低压直流电源DC12V24V防雷设计保护电路

合集下载

低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V24V防雷设计保护电路

低压直流电源DC12V/24V防雷设计保护电路陶瓷气体放电管的应用背景:一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管TVS,但是,由于压敏电阻MOV在失效时会引起火灾,普通600W或者1500W的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20μS,如此一来,选择气体放电管GDT 作为防护器件才能满足市场需求。

可是常规气体放电管GDT又会带来续流问题,因此,选择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。

二、采用气体放电管保护的传统方案的问题:针对DC12/24V和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端气体放电管GDT来作为保护器件,旧方案如下:上述图的陶瓷气体放电管老方案,四点的不足:(1)GDT的体积大:(2)气体放电管GDT的残压高:体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。

(4)供电电源浮地时,气体放电管GDT容易误动作供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的是直流击穿电压90V的GDT),则会导致放电管GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。

由此可见,选择90V的气体放电管,很容易发生误动作的危险。

四、解决方案:使用常规GDT用于低电压电源端口时,存在上述四点缺陷。

凯泰电子为此研制的新型气体放电管GDT:BC301N-D,可弥补常规气体放电管的不足之处。

BC301N-D的应用方案:陶瓷气体放电管BC301N-D有以下四个优势:(1)体积小:(2)残压低(3)弧光压高:弧光压比电源电压高,不会发生续流的危险(4)供电电源浮地时,BC301N-D不容易误动作BC301N-D的直流开启电压是300V,常规的气体放电管是90V的,因此供电电源浮地时,BC301N-D相比不轻易发生误动作。

低压供电系统防雷设计方案

低压供电系统防雷设计方案

低压供电系统防雷设计方案一、概述低压供电系统是指电力系统中额定电压为380V及以下的供电系统。

在现代化的社会生活中,低压供电系统的可靠性和稳定性非常重要。

由于雷击现象的频发,低压供电系统防雷设计显得尤为重要。

本文将从低压供电系统防雷的必要性、分析雷电威胁、设计原则、主要措施等方面进行阐述。

二、低压供电系统防雷的必要性1.人身安全:雷电是一种高能量的自然现象,会对人们的生命安全产生严重威胁。

低压供电系统的设备和线路存在被雷击的风险,必须采取相应的防雷措施来保护人员的安全。

2.供电可靠性:雷击可能导致供电系统发生短路、故障和停电等问题,给用户的正常用电和生活带来困扰。

通过科学合理的防雷设计,可以提高供电系统的可靠性,减少因雷击而导致的停电情况。

3.设备保护:雷击会对供电系统的设备造成电弧击穿等损坏,导致设备故障、更换和维修的成本。

通过防雷措施的实施,可以降低设备受雷击的概率,延长设备的使用寿命。

三、分析雷电威胁1.雷电直接击中:当雷电直接击中供电系统的设备或线路时,会产生极大的电流和电压冲击,可能导致供电系统短路、设备损坏甚至起火。

2.感应雷击:雷电在地面上产生的电磁场会感应到供电系统中的导线,导致电压和电流瞬变,对设备造成损坏。

3.雷电击中附近设备:当附近的设备或建筑被雷击时,会产生电磁波传播,可能引发供电系统中的过电压或过电流。

四、设计原则1.综合考虑:根据供电系统的特点和实际情况,综合考虑雷电威胁、设备特性和经济因素进行防雷设计,保证设计的合理性和可行性。

2.多层次防护:采取多层次的防雷措施,包括外部防护和内部防护,确保从源头到终端的雷电保护。

3.科学选材:选择符合国家标准和防雷要求的防雷器材和设备,保证其性能和可靠性。

4.合理布置:根据供电系统的结构和布置,合理设置防雷装置和接地系统,最大程度地减少雷电对设备和线路的影响。

5.定期检测:建立定期的防雷设备和线路检测制度,及时发现并修复潜在的雷击风险,保证供电系统的正常运行。

常用防雷电路设计参考原理图

常用防雷电路设计参考原理图

防雷器基本电路设计图目录一、交流电源防雷器(一)单相并联式防雷器(电路一~电路三)1~3 (二)三相并联式防雷器(电路一~电路三)(三)单相串联式防雷器(通用安全保护电路)(四)三相串联式防雷器(通用安全保护电路)二、通信机房用直流电源防雷器(一)并联式防雷器7 81、正极接地(–48V)直流电源92、负极接地(+24V)直流电源103、正负对称(±110V)直流电源11 (二)串联式防雷器1、正极接地(–48V)直流电源122、负极接地(+24V)直流电源133、正负对称(±110V)直流电源14三、通用二级信号防雷器(一)双绞线型信号电路通用电路一~通用电路五15~19 (二)同轴线型信号电路(1)外导体接地电路(通用电路一~通用电路三)20~22 (2)外导体不接地电路(通用电路一~通用电路二)23~24 (三)提高传输频率/速率的方法25四、小功率电源变压器或开关电源保护电路(电路一~电路三)26~28五、通讯电子设备的保护电路(电路一~电路三)六、直流电源与信号同传的保护电路七、信号电路的双重二级保护方式八、检测/控制电路的保护(接地、不接地)九、单级信号防雷器29~313233 34~351、只用玻璃放电管的保护电路362、只用半导体过压保护器的保护电路373、只用TVS 管的保护电路384、复合单级保护电路39十、天馈防雷器1、单级电路天馈防雷器402、二级电路天馈防雷器413、三级电路天馈防雷器42十一、防静电保护器431 一、交流电源防雷器(一)单相并联式防雷器说明:1、优点:电路简单,采用复合对称电路,共模、差模全保护,L、N 可以随便接。

缺点:压敏电阻RV1 短路失效后易引起火灾。

最好在每个压敏电阻上串联一个工频保险丝以防压敏电阻短路起火。

如果L、N 线不可能接反,则可省去压敏电阻RV2、RV3,将放电管G 的上端直接接到N 线上,构成“1+1”电路。

2、压敏电阻的压敏电压值参照下表选取(选压敏电压高一点的更安全、耐用,故障率低,但残压略高);根据通流容量要求选择外形尺寸和封装形式,或采用几个压敏600V。

±12V简易直流稳压电源设计

±12V简易直流稳压电源设计

±12V简易直流稳压电源设计直流稳压电源是一种常见的电路设计,在各种电子设备中广泛应用。

在这篇文章中,我将介绍如何设计一个基于±12V直流稳压电源。

设计一个±12V直流稳压电源需要考虑以下几个方面:输入电压范围、输出电压稳定性、负载能力和保护功能等。

下面是一个简单的电路设计流程。

1.确定输入电压范围首先,我们需要确定电源的输入电压范围。

一般而言,直流稳压电源的输入电压范围为AC100-240V,输出电压范围是DC±12V。

输入电压范围可以根据实际需求进行调整。

2.选择变压器在选择变压器时,我们需要根据输入电压范围选择合适的型号。

变压器的主要功能是将输入交流电压转换为适当的低压交流电压。

在这种情况下,我们可以选择一个适当的变压器来得到所需的低压交流电压。

3.整流电路接下来,我们需要设计整流电路以将交流电压转换为直流电压。

常见的整流电路包括整流桥和滤波电容。

整流桥可以将交流电压的负半周转换为正半周,从而得到一个脉动的直流电压。

滤波电容可以去除脉动,使得输出电压更加稳定。

4.电压调整电路为了得到所需的输出电压,我们需要设计一个电压调整电路。

这个电路通常使用稳压器,如集成稳压IC或离散元件,来稳定输出电压。

稳压器可以根据负载的需求动态调整输出电压,从而确保输出电压的稳定性。

5.输出电流保护电路为保护负载和电源电路,我们需要设计一个输出电流保护电路。

这个电路可以监测输出电流并在超过设定值时断开输出。

一种常见的保护电路是使用电流传感器和比较器来实现。

当输出电流超过设定值时,比较器将触发保护装置,使输出电路停止工作。

在设计完电路之后,我们需要进行仿真和实际测试来验证电路的性能。

我们可以使用电子设计自动化工具,如Multisim、PSPICE等来进行仿真,并使用示波器、多用表等工具来验证电路的性能。

在设计一个电源时,我们还需要考虑其他一些因素,如温度稳定性、输出电压漂移、电源效率等。

低压配电电源设备系统防雷设计

低压配电电源设备系统防雷设计

低压配电电源设备系统防雷设计低压配电、电源设备系统防雷设计低压配电、电源设备系统防雷设计一、雷害分析随着经济建的高速发展,电子信息设备的应用已深入至国民经济、国防建设和人民生活的各个领域,各种电子、微电子装备已在各行业大量使用。

由于这些系统和设备耐过电压能力低,雷电高电压以及雷电电磁脉冲侵入所产生的电磁效应、热效应都会对系统和设备造成干扰和永久性损坏。

而雷电对系统和设备的侵害,通常通过地电位反击、各种耦合机制(电流耦合、电感耦合、电容耦合)及电磁脉冲辐射等方式沿供电线路、通信线路、网络线路和金属管线进入设备,造成系统和设备的损坏。

因此在防雷设计时,除应考虑防直击雷措施外,还应考虑雷电电磁脉冲的防护措施,建立完善的雷电浪涌过电压保护措施,根据被保护建筑物的特点和低压电源系统的形式选择和安装电涌保护器。

二、设计依据a、gb50057-94,2000《建筑物防雷设计规范》b、gb50343-2021《建筑物电子信息系统防火技术规范》c、qx3-2000《气象信息系统雷电电磁脉冲防水规范》d、gb18802《低压配电系统的电涌保护器(spd)》e、iec61312-1、2、3《雷电电磁脉冲的防水》f、gb50169-92《电气装置安装工程接地装置施工及验收规范》g、gb50194-93《建设工程施工现场供用电安全规范》三、低压供电系统防雷设计方案根据gb50343-2021《建筑物电子信息系统防火技术规范》中有关防火分区的分割,针对关键系统的防火应当分成三个区,分别予以考量。

只搞单级防火可能会增添,因雷电穿过小而引致的泄流后残压过小毁坏设备或者维护能力严重不足引发的设备损毁。

电源系统多级维护,可以严防从直击雷至工业浪涌的各级过电压的侵扰。

(1)第一级电源防雷设计:根据国家有关低压防雷的有关规定,外接金属线路进入建筑物之前应埋地穿金属管槽15米以上的距离进入建筑物,且要在建筑物的线路进入端加装低压避雷器。

低压直流电源DC12V24V防雷设计保护电路---文本资料

低压直流电源DC12V24V防雷设计保护电路---文本资料

低压直流电源DC12V/24V防雷设计保护电路陶瓷气体放电管的应用背景:一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管TVS,但是,由于压敏电阻MOV在失效时会引起火灾,普通600W或者1500W的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20μS,如此一来,选择气体放电管GDT 作为防护器件才能满足市场需求。

可是常规气体放电管GDT又会带来续流问题,因此,选择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。

二、采用气体放电管保护的传统方案的问题:针对DC12/24V和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端气体放电管GDT来作为保护器件,旧方案如下:上述图的陶瓷气体放电管老方案,四点的不足:(1)GDT的体积大:(2)气体放电管GDT的残压高:体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。

(4)供电电源浮地时,气体放电管GDT容易误动作供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的是直流击穿电压90V的GDT),则会导致放电管GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。

由此可见,选择90V的气体放电管,很容易发生误动作的危险。

四、解决方案:使用常规GDT用于低电压电源端口时,存在上述四点缺陷。

凯泰电子为此研制的新型气体放电管GDT:BC301N-D,可弥补常规气体放电管的不足之处。

BC301N-D的应用方案:陶瓷气体放电管BC301N-D有以下四个优势:(1)体积小:(2)残压低(3)弧光压高:弧光压比电源电压高,不会发生续流的危险(4)供电电源浮地时,BC301N-D不容易误动作BC301N-D的直流开启电压是300V,常规的气体放电管是90V的,因此供电电源浮地时,BC301N-D相比不轻易发生误动作。

低压配电线路的防雷技术模版(三篇)

低压配电线路的防雷技术模版(三篇)

低压配电线路的防雷技术模版低压配电线路是指额定电压不超过1000V的配电线路。

在低压配电线路中,防雷技术非常重要,可以保护线路设备免受雷击损坏,并提高供电可靠性。

下面是一个低压配电线路的防雷技术的模板,包括防雷设备的选择、接地设计、线缆布置、绝缘保护等方面。

1. 防雷设备的选择1.1 选择适用于低压配电线路的防雷设备,如避雷针、避雷带、避雷网等。

1.2 根据线路特点和所在地的雷电环境选择合适的防雷设备,并确保其符合国家相关标准要求。

2. 接地设计2.1 根据线路的功率和用电负荷,合理设计接地装置。

2.2 确保接地装置的导电性能良好,接地电阻低于规定标准值。

2.3 接地装置应采用良好的接地材料,如铜杆、镀锌钢杆等。

2.4 保证接地装置与线路设备之间的连接良好。

3. 线缆布置3.1 对线缆进行合理的布置,避免与其他设备或电源线路交叉排布。

3.2 尽量减少线缆的长度,缩短线缆的传输距离,降低雷电影响。

3.3 对于易受雷击影响的关键设备,如控制柜、开关柜等,应将其线缆布置在线缆槽内或保护管道内,提高防雷性能。

4. 绝缘保护4.1 使用符合国家标准的绝缘材料,如绝缘胶带、绝缘管等,对线路设备进行绝缘保护。

4.2 定期检查绝缘材料的性能,如出现老化、破损等情况及时更换。

4.3 确保绝缘材料与设备的贴合度,避免出现绝缘间隙,提高绝缘效果。

5. 采用避雷器5.1 在低压配电线路中使用合适的避雷器,能有效地引导雷电流,保护线路设备免受雷击损坏。

5.2 根据线路的需求和雷电环境,选择合适的避雷器型号和规格。

5.3 定期检查避雷器的工作状态,如发现损坏或老化,及时更换。

6. 定期检查和维护6.1 定期对低压配电线路进行检查,确保防雷设备、接地装置和线缆等设施正常工作。

6.2 发现问题及时进行维修和更换,防止设备老化或故障导致防雷效果下降。

6.3 在雷电较为频繁的季节,增加巡检频次,加强对防雷设备的保养和维护。

以上是一个低压配电线路防雷技术的模板,根据具体的情况,可根据需要进行修改和补充。

直流可调稳压电源的防护措施与防雷击设计

直流可调稳压电源的防护措施与防雷击设计

直流可调稳压电源的防护措施与防雷击设计一、引言直流可调稳压电源是一种广泛应用于各个领域的电源设备,为保证其正常运行和延长使用寿命,必须采取相应的防护措施和防雷击设计。

本文将就直流可调稳压电源的防护措施和防雷击设计进行详细论述。

二、直流可调稳压电源的防护措施1. 外壳设计直流可调稳压电源的外壳设计是其防护的第一道防线。

外壳应采用金属材料,具有良好的防护性能,能够抵抗机械冲击和外界环境的侵蚀。

外壳还应具备防尘、防水的功能,以保证电源设备在恶劣环境下的正常运行。

2. 过压保护过压是直流可调稳压电源常见的故障之一,应采取过压保护措施来避免设备损坏。

过压保护应采用可调整的过压保护电路,当输入电压超过设定值时,电路会立即切断电源的工作,保护电源设备免受过压的损害。

3. 过流保护过流是直流可调稳压电源常见的故障之一,过流保护的设计是防护的重要环节之一。

过流保护应采用精确的电流检测装置,当输出电流超过额定值时,电路会立即切断电源的输出,以保护电源设备和连接的负载。

4. 过热保护过热是直流可调稳压电源工作中常见的问题,过热保护是为了防止电源设备因高温而损坏。

过热保护应采用温度传感器,当电源设备内部温度超过安全范围时,电路会立即切断工作,以避免过热引起的危险。

三、直流可调稳压电源的防雷击设计1. 接地保护直流可调稳压电源系统应进行有效的接地保护。

接地保护可采用多级接地,将电源设备的接地与建筑物的接地系统相连接,有效分流雷电过电流,减少雷电对电源设备的伤害。

2. 避雷器的应用为了防止雷电冲击对直流可调稳压电源造成损害,可以在设备的输入和输出端采用合适的避雷器。

避雷器可以通过吸收和分离雷电冲击,保护电源设备和连接的负载。

3. 雷电保护器的使用雷电保护器是直流可调稳压电源防雷击的重要装置。

雷电保护器通过充分利用其快速响应和高能量吸收能力,将雷电冲击分散和吸收,保护电源设备免受雷电侵害。

四、结论直流可调稳压电源的防护措施和防雷击设计对于保证其正常运行和延长使用寿命起着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低压直流电源DC12V/24V 防雷设计保护电路陶瓷气体放电管的应用背景:
一直以来,在低压电源端口的雷击保护器件的选型方面,人们更多的是选择压敏电阻MOV或者瞬态抑制二极管 TVS,但是,由于压敏电阻 MOV在失效时会引起火灾,普通 600W 或者1500W 的TVS通流能力又很小,而现在很多客户对测试等级的要求又很高,尤其是用于基站的产品,防护等级可达到3KA@8/20卩S,如此一来,选择气体放电管 GDT
作为防护器件才能满足市场需求。

可是常规气体放电管GDT又会带来续流问题,因此,选
择合适的气体放电管GDT才能根本解决低压电源端口的雷击保护问题。

二、采用气体放电管保护的传统方案的问题:
针对DC12/24V 和AC24V端口的雷击保护传统的方案通常都选择常规的两端和三端
气体放电管GDT来作为保护器件,旧方案如下:
上述图的陶瓷气体放电管老方案,四点的不足:
(1 ) GDT的体积大:
&F091M
BJDO^O
L
(2 )气体放电管GDT的残压高:
体放电管的弧光压低:GDT的弧光压比电源电压低,就会导致续流的危险。

(4 )供电电源浮地时,气体放电管GDT容易误动作
供电电源出现浮地时,应用上图传统的方案时,由于气体放电管的阻抗很大,所以在放
电管两端会叠加一个很高的电压,如果气体放电管GDT的直流开启电压过低(方案中用的
是直流击穿电压90V的GDT),则会导致放电管 GDT误动作,此时气体放电管会处于“常亮”的状态,致使系统的供电能力下降甚至丧失。

由此可见,选择90V的气体放电管,很
容易发生误动作的危险。

四、解决方案:
使用常规GDT用于低电压电源端口时,存在上述四点缺陷。

凯泰电子为此研制的新型气体放电管GDT:BC301N-D ,可弥补常规气体放电管的不足之处。

BC301N-D 的应用方案:
----------- \ 1IU4
1
新方棗〉DC12/J4V K301M-D Is^BJ 18/30C A Maxt circuit
---------
i--------------------------------------- =
新方療
陶瓷气体放电管 BC301N-D 有以下四个优势:
(1 )体积小:
BC301N-D
(2)残压低
BC301N-D (残压:552V)
(3)弧光压高:弧光压比电源电压高,不会发生续流的危险
(4 )供电电源浮地时,BC301N-D 不容易误动作 BC301N-D 的直流开启电压是300V , 常规的气体放电管是90V的,因此供电电源浮地时, BC301N-D相比不轻易发生误动作。

总结
由于气体放电管GDT的工作原理是属于开关型的,所以在选择气体放电管 GDT作为
电源口防护器件时,必须注意:
1、气体放电管GDT的弧光压大于电源工作电压。

2、气体放电管GDT的直流开启电压大于供电电源的浮地电压。

由此开发出来的陶瓷气体放电管 GDT : BC301N-D ,除了同时满足上述两个要求以外,
还具备以下优势:
1、快速响应,低残压。

2、通流容量大,可达到
3KA@8/20 卩S。

相关文档
最新文档