关联规则与关联分析讲解
关联规则

C3 itemset
{2 3 5}
扫描 D
L3 itemset sup
{2 3 5} 2
{2,3}->{5}
21
Apriori 够快了吗? — 性能瓶颈
Apriori算法的核心:
用频繁的(k – 1)-项集生成候选的频繁 k-项集 用数据库扫描和模式匹配计算候选集的支持度 巨大的候选集: 多次扫描数据库:
给定数据库D,关联规则的挖掘就是找出所有存 在于数据库D中的强关联规则。因此整个关联规 则挖掘过程可以分解为以下两个子问题:
找出所有的频繁项目集; 根据找到的频繁项目集导出所有的强关联规则。
13
强关联规则的产生
第一个子问题的求解,需要多次扫描数据库D,这意味着 关联规则挖掘算法的效率将主要取决于数据库扫描、I/O操 作和频繁项目集的计算上。因此如何迅速、高效地找出所 有的频繁项目集是关联规则挖掘的中心问题 第二个子问题的求解比较容易,R. Agrawal等人已提出了 有效的解决办法,具体过程如下: 对每个频繁项目集I,产生所有的非空真子集:对I的任意 非空真真子集m,若support(I)/Support(m) minconfidence,则产生强关联规则m->(l-m)。
第二步: 修剪
forall itemsets c in Ck do
forall (k-1)-subsets s of c do if (s is not in Lk-1) then delete c from Ck
19
生成候选集的例子
L3={abc, abd, acd, ace, bcd} 自连接 : L3*L3
数据清洗与整理中的关联分析与关联规则挖掘方法(九)

数据清洗与整理中的关联分析与关联规则挖掘方法概述随着大数据时代的到来,人们对数据的需求日益增长。
然而,原始数据往往存在着各种问题,比如缺失值、异常值和重复值等。
为了保证数据的准确性和可靠性,数据清洗与整理成为了数据分析的重要一环。
而关联分析与关联规则挖掘方法在数据清洗与整理中起到了重要的作用。
关联分析关联分析是通过发现数据集中项之间的关联关系,从而找到具有某种联系的项集。
具体而言,关联分析通常用于挖掘事务数据中的频繁项集和关联规则。
频繁项集指的是在数据集中经常出现的项的集合,而关联规则则描述了项之间的关联关系。
关联分析的常见算法包括Apriori算法和FP-growth算法。
Apriori算法是一种基于候选项集生成的算法,它通过不断产生候选项集和计数频繁项集的支持度来发现频繁项集。
FP-growth算法则是一种基于FP树的快速频繁模式挖掘算法,它通过构建一棵FP树来挖掘频繁项集。
关联规则挖掘关联规则挖掘是关联分析的进一步扩展,它通过发现频繁项集之间的关联规则来提供更加丰富的信息。
关联规则通常采用形如“A -> B”的形式表示,其中A和B分别为项集。
关联规则挖掘的关键是计算规则的支持度和置信度。
支持度指的是某个规则在数据集中出现的频率,而置信度则表示在A出现的情况下,B出现的概率。
通常情况下,我们会选择一定的支持度和置信度阈值来筛选出具有一定意义的关联规则。
关联规则挖掘的常见算法包括Apriori算法和FP-growth算法。
这两种算法在关联规则挖掘中的应用与它们在关联分析中的应用类似。
数据清洗与整理中的关联分析与关联规则挖掘方法在数据清洗与整理过程中,关联分析与关联规则挖掘方法可以用于以下几个方面。
第一,异常值检测。
数据清洗的一个重要任务是检测和处理异常值。
通过关联分析,我们可以发现异常值与其他变量之间的关联关系,从而判断异常值的产生原因并采取相应的措施。
第二,数据缺失值填补。
在数据分析中,缺失值是一个常见的问题。
数据挖掘(第2版)-课件 第5章关联规则

• 关联分析用以发现事物间存在的关联性,除了购物篮分析外,有广泛应用, 如:辅助决策——挖掘商场销售数据、发现商品间的联系;医疗诊断—— 用于发现某些症状与某种疾病之间的关联;网页挖掘——用于发现文档集 合中某些词之间的关联,发现主题词演化模式、学科发展趋势;电子商 务——进行产品的关联推荐等。
频繁项集
支持度不小于最小支持度阈值的项集
强关联规则
根据用户预先定义的支持度和置信度阈值,支持度不小于最小支持度阈值 并且置信度不小于最小置信度阈值的规则
5.2.1 基本概念(4)
关联分析挖掘的关联规则分类 根据处理值分类
布尔关联规则 量化关联规则
根据涉及维度分类
单维关联规则 多维关联规则
支持度 (support)
事务数据库D中包含项A和B的事务占所有 事务的百分比
可表示为:support(A,B ) P(A B ) (A B )/ N
5.2.1 基本概念(3)
置信度
事务数据库D中同时包含项A和B的事务占包含项A的事务的百分比
条件概率表示为: confindence(A,B ) P(B | A) (A B )/ (A)
根据数据抽象层次分类
单层关联规则 多层关联规则
【例5-1】 设有事务集合如表5-1,计算规则{bread,milk tea} 的支持度、置信度。
交易号TID
顾客购买的商品
ห้องสมุดไป่ตู้
交易号TID
T1
bread, cream, milk, tea
T6
T2
bread, cream, milk
T7
数据挖掘中的关联规则分析

数据挖掘中的关联规则分析数据挖掘是一种可用于科学、企业和社会等各个领域的分析工具,它可以帮助人们从大量数据中发现隐藏的模式和关联,进而提供预测和决策支持。
在数据挖掘中,关联规则分析是一种基本的技术手段,它可以帮助人们从数据中发现物品之间的相关性,进而为商业决策和市场营销提供支持。
本文将深入探讨数据挖掘中的关联规则分析技术,并介绍其在实际应用中的作用和优势。
一、什么是关联规则分析关联规则分析是一种从数据集合中挖掘出项之间相关性的方法。
在关联规则分析中,项是指数据集合中的元素,如商品、服务、用户等。
关联规则指的是一种表达式,描述了项之间的相互依赖关系。
例如,“购买牛奶->购买面包”,“购买啤酒->购买尿布”都是关联规则。
其中,->表示两个项之间的关系,如购买牛奶导致了购买面包。
在关联规则中,支持度和置信度是两个基本概念。
支持度指的是特定规则出现的频率,而置信度则指的是规则中推断项的可靠程度。
通过设定规则的支持度和置信度,可以将数据集合中的项划分为不同的组别,进而提供商业决策和市场营销的支持。
二、关联规则分析的应用场景关联规则分析可以用于各种领域,如商业、制造业、医疗保健、政府和社会等。
在商业领域中,关联规则分析被广泛应用于市场营销和推荐系统。
例如,在一个日用品店中,通过关联规则分析,店主可以了解到哪些商品之间存在关联性,进而安排这些商品的展示位置,以吸引消费者的注意力。
同时,店主也可以根据这些关联规则来制定折扣和促销活动,吸引更多的消费者。
在制造业中,关联规则分析可以帮助生产制造者更好地理解其生产线中物资之间的依赖关系,进而提高生产效率。
例如,在汽车制造工厂中,通过关联规则分析,制造者可以发现哪些零部件之间存在相关性,并根据这些相关性来规划零部件的库存和生产数量,以提高整个工厂的生产效率。
在医疗保健领域,关联规则分析可以用于疾病和药物的推荐。
例如,在一家医院中,通过关联规则分析,医生可以了解到哪些疾病之间存在相关性,进而推荐更有效的药物治疗方案,提高患者的治疗效果。
数据分析中的关联分析方法与技巧

数据分析中的关联分析方法与技巧数据分析是一门研究如何从大量数据中挖掘出有价值信息的学科。
在数据分析的过程中,关联分析是一种重要的方法和技巧,它可以帮助我们发现数据中的相关性,并从中提取出有用的规律和模式。
本文将介绍关联分析的基本概念、常用算法以及一些应用技巧。
一、关联分析的基本概念关联分析旨在寻找数据中的关联规则,即数据项之间的相互关系。
其中最常见的关联规则形式为“A->B”,表示在数据集中,当出现A时,往往也会出现B。
关联规则的强度可以通过支持度和置信度来衡量。
支持度指的是规则在数据集中出现的频率,置信度则是指当A出现时,B也出现的概率。
二、关联分析的常用算法1. Apriori算法Apriori算法是一种经典的关联分析算法,它通过逐层搜索频繁项集来发现关联规则。
频繁项集是指在数据集中出现频率较高的数据项的集合。
Apriori算法的基本思想是利用频繁项集的性质,通过剪枝操作来减少搜索空间,从而提高算法的效率。
2. FP-Growth算法FP-Growth算法是一种高效的关联分析算法,它通过构建FP树来发现频繁项集。
FP树是一种紧凑的数据结构,可以有效地表示数据集中的频繁项集。
FP-Growth算法的核心步骤包括构建FP树、挖掘频繁项集和生成关联规则。
三、关联分析的应用技巧1. 数据预处理在进行关联分析之前,需要对数据进行预处理。
预处理的目的是清洗数据、处理缺失值和异常值,以及进行数据转换和归一化等操作。
只有经过合适的预处理,才能得到准确可靠的关联规则。
2. 参数调优关联分析算法中有许多参数需要调优,比如支持度和置信度的阈值。
合理设置参数可以提高关联规则的质量和数量。
参数调优可以通过试验和交叉验证等方法进行,以得到最佳的参数组合。
3. 结果解释和可视化关联分析得到的关联规则可能会很多,如何解释和利用这些规则是一个挑战。
可以通过对规则进行筛选、排序和聚类等操作,以提取出最有意义的规则。
同时,可视化工具也可以帮助我们更直观地理解和分析关联规则。
关联规则挖掘AI技术中的关联规则挖掘模型与关联分析

关联规则挖掘AI技术中的关联规则挖掘模型与关联分析在人工智能(AI)技术的发展中,关联规则挖掘模型和关联分析起到了重要的作用。
关联规则挖掘模型是一种用于挖掘数据集中项目之间关联关系的技术,而关联分析则是一种基于关联规则挖掘模型的数据分析方法。
本文将介绍关联规则挖掘模型的基本原理和常用算法,并探讨其在AI技术中的应用。
一、关联规则挖掘模型的原理关联规则挖掘模型基于数据库中的事务数据,通过分析不同项之间的关联关系,提供有关数据集中潜在关联的信息。
其基本原理是挖掘数据集中频繁项集,并基于频繁项集构建关联规则。
频繁项集是指在数据集中经常同时出现的项的集合,而关联规则则是对频繁项集进行关联分析后得到的规则。
二、常用的关联规则挖掘算法1. Apriori算法Apriori算法是关联规则挖掘中最常用的算法之一。
该算法通过迭代的方式逐渐生成频繁项集,先从单个项开始,再逐步增加项的数量,直到不能再生成频繁项集为止。
Apriori算法的时间复杂度相对较高,但由于其简单易懂的原理和广泛的应用,仍然是挖掘关联规则的首选算法。
2. FP-growth算法FP-growth算法是一种基于频繁模式树的关联规则挖掘方法。
相比于Apriori算法,FP-growth算法不需要事先生成候选项集,而是通过构建频繁模式树来挖掘频繁项集。
该算法在空间和时间效率上都表现较好,尤其适用于处理大规模数据集。
三、关联规则挖掘模型在AI技术中的应用关联规则挖掘模型在AI技术中有广泛的应用场景,主要体现在以下几个方面:1. 推荐系统推荐系统是AI技术中常见的应用之一。
通过挖掘用户的历史行为数据,关联规则挖掘模型可以找出用户喜好的频繁项集,并根据这些项集为用户提供个性化的推荐内容。
例如,在电商平台中,可以根据用户购买记录挖掘出用户的购买偏好,从而向其推荐相似的商品。
2. 市场篮子分析市场篮子分析是指通过分析顾客购买的商品组合,挖掘出商品之间的关联关系。
关联规则(Apriori算法)

关联规则(Apriori算法)关联分析直观理解 关联分析中最有名的例⼦是“尿布与啤酒”。
据报道,美国中西部的⼀家连锁店发现,男⼈们会在周四购买尿布和啤酒。
这样商店实际上可以将尿布与啤酒放在⼀块,并确保在周四全价销售从⽽获利。
当然,这家商店并没有这么做。
频繁项集是指那些经常出现在⼀起的物品集合,⽐如{葡萄酒,尿布, ⾖奶}就是频繁项集的⼀个例⼦⽀持度(support) ⼀个项集的⽀持度(support)被定义为数据集中包含该项集的记录所占的⽐例 {⾖奶}的⽀持度为4/5。
{⾖奶,尿布}的⽀持度为3/5可信度(confidence ) 可信度或置信度(confidence)是针对⼀条诸如{尿布} ➞ {葡萄酒}的关联规则来定义的。
这条规则的可信度被定义为“⽀持度({尿布, 葡萄酒})/⽀持度({尿布})”。
由于{尿布, 葡萄酒}的⽀持度为3/5,尿布的⽀持度为4/5,所以“尿布➞葡萄酒”的可信度为3/4=0.75。
这意味着对于包含“尿布”的所有记录,我们的规则对其中75%的记录都适⽤。
Apriori算法的⽬标是找到最⼤的K项频繁集⽀持度和可信度是⽤来量化关联分析是否成功的⽅法。
假设想找到⽀持度⼤于0.8的所有项集,应该如何去做?⼀个办法是⽣成⼀个物品所有可能组合的清单,然后对每⼀种组合统计它出现的频繁程度,但当物品成千上万时,⾮常慢,这时就能⽤Apriori算法关联分析中最有名的例⼦是“尿布与啤酒”。
据报道,美国中西部的⼀家连锁店发现,男⼈们会在周四购买尿布和啤酒。
这样商店实际上可以将尿布与啤酒放在⼀块,并确保在周四全价销售从⽽获利。
当然,这家商店并没有这么做。
⼀般我们使⽤三个指标来度量⼀个关联规则,这三个指标分别是:⽀持度、置信度和提升度。
Support(⽀持度):表⽰同时包含A和B的事务占所有事务的⽐例。
如果⽤P(A)表⽰使⽤A事务的⽐例,那么Support=P(A&B)Confidence(可信度):表⽰使⽤包含A的事务中同时包含B事务的⽐例,即同时包含A和B的事务占包含A事务的⽐例。
数据挖掘方法——关联规则(自己整理)PPT课件

3.多层关联规则挖掘算法
对于很多的应用来说,由于数据分布的分散性,所以很难在数据最细节的层次上发现一些强 关联规则。当我们引入概念层次后,就可以在较高的层次上进行挖掘。虽然较高层次上得出的规 则可能是更普通的信息,但是对于一个用户来说是普通的信息,对于另一个用户却未必如此。所 以数据挖掘应该提供这样一种在多个层次上进行挖掘的功能。
(1)
如 :if A then B。则它的支持度Support=P(A and B) 2. Confidence(可信度):它是针对规则而言的。
Confidence=p(condition and result)/p(condition)。
(2)
如:If B and C then A。则它的可信度Confidence=p(B and C and A)/p(B and C)。 把满足最小支持度阈值和最小置信度阈值的规则成为强规则。项的集合称
多层关联规则的分类:根据规则中涉及到的层次,多层关联规则可以分为同层关联规则和层 间关联规则。
多层关联规则的挖掘基本上可以沿用“支持度-可信度”的框架。不过,在支持度设置的问题 上有一些要考虑的东西。
4.多维关联规则挖掘算法
对于多维数据库而言,除维内的关联规则外,还有一类多维的关联规则。例如:年龄(X, “20…30”) 职业(X,“学生”)==> 购买(X,“笔记本电脑”)在这里我们就涉及到三个 维上的数据:年龄、职业、购买。
该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和 预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小 支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集 合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定 义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被 留下来。为了生成所有频集,使用了递推的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
被称为项集(itemset) • 如果一个项集包含k个项,则称它为k-项集。
例如{啤酒,尿布,牛奶}是一个3-项集。 • 空集是指不包含任何项的项集。
• 事务的宽度定义为事务中出现项的个数。
• 如果项集X是事务tj的子集,则称事务tj包含 项集X。
– 根据规则中涉及的数据维
• 单维关联规则 • (仅涉及buys这个维)
buys (X , "computer") buys (X , "software")
第四章 关联规则与关联分析
摘要
• 关联规则挖掘是数据挖掘中成果颇丰而且 比较活跃的研究分支。本章主要介绍了关 联规则挖掘的基本概念及其分类,以单维 单层布尔关联规则的挖掘理论为切入点, 介绍关联规则挖掘理论模型以及算法方面 的内容,并简单扼要介绍了多层关联规则 挖掘、多维关联规则挖掘的相关内容,最 后通过一个实例给出了关联分析的医学应 用。
规则度量:支持度和置信度
Customer buys both
Customer buys diaper
• 对所有满足最小支持度 和置信度的关联规则
– 支持度s是指事务集D中 包含 A B 的百分比
sup port(A B) P(A B)
Customer buys beer
TID 2000 1000 4000 5000
• 关联分析(association analysis):用于发现隐 藏在大型数据集中的令人感兴趣的联系。所发现 的联系可以用关联规则或者频繁项集的形式表示。 关联规则挖掘就是从大量的数据中挖掘出描述数 据项之间相互联系的有价值的有关知识。
• 应用:购物篮分析、生物信息学、医疗诊断、 Web挖掘、科学数据分析、分类设计、捆绑销售 和亏本销售分析
购买的item A,B,C A,C A,D B,E,F
– 置信度c是指D中包含A 的事务同时也包含B的百 分比
confidence(A B) P(B | A) P(A B) / P(A)
• 假设最小支持度为50%, 最小置信度为50%,则 有如下关联规则
– A C (50%, 66.6%) – C A (50%, 100%)
购物篮分析
• 如果问题的全域是商店中所有商品的集合,则对 每种商品都可以用一个布尔量来表示该商品是否 被顾客购买,则每个购物篮都可以用一个布尔向 量表示;而通过分析布尔向量则可以得到商品被 频繁关联或被同时购买的模式,这些模式就可以 用关联规则表示(0001001100,这种方法丢失了什么信息?)
• 计算每一个可能规则的支持度和置信度。 但是这种方法由于过高的代价而让人望而 却步。
关联规则挖掘任务的步骤
• 找出所有频繁项集:其目标是发现满足最 小支持度阈值的所有项集,这些项集称作 频繁项集(frequent itemset)
• 由频繁项集产生强关联规则:其目标是从 上一步发现的频繁项集中提取所有高置信 度的规则,这些规则称作强规则(strong rule)
关联规则挖掘的基本过程与分类
• 关联规则挖掘的基本过程 • 关联规则挖掘的分类
关联规则挖掘的基本过程
• 给定事务的集合T,关联规则发现是指找出 支持度大于等于minsup,并且置信度大于 等于minconf的所有规则,其中minsup和 minconf是对应的支持度和置信度的阈值。
原始关联规则挖掘方法:
• 项集的一个重要性质就是它的支持度计数, 即包含特定项集的事务个数,数学上,项 集X的支持度计数σ(X)可以表示为: σ (X)=|{ti|X≤ti,ti∈T}|
• 关联规则是形如X→Y的蕴含表达式,其中 X和Y是不相交的项集。
• 关联规则的强度可以用它的支持度 (support)和置信度(confidence)度量。 支持度确定了规则可以用于给定数据集的 频繁程度,而置信度确定了Y包含X的事务 中出现的频繁程度。
关联规则挖掘分类 (1)
• 关联规则有多种分类:
– 根据规则中所处理的值类型
• 布尔关联规则
computer financial_ management_ software
• 量化关联规则(规则描述的是量化的项或属性间的关联性)
age ( X , "30...39") income( X , "42k...48k") buys ( X , "computer")
什么是关联规则挖掘?
• 关联规则挖掘:
– 从事务数据库,关系数据库和其他信息存储中 的大量数据的项集之间发现有趣的、频繁出现 的模式、关联和相关性。
• 应用:
– 购物篮分析、分类设计、捆绑销售等
“尿布与啤酒”——典型关联分析 案例
• 采用关联模型比较典型的案例是“尿布与 啤酒”的故事。在美国,一些年轻的父亲 下班后经常要到超市去买婴儿尿布,超市 也因此发现了一个规律,在购买婴儿尿布 的年轻父亲们中,有30%~40%的人同时 要买一些啤酒。超市随后调整了货架的摆 放,把尿布和啤酒放在一起,明显增加了 销售额。同样的,我们还可以根据关联规 则在商品销售方面做各种促销活动。
• 关联规则的两个兴趣度度量 – 支持度 buys ( X , "computer") buys ( X , "software") – 置信度 [sup port 2%, confidence 60%]
• 关联(association):两个或多个变量的取值之 间存在某种规律性。
• 关联规则(association rule):指在同一个事件 中出现的不同项的相关性。
购物篮事务的例子
TID
项集
1
{面包,ห้องสมุดไป่ตู้奶}
2
{面包,尿布,啤酒,鸡蛋}
3
{牛奶,尿布,啤酒,可乐}
4
{面包,牛奶,尿布,啤酒}
5
{面包,牛奶,尿布,可乐}
第一节 关联规则基本概念和关联规则挖掘分类
• 关联规则的基本概念 • 关联规则挖掘的基本过程与分类
关联规则的基本概念
• 令I={i1, i2, ……,id}是购物篮数据中所 有项的集合,而T={t1, t2, ……,tn}是 所有事务的集合。