高中数学必修五全册课件PPT(全册)人教版
合集下载
2019最新人教A版高中数学必修五课件2.1.2优质课件

an=
.
答案:2n(n∈N*)
解析:由 a1=2,an=2an-1(n≥2),得数列的前 5 项依次为 2,4,8,16,32. 所以数列的通项公式 an=2n.
第2课时 数列的通项公式与递推公式
问题导学 当堂检测
课前预习导学
KEQIANYUXIDAOXUE
课堂合作探究
KETANGHEZUOTANJIU
解析:∵an+1-an-3=0,∴an+1-an=3>0.
∴an+1>an(n=1,2,3,…),即数列的各项依次逐渐增大.∴数列为递增数列, 故选 A.
第2课时 数列的通项公式与递推公式
问题导学 当堂检测
课前预习导学
KEQIANYUXIDAOXUE
课堂合作探究
KETANGHEZUOTANJIU
2.已知数列{an}的通项公式为 an=(10-n)·2n,求数列{an}中的最大项. 解:(方法一)∵an=(10-n)·2n,
即
(10-������)·2������ ≥ (11-n)·2������-1, (10-������)·2������ ≥ (9-n)·2������+1,
得 8≤n≤9.
故所求数列{an}中的最大项为 a8=a9=512.
第2课时 数列的通项公式与递推公式
问题导学 当堂检测
课前预习导学
KEQIANYUXIDAOXUE
∴an+1-an=(10-n-1)·2n+1-(10-n)·2n=(9-n)·2n+1-(10-n)·2n
=2n(18-2n-10+n)=2n(8-n). ∴当 n<8,且 n∈N*时,an+1>an,则数列{an}递增.
高中数学必修5教材简介 PPT课件 图文

(8)理解并掌握解一元二次不等式的过程; (9)会求一元二次不等式解集; (10)掌握求解一元二次不等式的程序框图及隐含的算法思想, 会设计求解的过程;
(11)了解从实际情境中抽象出二元一次不等式(组)模型的 过程; (12)理解二元一次不等式(组)、二元一次不等式(组)的 解集的概念; (13)了解二元一次不等式的几何意义,理解(区域)边界的 概念及实线、虚线边界的含义; (14)会用二元一次不等式(组)表示平面区域,能画出给定 的不等式(组)表示的平面区域; (15)了解线性约束条件、目标函数、线性目标函数、线性规 划、可行解、可行域、最优解的概念; (16)掌握简单的二元线性规划问题的解法; (17)了解基本不等式的代数背景、几何背景以及它的证明过 程; (18)理解算术平均数,几何平均数的概念; (19)会用基本不等式解决简单的最大(小)值的问题; (20)通过基本不等式的实际应用,感受数学的应用价值。
正弦定理的证明体现从特殊到一般的归纳过程
正弦定理可以用于两类解三角形的问题: (1)已知三角形的任意两个角与一边,求其他 两边和另一角。 (2)已知三角形的两边与其中一边的对角,计 算另一边的对角,进而计算出其他的边和角。
正弦定理略去等于2R,目的是控制难度
余弦定理的证明体现了定性到定量分析的理性 思维
2.2 发展要求
(1)了解正、余弦定理与三角形外接圆半径的关系。
(2)利用正、余弦定理讨论三角形中的边角关系。
(3)条件允许的情况下,可多做几个实习作业,以 培养学生应用知识解决实际问题的能力。
2.3 说明
(1)可以利用计算机进行近似计算,但不要求太复 杂繁琐的运算。 (2)不必增加在立几情况下求解三角形的问题,可 在立体几何学习时适当拓展。 (3)应用问题应限制在正、余弦定理的简单应用 上。 (4)实习作业不要求太复杂的问题。
(11)了解从实际情境中抽象出二元一次不等式(组)模型的 过程; (12)理解二元一次不等式(组)、二元一次不等式(组)的 解集的概念; (13)了解二元一次不等式的几何意义,理解(区域)边界的 概念及实线、虚线边界的含义; (14)会用二元一次不等式(组)表示平面区域,能画出给定 的不等式(组)表示的平面区域; (15)了解线性约束条件、目标函数、线性目标函数、线性规 划、可行解、可行域、最优解的概念; (16)掌握简单的二元线性规划问题的解法; (17)了解基本不等式的代数背景、几何背景以及它的证明过 程; (18)理解算术平均数,几何平均数的概念; (19)会用基本不等式解决简单的最大(小)值的问题; (20)通过基本不等式的实际应用,感受数学的应用价值。
正弦定理的证明体现从特殊到一般的归纳过程
正弦定理可以用于两类解三角形的问题: (1)已知三角形的任意两个角与一边,求其他 两边和另一角。 (2)已知三角形的两边与其中一边的对角,计 算另一边的对角,进而计算出其他的边和角。
正弦定理略去等于2R,目的是控制难度
余弦定理的证明体现了定性到定量分析的理性 思维
2.2 发展要求
(1)了解正、余弦定理与三角形外接圆半径的关系。
(2)利用正、余弦定理讨论三角形中的边角关系。
(3)条件允许的情况下,可多做几个实习作业,以 培养学生应用知识解决实际问题的能力。
2.3 说明
(1)可以利用计算机进行近似计算,但不要求太复 杂繁琐的运算。 (2)不必增加在立几情况下求解三角形的问题,可 在立体几何学习时适当拓展。 (3)应用问题应限制在正、余弦定理的简单应用 上。 (4)实习作业不要求太复杂的问题。
人教版高中数学必修五课件:第二章 数列2-4-2 等比数列的性质

【所以自主{an解2}答是】首1项.因为为1,an公=2比n-为1,4所的以等a比ann数122 列,22nn=故1 242a,n2=4n-1.
答案:an2=4n-1
2.由a4·a7=-512,得a3·a8=-512.
由
解得a3=-4,a8=128或a3=128,a8=-4(舍).
所以aaq33 =a8a
am·an=ak·al
2.等比数列的单调性
(1)当a1>0,_q_>_1_或a1<0,_0_<_q_<_1_时,{an}为递增数列. (2)当____,0<q<1或a1<0,____时,{an}为递减数列. (3)当_a_1>_0_时,{an}为常数列q.>1
q=1
1.在等比数列{an}中,a6=6,a9=9,则a3=( )
(3)若m+n=p+l(m,n,p,l∈N*),那么aman=apal吗? 提示:相等,aman=2m-1×2n-1=2m+n-2, apal=2p-1×2l-1=2p+l-2,因为m+n=p+l, 所以m+n-2=p+l-2,所以aman=apal.
探究2:对任意的等比数列{an},若有m+n=p+l(m,n,p,l∈N*), 那么aman=apal吗? 提示:相等,设等比数列{an}的公比为q,则am=a1qm-1, an=a1qn-1,ap=a1qp-1,al=a1ql-1,aman= a1qm-1×a1qn-1=a12 qm + n-2, apal= a1qp-1×a1ql-1=a12qp + l-2, 因为m+n=p+l,所以aman=apal.
【人教B版】数学必修五(全书)课件(含本书所有课时)精美立体PPT

等差数列
1、①、数列是怎样定义的? 如何从函数观点认识数列? 给出数列有哪两种主要方法 ?
3 你 的 恒 心 ,与 你的心 态有关 坚持不下去的另一个原因,恐怕是因为 我们想 太多。 健身两周,就希望身材赛过谁;看了两 本书, 就期待 生活有 什么不 同;勤 奋两个 月,就 算计着 什么时 候能够 功成名 就…… 人心都是肉长的,若是在它上面加了太 多的砝 码,它 就会不 堪重负 。 欲望太多,就不容易看到希望。 村上春树的第一部作品《且听风吟》和 第二部 作品《1 973年 的弹子 球》问 世后, 虽然让 他有了 一定的 知名度 ,但都 没有获 得日本 文学大 奖。 对此他十分淡然,觉得能写出让自己满 意的作 品才更 加重要 。 他后来在回忆这段经历时说,那时他还 在经营 餐厅, 甚至觉 得没得 奖也挺 好,至 少不会 没完没 了的接 待采访 和约稿 ,影响 了生意 。 听起来像玩笑,但实际上,无论写书, 还是跑 步,他 只是为 了迎合 自己, 达到为 自己设 定的目 标就好 。
解:在OAC中,
∵
sinb60°=
a
B1
sin∠OCA B2
C1 C2
60°
∴ sin∠OCA= 8 s7in60°≈0.9897, O a
A
过∴O作∠OOBC∥AA=C°,或∠°AO,B=°或°, ∴ ∠OAC=°或°,
∴ a·b= a b cos∠AOB=-44.0或-52.
例 3:已知向量a与a+b夹角为60°, 且 a =8,b =7,求a与b的夹角及a·b.
AAA AA AA
AA
ccccc cbc bbb bb
c
bc
b
B a CB a C
B aC
c2 = a2+b2 c2 > a2+b2 c2 < a2+b2
高中数学人教版必修五:基本不等式(共23张PPT)

基本不等式:
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
ab
a
b 2
(第一课时)
2019/10/5
一、情境创设 导入课题
第24届国际数学家大会(ICM2002)的会标
问题 :你能在这个图中找出一些相等关系或不 等关系吗?
二、自主探究 推导公式
问题 1:在正方形 ABCD 中有4个全等的直角三角形.设直角三角形的
两条直角边长为a,b,正方形ABCD的面积为 S ,4个直角三角形的面积和
2
又称为基本不等式
4、从数列角度看:
把
ab 2
看做两个正数a,b 的等差中项,
ab 看做正数a,b的等比中项,
那么上面不等式可以叙述为:
两个正数的等差中项不小于它们的等比 中项。
还有没有其它的证明方法证明均值 不等式呢?
二、自主探究 推导公式 探究:如图,AB 是圆的直径,点 C 是 AB上一点,
显然,④是成立的.当且仅当 a b 时,④中的等号成立.
2019/10/5
析 : a 0,b 0,
a b ab a b 2 ab ( a b)2 0
2
2
2
即 a b ab 2
当且仅当 a b即a b等号成立
上面所证结论通常称为均值不等式
(2)设矩形的长、宽分别为x(m),y(m),
依题意有2(x+y)=36,即x+y=18, 因为x>0,y>0,所以, xy ≤ x y
2
因此 xy ≤9
将这个正值不等式的两边平方,得xy≤81, 当且仅当x=y时,式中等号成立,此时x=y=9,
因此,当这个矩形的长与宽都是9m时,它的 面积最大,最大值是81m2。
人教版高中数学必修5《等比数列》PPT课件

的 公比 ,通常用字母 q 表示。
二、基础知识讲解
1、等比数列的定义:
一般地,如果一个数列从第二项起,每一项与它
的前一项的比都等于同一个常数,那么这个数列就叫
做等比数列。这个常数就叫做等比数列的公比, 公比
通常用字母 q 表示。 (q≠0) 等比数列的每一
思考:用数学符号语言(递推公式)项怎都样不表为示0等,比即
在等比数列{an}中 (1)an=akqn-k; (2)若m+n=k+l,则am·an =ak·al 在等比数列{an}中,若m+n=k+l,则am·an =ak·al
特别地,若m n 2k(m, n, k N * ), 则aman ak2
例1、在等比数列{an}中,an 0,且a1a9 64, a3 a7 20,求a11。
成等差数列的三个正数之和为15,若这三个数分别 加上1,3,9后又成等比数列,求这三个数。
一、复习回顾 1、等比数列的定义: 或
2、等比数列的通项公式: an=a1qn-1 3、等比数列的性质: ①an=a1qn-1=akqn-k;
a1q2 12 ①
a1,公比是
q,那么
设
a1q3 18 ②
把②的两边分别除以①的两边,得
q
3
③
把③代入①,得
a1
6 3
2
方
程列
思 想
因此,a2
a1q
16 3
3 2
8
求
二、基础知识讲解
3、等比数列的通项公式: an=a1qn-1
练习2:在等比数列{an}中,
(1)a1=3,an=192,q=2,求n;n=7
a3 a7 20,求a11。
解:依题意可得
二、基础知识讲解
1、等比数列的定义:
一般地,如果一个数列从第二项起,每一项与它
的前一项的比都等于同一个常数,那么这个数列就叫
做等比数列。这个常数就叫做等比数列的公比, 公比
通常用字母 q 表示。 (q≠0) 等比数列的每一
思考:用数学符号语言(递推公式)项怎都样不表为示0等,比即
在等比数列{an}中 (1)an=akqn-k; (2)若m+n=k+l,则am·an =ak·al 在等比数列{an}中,若m+n=k+l,则am·an =ak·al
特别地,若m n 2k(m, n, k N * ), 则aman ak2
例1、在等比数列{an}中,an 0,且a1a9 64, a3 a7 20,求a11。
成等差数列的三个正数之和为15,若这三个数分别 加上1,3,9后又成等比数列,求这三个数。
一、复习回顾 1、等比数列的定义: 或
2、等比数列的通项公式: an=a1qn-1 3、等比数列的性质: ①an=a1qn-1=akqn-k;
a1q2 12 ①
a1,公比是
q,那么
设
a1q3 18 ②
把②的两边分别除以①的两边,得
q
3
③
把③代入①,得
a1
6 3
2
方
程列
思 想
因此,a2
a1q
16 3
3 2
8
求
二、基础知识讲解
3、等比数列的通项公式: an=a1qn-1
练习2:在等比数列{an}中,
(1)a1=3,an=192,q=2,求n;n=7
a3 a7 20,求a11。
解:依题意可得
高中数学必修五全册课件PPT(全册)人教版

答:此船可以继续一直沿正北方向航行
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
变式练习:两灯塔A、B与海洋观察站C的距离都 等于a km,灯塔A在观察站C的北偏东30o,灯塔B 在观察站C南偏东60o,则A、B之间的距离为多 少?
练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算
油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B 与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为 6°20’,AC长为1.40m,计算BC的长(精确到0.01m).
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
(2)方位角:指北方向线顺时针旋转到目标方向线
所成的角叫方位角。
B 30°北
点A在北偏东60°,方位角60°.
A 60°
点B在北偏西30°,方位角330°. 西
东
点C在南偏西45°,方位角225°. C 点D在南偏东20°,方位角160°.
45°20° 南D
3.水平距离、垂直距离、坡面距离。
垂
坡面距离
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
高中数学人教版必修5课件

=
c sin C
△ABC
AB+BC=AC
设e与AB,BC,AC的夹角分别为α,β,γ,
e·(AB+BC)= e ·AC
c cos a cos bcos
分析 差异
A
函余
数
名 称
正
式三 子 结 构二
j
B
C
ab sin A sin B
bc =
sin B sin C
A
B
j
90 C
C
90 C
A C 90
留两个有效数字 )
练习:根据下列条件解三角形 (1) a = 45, B= 60°, A = 45°
小结与思考
问题 通过以上的研究过程,同学们主要学到了 那些知识和方法?你对此有何体会?
1. 用向量证明了正弦定理,体现了数形结合的 数学思想
2. 它表述了三角形的边与对角的正弦值的关系. 3. 定理证明分别从直角、锐角、钝角出发,运
c sin C
S ABC
1 2
= a b
c
sin A sin B sin C
= a b c
sin A sin B sin C
b sin B
=
c sin C
y
M(bcos( -C),bsin(-C))
A(ccosB,csinB)
B
C(a,0)
x
因为bsin( -C)= csinB,所以
b sin B
思考:假如在没有工具过河的情况下,有没有办法 利用自己所学的知识,求出A,B两点的距离?
关键:将A,B放到一个三角形中去,求边长。
B
基线
河流
A 51
55米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b A
或 (推论)
C a=?
c
B
五、余弦定理基本应用
1.已知两边及它们的夹角,求第三边;
2.已知三边,求三个角。
例1:隧道工程设计,经常需要测算山脚的长度,工程技术人 员先在地面上选一适当位置A,量出A到山脚B,C的距离,再 利用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计 算求出山脚的长度BC。
为边做一个三角形的木架,形状如下图所示,则另外还要 找两根多长的木棒?(精确到0.1cm)
C
40cm
30o
A
45o
D
B
1.1.2 余弦定理
一、实际应用问题
隧道工程设计,经常需要测算山脚的长度,工程技术人员 先在地面上选一适当位置A,量出A到山脚B,C的距离,再利 用经纬仪(测角仪)测出A对山脚BC的张角,最后通过计算 求出山脚的长度BC。
1:1: 3
变式训练
在ABC中,角A、B、C的对边分别 uuur uuur uuur uuur
为a、b、c,若AB AC = BA BC = 1,c = 2.
(1)判断ABC的形状; uuur uuur
(2)若 AB AC 6,求ABC的面积
答案:等腰三角形
3
2
小结:
一、正弦定理: a b c 2R sin A sin B sin C
转化:在 △ABC中,Байду номын сангаас
B
AB 8km, AC 3km, A 600,
求a。
C A
例2:在△ABC中,已知 a=2,b= , 求A。
解:
∴A=45°
例3:在△ABC中,已知 a=2 ,b= , 解三角形。
解:由例2可知 A=45°
方法一:
方法二:
思考
在解三角形的过程中,求某一个角有时 既可以用余弦定理,也可以用正弦定理,两种方法有 什么利弊呢?
1.1.1 正弦定理
回顾
一、正弦定理: a b c 2R sin A sin B sin C
二、可以用正弦定理解决的三角问题: ①知两角及一边,求其它的边和角
②知三角形任意两边及其中一边的对角,求 其它的边和角
练习:若ΔABC满足下列条件,求角B
(1) b=20,A=60°,a= 20 3 ; 30o
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
∴ sin A sin B sin C
故由正弦定理可得a≥b≥c
(2)若△ABC是钝角三角形,则∠A为钝角
∴-∠A<
2
,且-∠A=∠B+∠C>∠B≥∠C
∴ sin( A) sin B sin C
(按角A分类)
A的范围
a,b关系
解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
即 sin A sin B sin C
∴由正弦定理可得a>b≥c
三、小结:正弦定理,两种应用 已知两边和其中一边对角解斜三角形有两解 或一解(见图示)
C ba
AB a=bsinA 一解
C b aa
C
C
b
a
a
b
A B2 B1 A
B
bsinA<a<b 两解
一解
A
B
a=bsinA 一解
思考:小强有一根长为40cm的木棒,若他打算以该木棒
B
C
A
二、转化为数学问题
已知三角形的两边及它们的夹角,求第三边。
例:在△ABC中,已知AB=c,AC=b,∠BAC=A 求:a(即BC).
C
b
a=?
A
c
B
三、证明问题
C
b
a=?
A
c
向量法:
rC b
A
r c
B
r a
B
四、余弦定理
三角形中任何一边的平方等于其他两边的平方的和减去这两边与 它们的夹角的余弦的积的两倍。
(角换边)
例3、在ABC中,若
a2 b2
tan A , 试判断ABC的形状 tan B
解:由正弦定理,得
sin2 sin2
A B
tan tan
A B
sin2 sin2
A B
sin cos
A A
cos sin
B B
Q sin A 0,sin B 0,
sin Acos A sin Bcos B,即sin2A sin2B
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
(2) b=20,A=60°,a= 10 3 ; 90o
(3) b=20,A=60°,a=15. 无解 思考:若ΔABC中 b=20,A=60°,当a为何值 角B有1解、2解、无解
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 1.若A是锐角 (1)若a < bsinA,则此时无解; (2)若a = bsinA,则此时恰有一解,即角B为直角; (3)若bsinA< a <b,则此时有两解,即角B可取钝角,
也可取锐角; (4)若a≥b,则此时只有一解,即角B需取锐角.
C a
b a
A B B B′
B
设在△ABC中,已知a、b、A的值,则解该三角形 可能出现以下情况: 2.若A是钝角或直角 (1)若a > b,则此时只有一解,即角B需取锐角; (2)若a≤b,则此时无解.
C
a b
C a
b
A
B
A
B
讨论已知两边和一边对角的三角形的解:
2A 2k 2B 或 2A 2k 2B(k Z)
Q 0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是
等腰直角三角形
2、已知△ABC中,B=30o,C=120o,则a:b:c=
其中,R是△ABC的外接圆的半径
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,