机器视觉基础
机器视觉基础

距 离
10m
Usb2.0 1394a 1394b
GigE
480Mbps
400Mbps 800Mbps 1000Mbps
5m
4.5m
4.5m 100m
Ethernet
100Mbps 100m
优 势
1.带宽高 2.有带预处理功能的采集设 备 3.抗干扰能力强
1.易用 2.价格低 3.多相机
1.易用,价格低,多 相机 2.传输距离远,实际 线缆可达到17.5m, 光纤传输可达100m 3.有标准DCAM协议 4.CPU占用最低
03
绿色滤色 镜
02
红色滤色 镜
01
无滤色镜
相机
工业相机有多种类型
常见的分类方式如下 ○ 黑白相机和彩色相机 ○ 面阵相机和线阵相机 ○ CCD相机和CMOS相机 ○ 模拟相机,数字相机,智能相机
相机
CameraLink
速 度
Base: 1.5Gbps Medium: 3.8Gbps Full: 5.1 Gbps
特征检测
• 多出/缺损特征以及缺陷检测 • 方法…
➢ 灰度分析 ➢ 灰度百分比 ➢ 像素统计
➢ Blob 分析 ➢ 灰度像素聚合 ➢ 通过大小以及外形过滤
➢ 模式匹配 ➢ 模板匹配 (可训练) ➢ 结果 – 条形码, 字符读取(OCR)等
特征检测 – Average Intensity/Cont rast
光电探测器网格 (像素阵列) 转换光亮度级别成电子信号 CCD vs. CMOS – 转换方式不同
CCD & CMOS
灰度
•
灰度像素深度
➢ 转换光亮度级别成可测量信号级别
➢ 0 – 255 (0 – 黑, 255 – 白)
《机器视觉基础》课件

安全监控
要点一
总结词
机器视觉在安全监控领域的应用,能够提高安全防范能力 和监控效率。
机器视觉的优势与挑战
优势
非接触式、高精度、高效率、高可靠 性、可实现自动化和智能化等。
挑战
数据量大、计算复杂度高、对光照和 角度敏感、对遮挡和噪声的鲁棒性差 等。
02
机器视觉系统组成
图像获取
图像获取是机器视觉系统的第一步, 负责将目标物体转化为数字图像,以 便后续处理。
图像获取的关键在于获取高质量的图 像,以便后续处理能够准确地进行特 征提取和目标识别。
基于概率统计的算法
总结词
利用概率统计理论,对图像中的目标进行识别和分类的方法。
详细描述
基于概率统计的算法通过建立目标模型,利用概率分布和统计规律对图像中的目标进行识别和分类。 该算法具有较强的鲁棒性和适应性,能够处理一些复杂的视觉任务,如目标跟踪、场景识别等。
基于深度学习的算法
总结词
利用深度神经网络对图像进行层次化特征提取和分类的方法。
VS
详细描述
机器视觉技术被广泛应用于工业生产线上 ,对产品进行外观、尺寸、缺陷等方面的 检测。通过高精度的图像采集和处理,机 器视觉系统能够快速准确地识别出不合格 品,并自动剔除或进行分类,从而提高生 产效率和产品质量。
农业检测
总结词
机器视觉在农业领域的应用,有助于提高农 产品的产量和质量。
详细描述
03
02
角点检测
机器视觉基础知识(PDF)

机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(7)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
一、镜头基本概念(8)
镜头的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(9)
镜头的调制传递函数MTF
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
一、镜头基本概念(4)
镜头接口 – C-MOUNT 镜头的标准接口之一,镜头的接口螺纹参数: 公称直径:1“ 螺距:32牙 – CS-Mount是C-Mount的一个变种,区别仅仅在于 镜头定位面到图像传感器光敏面的距离的不同,C- Mount 是17。5mm,CS-Mount是12。5mm。 – C/CS能够匹配的最大的图像传感器的尺寸不超过1“。
一、镜头基本概念(10)
系统的调制传递函数MTF
第一节 工业镜头
机器视觉中的图像采集技术硬件基础知识
第一节 工业镜头
二、镜头的分类(1)
按照等效焦距分为 广角镜头
等效焦距小于标准镜头(等效焦距为50mm)的镜头。特点 是最小工作距离短,景深大,视角大。常常表现为桶形畸变。 中焦距镜头 焦距介于广角镜头和长焦镜头之间的镜头。通常情况下畸变 校正较好。 长焦距镜头 等效焦距超过200mm的镜头。工作距离长,放大比大,畸变 常常表现为枕形状畸变。
像素速率(Pixel Rate)
相机每秒中能够输出像素的个数,仅仅对于数字相机有意 义。
机器视觉中的图像采集技术硬件基础知识
第二节 工业相机
一、工业相机的基本概念(5)
卷帘快门(Rolling Shutter)
机器视觉算法基础

机器视觉算法基础机器视觉是一种通过计算机对图像或视频进行处理和分析,使计算机能够“看”的技术。
机器视觉算法是实现机器视觉的关键,它通过处理图像数据,提取特征和进行分类来实现对图像的理解和分析。
1. 图像处理算法:图像处理是机器视觉算法的基础,它主要包括对图像进行去噪、增强、模糊、滤波等处理。
常用的图像处理算法有拉普拉斯算子、Sobel算子、高斯平滑等。
2.特征提取算法:特征提取是机器视觉算法的核心,它通过对图像进行特征提取,将图像转化为可以用于分类或识别的特征向量。
常见的特征提取算法有边缘检测算法、角点检测算法、纹理特征提取算法等。
3. 目标检测算法:目标检测是机器视觉中的一个重要任务,它主要用于检测图像中的目标并标定其位置。
常见的目标检测算法有Haar特征级联、HOG特征+SVM、深度学习中的R-CNN、YOLO等。
4.图像分割算法:图像分割是将图像划分为若干个具有独立语义的区域的过程,它是很多图像处理和图像理解任务的前置步骤。
常见的图像分割算法有基于阈值的分割算法、基于区域的分割算法、基于边缘的分割算法等。
5. 目标识别与分类算法:目标识别与分类是机器视觉中的核心任务之一,它主要用于将图像中的目标识别出来并进行分类。
常见的目标识别与分类算法有SVM、Boosting、深度学习中的CNN等。
6.全景图像拼接算法:全景图像拼接是将多张图像拼接成一张全景图像的过程,它在虚拟现实、增强现实等领域有着广泛的应用。
常见的全景图像拼接算法有特征匹配、RANSAC算法、图像融合算法等。
7.三维重建算法:三维重建是将二维图像或视频恢复为三维场景的过程,它在计算机辅助设计、虚拟现实等领域有着重要的应用。
常见的三维重建算法有立体视觉匹配算法、结构光三维重建算法、飞行时间法三维重建算法等。
以上只是机器视觉算法中的一部分基础算法,机器视觉的发展离不开这些基础算法的支撑。
随着深度学习的发展,越来越多的神经网络算法应用于机器视觉中,进一步推动了机器视觉的发展。
机器视觉基础

机器视觉基础机器视觉是一种让计算机系统具备解释和理解图像或视频的能力的技术。
它模拟了人类视觉系统的工作方式,通过摄像头或其他传感器捕获图像,并对图像进行处理和分析,从而实现对图像内容的理解和识别。
机器视觉技术已经在各个领域得到广泛应用,包括工业自动化、医疗诊断、安防监控、无人驾驶等。
在机器视觉的基础上,计算机系统可以实现识别和分类图像中的物体、人脸或文字,检测图像中的运动物体,测量物体的尺寸和形状,甚至实现对图像内容的理解和推理。
这些功能的实现离不开图像处理、模式识别、机器学习和人工智能等技术的支持。
图像处理是机器视觉的基础,它包括对图像进行预处理、特征提取和特征匹配等步骤。
预处理是为了提高图像质量,包括去噪、锐化、增强对比度等操作;特征提取是指从图像中提取出具有代表性的特征,如边缘、纹理、颜色等;特征匹配是指将提取出的特征与已知的模式进行对比,从而实现对图像内容的识别和分类。
模式识别是机器视觉的核心技术之一,它是通过对图像中的特征进行分类和识别,从而实现对图像内容的理解。
模式识别包括监督学习和无监督学习两种方式。
监督学习是在已知样本的基础上进行训练,从而建立起分类器或识别器;无监督学习则是在没有标注样本的情况下进行特征聚类和模式识别。
机器学习是机器视觉的另一个重要支撑技术,它是指通过对大量数据进行学习和训练,从而实现对图像内容的自动识别和分类。
机器学习包括监督学习、无监督学习和强化学习等方式。
监督学习是在已知标注数据的基础上进行模型训练,无监督学习则是在没有标注数据的情况下进行模式发现,强化学习则是通过与环境的交互学习来获得最优策略。
人工智能是机器视觉的终极目标,它是指让计算机系统具备类似于人类的智能和思维能力。
人工智能技术包括知识表示、推理推断、自然语言处理等多个方向,通过结合机器视觉技术,可以实现对图像内容的高级理解和智能决策。
总的来说,机器视觉基础是机器视觉技术发展的基石,它包括图像处理、模式识别、机器学习和人工智能等多个方向。
机器视觉基础知识培训课件

机器视觉的应用领域
01
02
03
04
工业自动化
检测产品质量、定位与装配、 包装与码垛等。
智能安防
人脸识别、车牌识别、行为分 析等。
医疗诊断
医学影像分析、病灶检测与识 别等。
其他领域
自动驾驶案例
总结词
机器视觉是自动驾驶技术的关键组成部分,为车辆提供实时路况感知和目标识别能力。
详细描述
自动驾驶汽车通过安装多个高分辨率摄像头和传感器,获取周围环境的三维信息。机器 视觉技术对这些信息进行处理和分析,识别出道路标志、车辆、行人以及其他障碍物, 为自动驾驶系统提供决策依据。这使得车辆能够在复杂的道路环境中实现自主导航和驾
相机
相机的作用
捕捉目标物体的图像。
相机类型
面阵相机、线阵相机、立体相机等。
相机选择要点
根据应用场景选择合适的相机类型和分辨率。
图像采集卡
图像采集卡的作用
将相机捕捉的图像转换为数字信号,便于计算机处理。
图像采集卡性能参数
分辨率、传输速率、接口类型等。
图像采集卡选择要点
根据计算机性能和图像处理要求选择合适的图像采Байду номын сангаас卡。
驶,提高道路安全性和通行效率。
人脸识别案例
总结词
人脸识别技术利用机器视觉实现身份验 证和安全监控,广泛应用于金融、安防 等领域。
VS
详细描述
人脸识别系统通过高分辨率摄像头捕捉人 的面部特征,利用机器视觉算法对图像进 行分析和处理,提取出面部的各种特征点 。这些特征点与数据库中的数据进行比对 ,以实现身份的快速验证。人脸识别技术 广泛应用于金融交易、门禁系统、公共安 全监控等领域,提高安全性和便利性。
机器视觉基础知识

机器视觉基础知识
机器视觉基础知识是指基于人类视觉系统原理和计算机科学技术,通过视觉传感器获取并解析图像信息,实现对图像的理解、分析和处理的一门技术。
机器视觉技术在工业、医疗、安防等领域得到广泛应用,其基础知识包括以下几个方面:
1. 图像采集:机器视觉系统通过摄像机、激光雷达等视觉传感器采集图像信息,获取目标物体的外在特征。
2. 图像预处理:为了提高图像的质量和准确性,需要对采集到的图像进行去噪、滤波、增强等处理。
3. 特征提取:通过图像处理算法,提取目标物体的形状、颜色、纹理等特征,作为后续处理的基础。
4. 目标检测:通过特定的算法,实现对图像中目标物体的自动识别和定位,为后续的分析和决策提供基础。
5. 图像分割:将图像分为不同的区域,为目标的进一步分析和处理提供基础。
6. 物体跟踪:对连续的图像序列中的目标物体进行跟踪,分析其运动轨迹和状态变化。
7. 三维重建:通过多视角的图像信息,实现对目标物体的三维重建,为后续的仿真和虚拟现实应用提供基础。
机器视觉技术的发展和应用,需要深入掌握以上基础知识,结合实际应用场景,灵活运用各种算法和技术手段,不断提升机器视觉系统的性能和应用效果。
机器视觉基础课件

机器视觉的应用领域
工业自动化
医疗诊断
机器视觉在工业自动化领域应用广泛, 如生产线上的零件检测、装配、定位 等,能够提高生产效率和产品质量。
机器视觉在医疗诊断领域的应用包括 医学影像分析、病灶识别等,能够帮 助医生提高诊断的准确性和效率。
智能安防
机器视觉在智能安防领域的应用包括 人脸识别、车牌识别、行为分析等, 能够提高安全监控的准确性和实时性。
系统性能评估
准确性评估
实时性评估
通过对比实际结果与机器视觉系统输出的 结果,评估系统的准确性。
测试系统对实时图像的处理速度,确保满 足实际应用的需求。
鲁棒性评估
可维护性评估
在不同环境条件下测试系统的稳定性,评 估其鲁棒性。
评估系统的可维护性和可扩展性,以便在 未来进行升级或改进。
感谢您的观看
THANKS
机器视觉基础课件
• 图像处理 • 特征提取 • 目标识别
01
机器视觉概述
定义与特点
定义
机器视觉是通过计算机模拟人类的视 觉功能,利用图像处理和模式识别等 技术,实现对图像的自动识别、跟踪 和测量的技术。
特点
机器视觉具有高效、准确、可靠、非 接触性等优点,能够适应各种复杂的 环境和任务,广泛应用于工业自动化、 智能安防、医疗诊断等领域。
系统优化
参数调整 根据实际应用情况,调整相机、镜头的 参数,如曝光时间、增益等,以获取更
好的图像效果。 计算资源优化
合理分配计算资源,如CPU、GPU等, 以提高机器视觉系统的处理效率。
算法优化 针对特定的应用场景,对图像处算 法进行优化,以提高处理速度和准确 性。
网络通信优化 优化网络通信协议和传输方式,确保 图像数据能够实时、稳定地传输。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械制造பைடு நூலகம்
汽车
IC装备
消费电子
11
4.1电子与半导体行业应用
• LED和LCD测试
– 大小、形状、亮度、颜色ON/OFF – LCD平板玻璃
• PCB检查
– 焊点质量、丝印质量 – 钻孔对位
• IC芯片、元件检测
– 有无、方向/极性 – 印刷质量、字符识别 – 管脚排列一致性
机器视觉自动检测技术
余文勇
Dr. Yu Wenyong 1
• 联系方式
– 机械学院 数字制造国家重点实验室
– E-mail:ywy20052006@
Dr. Yu Wenyong
2
学习目的
• 知识-了解机器视觉与图像处理的基本原 理、构造、编程技术,以及各种机器视觉 检测技术的相关知识; • 能力-熟悉图像处理程序的编写与调试, 具备基本的编程解决问题的能力; • 情商-具有机电工程师应有的认真负责之 态度
• 机器视觉易于实现信息集成,是实现计算机集成 制造的基础技术。
Dr. Yu Wenyong
8
、
机器视觉与计算机视觉
图 像 处 理
模 式 识 别
机 器 学 习
认 知 科 学
人 工 智 能
计 数 算 机 图 学 形 学
传 自 计 计 感 动 算 算 器 控 机 机 制 软 网 件 络
机 械 设 计
应 用 光 学
14
4.4包装行业应用
• 药品、化妆品包装
– 外观、条码 – 完整性
• 食品包装
– 生产日期、条码、密封性
Dr. Yu Wenyong
15
4.5汽车行业应用
• 仪表盘校准(速度表) – 由表盘图像计算指针位置 • 风挡雨刮器零件分类
– 根据形状、面积、长度等
• 车灯检测 • 表盘、按键丝印质量 • 零部件装配完整性
• •
– – –
瓶装液位高度检查 啤酒瓶外观检测
高度、形状、颜色、B标 瓶盖标签完整性 破损情况
•
口服液瓶质检 罐装饮料外观检查
– 保质期、条码
•
Dr. Yu Wenyong
19
4.9医学应用
计算机视觉
Dr. Yu Wenyong
工业自动化
机器视觉
9
3. 检测功能
• • • • • • • • • • • 有/无判断(Presence Check) 面积检测(Size Inspection) 方向检测(Direction Inspection) 角度检测(Angle Inspection) 尺寸测量(Dimension Measurement) 位置检测(Position Detection) 数量检测(Quantity Count) 图形匹配(Image Matching) 条码识别(Bar-code Reading) 字符识别(OCR) 颜色识别(Color Verification)
Dr. Yu Wenyong
16
4.6印刷行业应用
• • • • 钱币印刷质量 号码识别 丝印质量 塑料薄膜印刷对位
Dr. Yu Wenyong
17
4.7消费行业应用
• • • • • 钻石多棱面加工 刀柄仿型加工 鞋模制造 喷雾器喷射形状分析 陶瓷印花质量检查
Dr. Yu Wenyong
18
4.8食品饮料行业应用
Dr. Yu Wenyong
12
4.2计算机和外设行业应用
• • • • 软盘、光盘印刷质量 硬盘磁头倾斜度 连接器针脚排列 扁平电缆印字符识别
Dr. Yu Wenyong
13
4.3制药行业应用
• 胶囊生产中的质检
– 壁厚、高度、外观缺陷
• 药片形状、厚度 • 药片装瓶数量计数
Dr. Yu Wenyong
Dr. Yu Wenyong
3
大纲
• • • • • • • • • • • • • • • • • • • • • • • • 一、机器视觉基础(2学时) 二、机器视觉器件 (4学时) 1.相机的分类及主要特性参数 2.镜头的原理与选型 3.图像采集卡的原理及种类 4.图像数据的传输方式汇总及比较 5.光源种类与选型 三、机器视觉成像技术 (2学时) 1.灰度照明技术 2.彩色照明技术 3.照明器材原理及选型 四、机器视觉核心算法集合 (6学时) 1.滤波算法及其应用 2.数学形态学及其应用 3.边缘检测算法及其应用 4.污点查找算法及其应用 5.阈值分割的原理与方法汇总 6.模版匹配算法及其应用 五、机器视觉工程应用(10学时) 1.机器视觉系统需求分析及系统设计概述 2.在表面检测领域中的应用及案例分析 3.在尺寸测量领域中的应用及案例分析 4.在包装行业中的应用及案例分析 5.在字符识别中的应用及案例分析
Dr. Yu Wenyong 6
Dr. Yu Wenyong
7
2. 机器视觉的特点
• 机器视觉系统的特点
– 在一些不适合于人工作业的危险工作环境或人工视觉 难以满足要求的场合,常用机器视觉来替代人工视觉; – 在大批量工业生产过程中,用人工视觉检查产品质量 效率低且精度不高,用机器视觉检测方法可以大大提 高生产效率和生产的自动化程度,机器视觉系统广泛 地用于工况监视、成品检验和质量控制等领域。
4
Dr. Yu Wenyong
第一课 机器视觉基础
Dr. Yu Wenyong
5
1. 机器视觉的定义
• 机器视觉:用机器代替人眼来做测量和判断 • 机器视觉系统
– 采用图像摄取装置将被摄取目标转换成图像信号, 传送给图像处理系统; – 图像处理系统根据像素分布和亮度、颜色等信息, 进行运算来抽取目标的特征:面积、长度、数量、 位置等; – 根据预设的判据来输出结果:尺寸、角度、偏移 量、个数、合格/不合格、有/无等; – 指挥执行机构进行诸如定位或分选等相应控制动 作
Dr. Yu Wenyong
10
4. 机器视觉应用行业
• 电子(Electronics) • 半导体(Semiconductor) • 计算机和外设 (Computer&Peripherals) • 制药(Pharmaceutical) • 包装(Packaging) • 汽车(Automotive) • 印刷(Printing) • 消费品(Consumer Goods) • 食品饮料(Food&Beverage) • 医学(Medicine) • 机械制造(Other Industries)