成了该系统的结构,而正是这个结构成为系统行为的根本性决定因素。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

(完整word版)系统动力学步骤

系统动力学分析步骤 (1)系统分析(分析问题,剖析要因) 1)调查收集有关系统的情况与统计数据 2)了解用户提出的要求、目的与明确所要解决的问题 3)分析系统的基本问题与主要问题、基本矛盾与主要矛盾、变量与主要变 量 4)初步划分系统的界限,并确定内生变量、外生变量和输入量 5)确定系统行为的参考模式 (2)系统的结构分析(处理系统信息,分析系统的反馈机制) 1)分析系统总体的与局部的反馈机制 2)划分系统的层次与子块 3)分析系统的变量、变量之间的关系,定义变量(包括常数),确定变量的 种类及主要变量。 4)确定回路及回路间的反馈耦合关系,初步确定系统的主回路及它们的性 质,分析主回路随时间转移的可能性 (3)确定定量的规范模型 1)确定系统中的状态、速率、辅助变量和建立主要变量之间的关系; 2)设计各非线性表函数和确定、估计各类参数; 3)给所有N方程、C方程与表函数赋值; (4)模型模拟与政策分析 1)以系统动力学的理论为指导进行模型模拟与政策分析,进而更深入地剖 析系统的问题; 2)寻找解决问题的决策,并尽可能付诸实施,取得实践结果,获取更丰富 的信息,发现新的矛盾与问题; 3)修改模型,包括结构与参数的修改; (5)模型的检验和评估 这一步骤的任务不是放在最后一起来做的,其中相当一部分是在上述过程中分散进行的。 参考模式:用图形表示重要变量,并推论和绘出与这些最有关的其他重要的两,从而突出、集中的勾画出有待研究的问题的发展趋势和轮廓,我们称这类随时间变化的变量图形为行为参考模式。在建模的过程中,要反复地参考这些模式。当系统的模型建成后,检验其有效性标准之一就是看模型产生的行为模式与参考模式是否大体一致。

系统动力学模型 (1)

第10章系统动力学模型 系统动力学模型(System Dynamic)是社会、经济、规划、军事等许多领域进行战略研究的重要工具,如同物理实验室、化学实验室一样,也被称之为战略研究实验室,自从问世以来,可以说是硕果累累。 1 系统动力学概述 2 系统动力学的基础知识 3 系统动力学模型 第1节系统动力学概述 概念 系统动力学是一门分析研究复杂反馈系统动态行为的系统科学方法,它是系统科学的一个分支,也是一门沟通自然科学和社会科学领域的横向学科,实质上就是分析研究复杂反馈大系统的计算仿真方法。 系统动力学模型是指以系统动力学的理论与方法为指导,建立用以研究复杂地理系统动态行为的计算机仿真模型体系,其主要含义如下: 1 系统动力学模型的理论基础是系统动力学的理论和方法; 2 系统动力学模型的研究对象是复杂反馈大系统; 3 系统动力学模型的研究内容是社会经济系统发展的战略与决策问题,故称之为计算机仿真法的“战略与策略实验室”; 4 系统动力学模型的研究方法是计算机仿真实验法,但要有计算机仿真语言DYNAMIC的支持,如:PD PLUS,VENSIM等的支持;

5 系统动力学模型的关键任务是建立系统动力学模型体系; 6 系统动力学模型的最终目的是社会经济系统中的战略与策略决策问题计算机仿真实验结果,即坐标图象和二维报表; 系统动力学模型建立的一般步骤是:明确问题,绘制因果关系图,绘制系统动力学模型流图,建立系统动力学模型,仿真实验,检验或修改模型或参数,战略分析与决策。 地理系统也是一个复杂的动态系统,因此,许多地理学者认为应用系统动力学进行地理研究将有极大潜力,并积极开展了区域发展,城市发展,环境规划等方面的推广应用工作,因此,各类地理系统动力学模型即应运而生。 发展概况 系统动力学是在20世纪50年代末由美国麻省理工学院史隆管理学院教授福雷斯特()提出来的。目前,风靡全世界,成为社会科学重要实验手段,它已广泛应用于社会经济管理科技和生态灯各个领域。福雷斯特教授及其助手运用系统动力学方法对全球问题,城市发展,企业管理等领域进行了卓有成效的研究,接连发表了《工业动力学》,《城市动力学》,《世界动力学》,《增长的极限》等着作,引起了世界各国政府和科学家的普遍关注。 在我国关于系统动力学方面的研究始于1980年,后来,陆续做了大量的工作,主要表现如下: 1)人才培养 自从1980年以来,我国非常重视系统动力学人才的培养,主要

《机械系统动力学仿真分析软件》

| 论坛社区 《机械系统动力学仿真分析软件》(MSC.ADAMS.2005.R2)R2 资源分类: 软件/行业软件 发布者: Coolload 发布时间: 2005-12-18 20:22 最新更新时间: 2005-12-19 07:04 浏览次数: 14548 实用链接: 收藏此页 eMule资源 下面是用户共享的文件列表,安装eMule后,您可以点击这些文件名进行下载 [机械系统动力学仿真分析软件].[$u]MSC.ADAMS.2005.R2.rar201.2MB [机械系统动力学仿真分析软 295.4MB 件].MSC_ADAMS_V2005_ISO-LND-CD1.iso [机械系统动力学仿真分析软185.0MB

件].MSC_ADAMS_V2005_ISO-LND-CD2.bin [机械系统动力学仿真分析软 6.5KB 件].Msc.Adams.v2005.Iso-Lnd-Cd1-Crack.rar 全选480.4MB eMule主页下载eMule使用指南如何发布 中文名称:机械系统动力学仿真分析 软件 英文名称:MSC.ADAMS.2005.R2 版本:R2 发行时间:2005年12月15日 制作发行:美国MSC公司 地区:美国 语言:英语 简介: [通过安全测试] 杀毒软件:Symantec AntiVirus 版本: 9.0.0.338 病毒库:2005-12-16 共享时间:10:00 AM - 24:00 PM(除 非线路故障或者机器故障) 共享服务器:Razorback 2.0 [通过安装测试]Windows2000 SP4 软件版权归原作者及原软件公司所 有,如果你喜欢,请购买正版软件

系统动力学vensim学习手册中文版

系统动力学软件Vensim 6.3 系统动力学应用于社会经济复杂动态问题建模模拟,以及系统思考。近年来由于系统动力学软件工具的进展,使系统动力学建模与模拟分析变得更加规范与简单易学。发源于美国麻省理工学院的Vensim软件,是由Ventana公司开发,在全球和国内获得最广泛使用系统动力学建模软件。它具有图形化的建模方法,除具有一般的模型模拟功能外,还具有复合模拟、数组变量、真实性检验、灵敏性测试、模型最优化等强大功能。Vensim有Vensim PLE, PLE Plus, Professional和DSS版本,适合不同的用户。 其特点如下: 利用图示化编程建立模型。在Vensim中,“编程”实际上并不存在,只有建模的概念。只要在模型建立窗口(Building)画出流图,再通过Equation Editor输入方程和参数,就可以直接进行模拟了。如果用户需要查看有关方程和参数,可使用Mode Document工具条。另外,Vensim提供两种模型文件保存方式,一种是二进制文件,后缀为.vmf;另一种是文本文件,后缀为.mdf,这种文件可以用于模型的建立和修改,但这并不是Vensim推荐的方法。 运行于Windows下,数据共享性强,提供丰富的输出信息和灵活的输出方式。由于采用了多种分析方法,因此Vensim的输出信息是非常丰富的。其输出兼容性较强。一般的模拟结果,除了即时显示外,还提供保存文件和copy到剪切板。例如建立好的模型可以copy到剪贴板,再由剪贴板转到MS Word的编辑文件中。 对模型的多种分析方法:Vensim提供对于模型的结构分析和数据集分析。其中结构分析包括原因树分析(逐层列举作用于指定变量的变量)、结果树分析(逐层列举该变量对于其它变量的作用)和反馈列表。模型运行后,可进行数据集分析。对指定变量,可以给出它随时间的变化图,列出数据表;可以给出原因图分析,列出所有作用于该变量的其它变量随时间变化的比较图;可以给出结果图分析,列出该变量与所有它作用的变量随时间变化的比较图;同时可以将多次运行的结果进行比较。作为最终结果的图形分析和输出,可使用Custom Graph,它不但可以列举多个变量随时间的变化图,而且可以列举变量之间的关系图。 真实性检验对于我们所研究的系统,对于模型中的一些重要变量,依据常识和一些基本原则,我们可以预先提出对其正确性的基本要求。这些假设是真实性约束。将这些约束加到建好的模型中,专门模拟现有模型在运行时对于这些约束的遵守情况或违反情况,就可以判断模型的合理性与真实性,从而调整结构或参数。真实性检验是Ventana公司的专利方法,

系统思考

系统思考:我们为什么要学习系统思考? 我们一直接受的教育是线性思考,A影响了B,B影响C。Jason最近一直在写的是系统思考,A影响B,B也同时影响B,是一个循环。那系统思考对于我们的意义到底在哪里?对于个人,对于组织,对于企业,我们为什么要学习系统思考? 我想系统思考对于个人而言,不管是工作还是生活,我觉了一些案例: 个人学习:从本质上讲,个人学习与成长、发展是一个循环,可以应用系统思考的方法来思考和设计。 自我发展:如何设定人生目标、个人竞争力分析、职业生涯规划等,也可以用系统思考方法。 解决问题:系统思考是一种有效的分析和解决复杂性问题的方法,广泛应用于个人的日常工作与生活,如工作与家庭的平衡、子女教育、夫妻关系的相处等。 个人健康:例如通过抽烟喝酒来环节工作压力、减肥、体育锻炼等,都和系统思考相关。 在我们的个人学习、教育子女、职业发展以及日常生活中的决策等若干方面,系统思考都能提到重要的作用,设计好一个又一个的结构,可以在日常生活与工作中更好的体现系统思考的智慧,促进个人事业、工作、家庭与生活的美满。 那对于我们的组织而言,我想系统思考在组织发展与企业管理有着更加广泛的应用,比如: 战略规划:不仅有对系统思考在战略管理中应用的专门研究,而且很多战略规划方法中也蕴含着系统思考的思想、观念或工具。 睿智决策:作为经营者、管理者,每天都要做大量的决策,如果缺乏系统思考的智慧,不仅很多决策会非常平庸甚至昏庸,而且自己也有可能深受其害。 流程设计与再造:从本质上讲,系统思考和流程设计与再造有着天然的密切联系。 制定政策:系统思考广泛应用于解决问题和制定政策,良政和劣政可能在很多年后才会显现。

机械系统动力学仿真

燕山大学 机械系统动力学 题目:基于adams曲柄滑块机构动力学仿真 学院(系):机械学院 年级专业:机械工程 学号: S12085201056 学生姓名:柳婷婷 指导教师:汪飞雪 日期: 2012年12月27号

基于adams曲柄滑块机构动力学仿真 摘要:本文主要介绍了利用adams动力学仿真软件进行曲柄滑块机构运动仿真和动力学分析。 曲柄滑块机构的应用很广泛,不同的结构设计可以应用于不同的领域,所以,研究曲柄滑块机构的运动特性,对于了解它的设计规律与方法,以及在今后学习工作中都是大有裨益的。另外,对曲柄滑块机构的动力学仿真还旨在加深对于动力学这门课程的融汇贯通,并学习动力学仿真软件adams。 关键词:曲柄滑块机构;adams动力学仿真;动力学分析;运动学分析。

第1章绪论 曲柄滑块机构设计参数不同,其性能会有很大的差别,因而应用领域也就会千差万别。下面列举几个应用曲柄滑块机构的实例。 图1中翻斗车的斗是通过一个曲柄滑块机构实现了它的提起与放平,驱动力作用在滑块上,斗的一部分作为曲柄。 图1.1 翻斗车 图2中的机械压力机也采用了曲柄滑块机构,通过前面的传动装置运动传动至曲柄轴处,在通过连杆,将运动传动至滑块,从而实现了凸模的上下运动,完成压模工序。

图1.2 机械压力机 实践中采用曲柄滑块机构的实例还有很多,这里不再过多举例。虚拟样机分析软件adams (Automatic Dynamic Analysis of Mechanical Systems),是对机械系统的运动学和动力学进行仿真计算的商用软件,ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格朗日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。 利用adams仿真软件建立曲柄滑块机构的运动模型,并进行运动学和动力学仿真,各种运动轨迹都清晰、直观地显示出来,不仅在视觉上带给设计人员更感性的认识,其模型也可以为后续工作所使用,而且由于adams仿真软件的参数化功能,又可以为今后产品的改良改型提供方便。

系统动力学模型案例分析

系统动力学模型介绍 1、系统动力学的思想、方法 系统动力学对实际系统的构模与模拟就是从系统的结构与功能两方面同时进行的。系统的结构就是指系统所包含的各单元以及各单元之间的相互作用与相互关系。而系统的功能就是指系统中各单元本身及各单元之间相互作用的秩序、结构与功能,分别表征了系统的组织与系统的行为,它们就是相对独立的,又可以在—定条件下互相转化。所以在系统模拟时既要考虑到系统结构方面的要素又要考虑到系统功能方面的因素,才能比较准确地反映出实际系统的基本规律。系统动力学方法从构造系统最基本的微观结构入手构造系统模型。其中不仅要从功能方面考察模型的行为特性与实际系统中测量到的系统变量的各数据、图表的吻合程度,而且还要从结构方面考察模型中各单元相互联系与相互作用关系与实际系统结构的一致程度。模拟过程中所需的系统功能方面的信息,可以通过收集,分析系统的历史数据资料来获得,就是属定量方面的信息,而所需的系统结构方面的信息则依赖于模型构造者对实际系统运动机制的认识与理解程度,其中也包含着大量的实际工作经验,就是属定性方面的信息。因此,系统动力学对系统的结构与功能同时模拟的方法,实质上就就是充分利用了实际系统定性与定量两方面的信息,并将它们有机地融合在一起,合理有效地构造出能较好地反映实际系统的模型。 2、建模原理与步骤 (1)建模原理

用系统动力学方法进行建模最根本的指导思想就就是系统动力学的系统观与方法论。系统动力学认为系统具有整体性、相关性、等级性与相似性。系统内部的反馈结构与机制决定了系统的行为特性,任何复杂的大系统都可以由多个系统最基本的信息反馈回路按某种方式联结而成。系统动力学模型的系统目标就就是针对实际应用情况,从变化与发展的角度去解决系统问题。系统动力学构模与模拟的一个最主要的特点,就就是实现结构与功能的双模拟,因此系统分解与系统综合原则的正确贯彻必须贯穿于系统构模、模拟与测试的整个过程中。与其它模型一样,系统动力学模型也只就是实际系统某些本质特征的简化与代表,而不就是原原本本地翻译或复制。因此,在构造系统动力学模型的过程中,必须注意把握大局,抓主要矛盾,合理地定义系统变量与确定系统边界。系统动力学模型的一致性与有效性的检验,有一整套定性、定量的方法,如结构与参数的灵敏度分析,极端条件下的模拟试验与统计方法检验等等,但评价一个模型优劣程度的最终标准就是客观实践,而实践的检验就是长期的,不就是一二次就可以完成的。因此,一个即使就是精心构造出来的模型也必须在以后的应用中不断修改、不断完善,以适应实际系统新的变化与新的目标。 (2)建模步骤 系统动力学构模过程就是一个认识问题与解决问题的过程,根据人们对客观事物认识的规律,这就是一个波浪式前进、螺旋式上升的过程,因此它必须就是一个由粗到细,由表及里,多次循环,不断深化的过程。系统动力学将整个构模过程归纳为系统分析、结构分析、模型建立、模型试验与模型使用五大步骤这五大步骤有一定的先后次序,但按照构模过程中的具体情况,它们又都就是交叉、反复进行的。 第一步系统分析的主要任务就是明确系统问题,广泛收集解决系统问题的有关数据、资料与信息,然后大致划定系统的边界。 第二步结构分析的注意力集中在系统的结构分解、确定系统变量与信息反馈机制。 第三步模型建立就是系统结构的量化过程(建立模型方程进行量化)。 第四步模型试验就是借助于计算机对模型进行模拟试验与调试,经过对模型各种性能指标的评估不断修改、完善模型。 第五步模型使用就是在已经建立起来的模型上对系统问题进行定量的分析研究与做各种政策实验。 3、建模工具 系统动力学软件VENSIM PLE软件 4、建模方法 因果关系图法 在因果关系图中,各变量彼此之间的因果关系就是用因果链来连接的。因果链就是一个带箭头的实线(直线或弧线),箭头方向表示因果关系的作用方向,箭头旁标有“+”或“-”号,分别表示两种极性的因果链。 a.正向因果链A→+B:表示原因A的变化(增或减)引起结果B在同一方向上发生变化(增或减)。

第13章 动力学普遍方程习题解

习题13-1图 *第13章 动力学普遍方程 和第二类拉格朗日方程 13-1 图示均质细杆OA 长为l ,重力为P ,在重力作用下可在铅垂平面内摆动,滑块O 质量不计,斜面倾角θ,略去各处摩擦,若取x 及?为广义坐标,试求对应于x 和?的广义力。 解:应用几何法,令0δ=x ;0δ≠? 则:??????sin 2 1δδ2sin δδPl l P W Q -=-='= 令0δ≠x ;0δ=? 则:θθsin δδsin δδP x x P x W Q x -=-=''= 13-2 图示在水平面内运动的行星齿轮机构,已知固定齿轮半径为R ,均质行星齿轮半径为r ,质量为m ,均质杆OA 质量为m 1,杆受矩为M 的力偶作用而运动,若取?为广义坐标,试求相应的广义力。 解:应用几何法,设对应于?的虚位移0δ≠? 则: M M W Q === ? ???δδδδ 13-3 在图示系统中,已知:均质圆柱A 的质量为M 、半径为R ,物块B 的质量为m ,光滑斜面的倾角为β,滑轮质量忽略不计,并假设斜绳段平行斜面。若以θ 和y 为广义坐标,试分别用动力学普遍方程和第二类拉格朗日方程求: (1)系统运动微分方程; (2)圆柱A 的角加速度和物块B 的加速度。 解:(1)在系统上施加惯性力如图(a )所示。 其中:)(I θ R y M F A -=;y m F B =I θ θ 2I 2 1MR J M A A == 应用动力学普遍方程, δ)sin (δ)sin (I I I I =+-+-- -θββR Mg M R F y Mg F F mg A A A B 可得系统运动微分方程: 0sin )(=----βθMg R y M y m mg 0sin 2 1)(2=+--R Mg MR R R y M βθθ 整理后有:0)sin ()(=-+-+g m M MR y M m βθ 0sin 2 3=--βθg y R 习题13-2图 习题13-3图 F I

刚柔耦合机械系统动力学仿真

№.3 陕西科技大学学报 J un.2006 ?74? J OU RNAL OF SHAANXI UN IV ERSIT Y OF SCIENCE &TECHNOLO GY Vol.24 3 文章编号:1000-5811(2006)03-0074-04 刚柔耦合机械系统动力学仿真 刘言松,曹巨江,张元莹 (陕西科技大学机电工程学院,陕西咸阳 712081) 摘 要:有限元技术和虚拟样机技术相结合,实现了对高速机械系统刚柔耦合的动力学仿真, 并以一个算例说明了该方法的可行性。 关键词:有限元技术;虚拟样机技术;刚柔耦合;动力学仿真 中图分类号:T H113 文献标识码:A 0 前言 机械系统的动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。多体系统是指由多个物体通过运动副连接的复杂机械系统,多体系统动力学的根本目的是用计算机技术进行复杂机械系统的动力学分析与仿真。多体系统可分为多刚体系统和多柔体系统,前者是指对于低速运动的系统中的物体,由于其弹性变形不影响其大范围的运动特性,因此均被假定为刚体,后者是指在大型、轻质、高速的工况下,组成系统的物体的弹性变形直接影响了系统的运动特性,因而将所有或部分物体假定为柔性体。本文将研究如何利用有限元技术和虚拟样机技术实现刚柔耦合的机械系统的动力学仿真。 1 多柔体系统动力学方程的建立 建立如图1所示的多柔体的坐标系。e r 为惯性坐标系,e b 为动坐标系,前者不随时间变化,后者建立在柔性体上,用于描述柔性体的运动。e b 可以相对e r 进行有限的移动和转动,e b 在e r 中的坐标称为参考坐标。 图1 柔性体上节点P 的位置对于小变形的柔性体运动可以将其运动分解为:刚性运动——— 刚性转动———变形运动3个阶段。如图1,对于柔性体上的任意一 点P ,其位置向量为: r = r 0+A ( r p + u p )(1)式中,r 为P 点在惯性坐标系e r 中的向量,r 0为动坐标系e b 原点在 e r 中的向量,u p 为相对变形量,可以用模态坐标来描述: u p = Φp q f (2)式中,Φp 为点P 满足里兹基向量所要求的假设变形模态矩阵,q f 为变形的广义坐标。 柔性体的运动方程可以通过式(3)的拉格朗日方程导出:d d t 5 L 5 ξ-5 L 5ξ+5 Γ5ξ +5 Ψ5ξT λ- Q =0 Ψ=0 (3)式中:Ψ为约束方程;λ为对应约束方程的拉氏乘子;ξ为广义坐标,ξ=[x y z Ψθq i (i =1,…,M )]T =[r Ψq ]T ;q 为模态坐标;Q 为投影到ξ上的广义力;L 为拉格朗日项,L =T -W ,T 和W 分别表示动能和势 3收稿日期:2006-02-10 作者简介:刘言松(1975-),男,安徽省滁州市人,助教,硕士,研究方向:虚拟样机技术、机械动力学

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

相关文档
最新文档