基于ZigBee的环境监测系统的设计与实现

合集下载

基于ZigBee的环境监测系统的设计

基于ZigBee的环境监测系统的设计

t eTI SZ g ec i 4 0 i r s n e n h o r s o dn y t m a d r r ht cu ea d s fwa efo aegv n h ’ iBe hp 2 3 sp ee tda d t ec re p n ig s se h r wa ea c i t r n ot r lw r ie . e
Thss se c le t h n i n n a n o ma in s c s tmp r t r , h m ii i y tm olcs t e e vr me t 1i fr t u h a e e au e u dt o o y,1 h , s u d a d sn s i t o t i t o n n e d t o h s g
( p .o o u e n no main S in e o twe t rsr l g ,Ku mig 6 0 2 Chn ) De t fC mp tra d If r t c c ,S u h s e tyCol e o e Fo e n n 5 2 4, ia
Ab ta t sr c :A n i n n a o io i g s s e b s d o g e t c n l g s p o o e . Th y t m e i n m e h d wi e v r me t l o m n t rn y t m a e n ZiBe e h o o y i r p s d e s s e d sg t o t h
c m p t r An h si fr to sp o e s da d ds ly do o tc m p tr Be a s fZiB etc n lg o ue . d t i no ma in i r c se n ip a e nh s o u e. c u eo g e e h oo y,t es s e h y tm

智能家居环境监测系统设计与实现

智能家居环境监测系统设计与实现

智能家居环境监测系统设计与实现智能家居是指在智能化、自动化、信息化的基础上利用传感器网络等进行数据传输,实现家居电器的智能控制,随着4G网络的快速发展,智能家居的及时出现为人们享受生活提供了一个更好的选择。

一、智能家居环境监测系统总体设计基于ZigBee无线通信技术构建的室内环境监测系统主要实现室内温度、氧气、一氧化碳、二氧化硫、湿度、甲烷和二氧化碳含量等家居环境的检测,其次是监测生活用水、用电和用气的安全性和用量,三是监测室内各种生活家电的状态等。

系统设计中,基于ZigBee的传感器节点将室内环境信息发送到无线传感器网络的汇聚节点,通过ARM微处理器实现嵌入式编程,然手通过ARM微处理器和ZigBee汇聚节点实现有效的网络串行通信。

通过该系统,采集室内环境信息、输入操作命令、输出操作结果、集中控制室内环境、远程控制家用电器、联动控制室内安防系统等功能。

二、智能家居环境监测系统详细设计2.1室内环境信息采集功能通过部署在室内的传感器节点,实现无线传感器网络的室内环境信息采集,以便能够将室内温度、湿度、氧气、二氧化碳、一氧化碳、二氧化硫、甲烷及生活用水和生活电气等相关信息传递到系统中。

信息采集和感知是室内环境系统最基本的功能,需要将传感器节点进行良好的部署和优化,以便在最小能量耗费下实现节点的全方位覆盖。

2.2 室内环境信息传输功能传感器节点采集相关的网络信息后,通过4G网络传输到ZigBee汇聚节点,汇聚节点将多个传感器节点信息传输到室内监测系统的服务器,以便服务器进行处理。

信息传输过程中,为了实现高效数据传输和分发,需要将数据进行压缩和存储,实现传感器网络的聚簇作用,同时为了降低传感器网络的通信开销、平衡节点间负载,需要对传感器网络节点和传输节点进行设计。

2.3 室内环境信息处理功能数据传输到服务器后,环境监测装置负责处理采集到的数据信息,发现相关的信息超过用户设置的预警值,则传感器检测装置通过4G通信网络以短信或数据通信的方式通知用户,同时将收集的信息存储到服务器数据库中。

基于ZigBee技术的室内环境监测系统设计

基于ZigBee技术的室内环境监测系统设计

基于 ZigBee技术的室内环境监测系统设计摘要:基于ZigBee技术的室内环境监测系统设计。

它有三大部分组成,所有的数据的传输都在ZigBee搭建的无线传感网络工作。

ZigBee模块A用来发送数据,ZigBee模块B用来接受数据,上位机用来显示数据。

温湿度传感器和stm32单片机用来采集数据发送给ZigBee模块A。

同时用IAR软件编写和编译ZigBee的程序,保证数据的传输。

应用于对信息传递的大小的要求很低,对功耗的需求也比较低的场合。

关键词:Zigbee技术;环境监测;无线传感器引言:随着科技的发展、社会的进步,当今对无线技术需求日益增长,从而孕育出了无线传感网络(Wireless Sensor Network,简称WSN)。

无线通信技术WiFi、蓝牙已经被人们熟知,由于他们的功耗大、组网麻烦等原因,很难应用在工业自动化中。

为了满足市场的需求,ZigBee就这样诞生了。

它有成本低、组网方便、安全性高等优点。

应用ZigBee技术可以制造一种低成本、低功耗的检测仪器。

1主要功能本设计以STM32单片机作为核心控制元件,ZigBee无线模块作为通信模块,以及DHT11温湿度传感器设计的一款无线传输的温湿度检测仪,其中温湿度传感器DHT11和stm32单片机用来采集数据发送给ZigBee模块A,然后在ZigBee组网内,ZigBee模块A用来发送数据,ZigBee模块B用来接收数据,最后上位机用来显示数据。

2工作原理本设计采用STM32单片机作为核心控制元件,使用两块ZigBee无线模块作为通讯模块,首先使接收电路正常供电,进入接收数据状态,等待数据的到来,接着单片机上的程序运行,将单片机上事先存放的数据由ZigBee模块A发射出去,如若发射模块和接收模块在可接受范围内,无线ZigBee B模块接收到信号,在上位机实时显示温湿度数据。

3硬件设计本设计的方案是把温湿度传感器采集的数据通过单片机stm32发送给ZigBee模块A,再运用ZigBee无线通讯协议把数据传输给ZigBee模块B,最后通过串口把数据在上位机上显示出来。

基于Zigbee的室内环境监测系统设计研究

基于Zigbee的室内环境监测系统设计研究

基于Zigbee的室内环境监测系统设计研究作者:汪雷来源:《江苏理工学院学报》2018年第02期摘要:建筑物具有房间多、范围广的特点。

为了方便用户能够直观的了解室内环境信息,系统设计了地图管理模块。

环境监测系统由监测中心和传感器网络组成,传感器采集室内环境的信息通过无线的方式把数据发送到终端节点,终端节点通过串口把数据传送至监控中心,再进行数据的分析。

给出了系统的功能设计,数据库设计,软件设计。

关键词:无线传感器;监控系统;数据库中图分类号:X830.7 文献标识码:A 文章编号:2095-7394(2018)02-0014-06随着我国的经济发展和科学技术水平的提高,人们对于学习、生活环境的安全性、舒适性要求日益增长,尤其是对室内环境质量的更是严格。

在日常生活中,通常要求一个温度适宜的环境。

因此,有必要了解室内的实时温度、湿度、煤气的浓度,以便于进行一定调节。

从而减少由于环境因素的超标对人体造成的伤害。

传统的室内环境监控系统所需的设备较多,布线复杂,可靠性低,抗干扰能力差,日常管理和维护的费用高。

物联网技术可以解决这个问题。

物联网是在互联网基础上延伸和扩展的网络,是通过信息传感设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。

ZigBee 技术是物联网的核心技术之一,是近年来发展起来的一种近距离无线通信技术。

ZigBee 技术以其低功耗、易组网、低成本、短时延、高容量、高安全等优点在智能家居应用中受到广泛关注。

基于此本文设计了运用ZigBee技术的监测系统。

1 系统框架整个系统由监控中心和Zigbee传感器网络组成如图1所示,ZigBee 网络通常由三个节点构成:协调器( Coordinator)节点、路由器( Router)节点、传感器( End Device)节点。

[1]协调器节点是整个网络的核心,负责网络的启动、配置和管理。

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

基于Zigbee技术的农作物温室大棚监控系统的设计和实现

参考内容
一、引言
随着科技的不断发展,智能化监控系统在许多领域得到了广泛的应用。特别 是在农业领域,温室大棚监控系统的应用对农作物的生长和产量有着重要的影响。 ZigBee作为一种低功耗、低成本、高可靠性的无线通信技术,为农业温室大棚监 控系统的设计与实现提供了新的解决方案。
二、系统设计
基于ZigBee的农业温室大棚监控系统主要包括传感器节点、ZigBee协调器、 数据传输模块和上位机软件。
二、技术ห้องสมุดไป่ตู้述
Zigbee是一种基于IEEE 802.15.4标准的低速无线个人区域网络通信技术。 它具有低功耗、低成本、高可靠性、大容量等特点,非常适合于智能家居、工业 自动化、农业等领域。在农作物温室大棚监控系统中,Zigbee技术可实现传感器 数据的实时采集、设备控制以及数据传输等功能。
三、系统设计
四、系统实现
1、部署方案
在温室大棚内,根据需要布置温度传感器、湿度传感器、光照传感器和CO2 传感器,并将传感器数据通过Zigbee模块传输到监控中心。监控中心部署有接收 器和显示设备,方便工作人员实时监测大棚环境参数。
2、操作方法
工作人员可通过监控中心的显示设备实时查看各个温室大棚的环境参数。根 据需要,可通过监控中心对温室大棚进行控制,如调整通风设备、灌溉系统等。 同时,监控中心可对历史数据进行记录和分析,以便更好地了解农作物生长情况 和优化温室环境。
2、网络构建
基于Zigbee技术的温室大棚监控系统采用星型网络结构。每个温室大棚作为 一个独立的网络节点,节点上布置有多个传感器和Zigbee模块。通过Zigbee模块 将传感器数据传输到监控中心,监控中心通过显示界面展示环境参数。
3、数据传输
系统采用无线传输方式,通过Zigbee模块将传感器数据传输到监控中心。数 据传输采用UDP协议,具有较低的延迟和较高的可靠性。同时,监控中心可对各 个温室大棚的环境参数进行实时监测,并根据需要对大棚环境进行调整。

基于Zigbee的无线监测系统设计与实现

基于Zigbee的无线监测系统设计与实现
地 扩 大监 测 范 围 ;先 进 的嵌 入 式 微 处 理 器 可 以扩 展 丰 富 的外
设。系统设计方案如图 1所示。监测数据经多跳路 由汇集到
嵌 入 式 网关 , 网关 负 责 将 数 据 存 储 到 数 据 库 中 并显 示 出来 , 该
大容量存储 卡可 以保 存长达 几年 的数据 。通 过 Itre nent或
以 确 保 生 产 安 全 、 经 济 、有 效 地 进 行 。但 现 有 的环 境 监 测 系
括 系统 运 行 必 需 的微 处 理 器 、Fah和 S R ls D AM 等 , 有 引 脚 所 通 过插 座 引 出 , 用于 扩展 外 设 。扩 展 板 根 据 功 能 需 求 ,扩 展
统有据 存储 量小 ,无法远 程访问。因此 ,开发一
第3 6卷 第 5期
VL o 36






21 00年 3月
M ar h 01 c 2 0
No5 .
C o pu e m t rEng ne r ng i ei
工 程应 用技 术 与实 现 ・
文章编号:l o 48 00 5 04— 2 文献标识码: o —32( 1 0— 23 0 0 2 ) A
中 围分类号: 95 N4
基 于 Zg e ib e的无 线监 测 系统设 计 与 实现
吕西午 ,刘开华 ,赵 岩
( 天津大学 电子信息工程学院 ,天津 3 0 7 ) 002

要 :设计一个基于 Zge 的无线监测系统 。该系统通过在监测 区域部署 Zge 网络 ,将监测数据 集到嵌入式网关 ,实现统一的数 i e b i e b
mo io a a i mb d e a e y t e l e u iid d t na e nt u e s r mo e a c s nd r u i g mo io un to fZi b e n t o k h n t r d t n e e d d g t wa o r a i n fe a a ma g me , s r ’ e t c e sa o t n t rf c i n o g e ew r .T e z n r a i a i n o h r wa ea d s fwa e i p e e t d i c u i g d t a e f r t nd h w o p o r m e wiee sn d sa d c o d n t r e l to f a d r n o z t r s r s n e , n l d n a a f m o ma o t r g a t r l s o e n o r i a o l a h

基于ZigBee的设施农业环境监测系统的设计与实现

基于ZigBee的设施农业环境监测系统的设计与实现
中图分类号 T 27 文 献 标 识 码 P7 A 文章编号 17 -3 1 2 1 ) l0 8 -5 6 24 2 ( 02 0 -0 80
De i n a d I p e e a i n o g e b s d En i o sg n m l m nt to fZi Be a e v r nm e a nt l
M o io i y t m o clt r c t e n t rng S s e f r Fa i y Ag i ulur i
Chu y n n o g,Ni e uLi
( o e eo E e t nca d Ifr a o n ier g S uh C nr nv r t f ai aie , h n4 0 7 , hn ) C l g f l r i n nom t nE g ei , o t — e t l ies y o N t n l i Wu a 3 0 4 C ia l co i n n aU i r o ts
tr na i qu p e t hip r me e e o sfrlg t e e aur e mi l se i p d wih mu — a a t rs ns r ih ,t mp r t e,m osu e,g s,pH n cur n o de o g tt o it r a a d pit e i r rt e he whoe if r ai n o nvr n l n o m to fe io men n r p saus I tk sa a a e o h e s rTDM e hn l y a d t e s l r lcrct ta d c o tt . t a e dv ntg fte s n o t c oog n h o a ,ee ti i y a d b tr e e— s d s r o rs se t e c ne g o u n at y qu u ba e ma tp we y t m o r du e e r c ns mpto n c e e d v riy o o rs ppy. A e s r e y i n a d a hiv i e st fp we u l r S n o n wo k g twa t t ne f c s o a d I tr e s d sg e o a h e e t e g a flc ld t ol ci n d r a et r ae y wih boh i tra e f3G n n e n ti e i n d t c i v h o lo o a a ac le t on a d wi e a e

基于ZigBee技术的室内环境监控系统的设计

基于ZigBee技术的室内环境监控系统的设计
2 系统组成与工作原 理
ZigBee是 基 于 IEEE 802.15.4标 准 的 短 距 离 、低 速 率 无 线 网 络 通 信 技 术 。 该 技 术 解 决 了 低 成 本 、低 功 耗 、低 复 杂 度 、低 传 输 速 率 、 近 距 离 设 备 的 联 网 应 用 等 问题 ,主
要 用 于 无 线 传 感 器 网 络 和 测 量 控 制 方 面 。 J。
ZigBee提 供 了 网 络 层 (NMK :Netwo rk)
和 应 用 层 (APL:AppIication Laye r)框 架
的 设 计 ]。 在 网 络 层 中 ,ZigBee联 盟 制 订
星 型 、 树 型 和 网 型 三 种 拓 扑 结 构 _3】,其 网 络
室 内环 境 监 测 位 置 点 上 , 主 要 完 成 环 境 数
据 的 采 集 、 预 处 理 和 上 传 等 工 作 , 同 时 还
能 自动 完 成 网 络 探 测 、 加 入 等 功 能 。 中央
监 控 端 由 ZigBee网 络 协 调 器 、GPRS模 块 、
声 光 报 警 器 、 平 板 电 脑 组 成 , 主 要 实 现 传
解 决 方 案 。
本 文 设 计 的 室 内 环 境 监 控 系 统 基 于
ZigBee无 线 组 网 技 术 ,主 要 由 传 感 器 节 点 、
中 央 监 控 端 和 控 制 单 元 组 成 ,其 系 统 结 构 如
图 1所 示 。 ZigBee无 线 传 感 器 节 点 分 布 于
感 器 节 点 环 境 探 测 信 息 的 接 收 、处 理 、显 示 、
62 智能建筑与城市信息 21 3年 第9期 总第202期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Computer Science and Application 计算机科学与应用, 2016, 6(9), 515-522 Published Online September 2016 in Hans. /journal/csa /10.12677/csa.2016.69064文章引用: 高刃. 基于ZigBee 的环境监测系统的设计与实现[J]. 计算机科学与应用, 2016, 6(9): 515-522.Design and Research of Environmental Monitoring System Based on ZigBeeRen GaoCollege of Information Engineering, Hubei University of Economics, Wuhan HubeiReceived: Sep. 2nd , 2016; accepted: Sep. 17th , 2016; published: Sep. 22nd , 2016Copyright © 2016 by author and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License (CC BY)./licenses/by/4.0/AbstractWith rapid development of the society, people pay more attention to the quality of lives, especially the environmental conditions: the weather phenomenon as the haze and mist and PM2.5. As the hottest wireless communication technology, ZigBee-based environmental monitoring system is designed and discussed in this paper. From the perspectives of technical research and practical application, it elaborates the design of the environmental monitoring on the cost-effective Chip CC2530, which implements a variety of functions including data collection, data transmission through ZigBee, data processing through Web Server and data monitoring through intelligent terminal.KeywordsZigBee, Z-Stack, Environmental Monitoring, Internet of Things, Sensor基于ZigBee 的环境监测系统的设计与实现高 刃湖北经济学院信息工程学院,湖北 武汉收稿日期:2016年9月2日;录用日期:2016年9月17日;发布日期:2016年9月22日摘 要随着社会不断的发展,人们对生活质量要求越来越高,特别对人们生存环境的关注,如当前最关注的雾高刃霾现象和PM2.5。

这些加剧人们对居住环境关注。

本文结合当今最炙手可热的无线通信技术ZigBee,实现了基于ZigBee技术的环境监测系统。

该系统从实际应用的角度出发,使用当前高性价比的CC2530芯片,设计出整套环境监测方案,该方案使用各种传感器采集数据,使用ZigBee节点传输数据,最后通过Web服务器对数据继续处理,并能通过智能终端查看和控制。

关键词ZigBee,Z-Stack,环境监测,物联网,传感器1. 引言当前,环境问题是一个全球都关注的热门话题,和人们的生活息息相关。

无线传感网络是大量静止或者移动的传感器以某种方式构成的无线网络,把其网络监测的区域各种有用的环境信息通过采集、传输和处理,最后对这些信息进行分析应用。

本文基于ZigBee技术[1],设计出的无线传感网络能够部署在监测区域,通过无线通信的方式构成了一个多跳自组织网络,监测周围的环境信息,并将信息实时传递到终端。

2. 基于ZigBee的无线通信技术2.1. ZigBee无线通信协议ZigBee是符合IEEE 802.15.4规定的短距离无线通信协议,它的通信参考模型如图1所示。

ZigBee 协议的底层是遵循IEEE 802.15.4标准的物理层和MAC组成,ZigBee联盟[2]在此基础上又增加了网络层和应用层。

(1) 应用层:ZigBee协议的应用层可以为在同一网络的不同设备之间提供数据传输服务,发现设备并绑定设备。

(2) 网络层:ZigBee协议中,网络层主要负责网络管理、路由管理、报文以及网络安全管理等任务。

(3) MAC层:MAC层主要负责对物理的信道的访问。

(4) 物理层:物理层主要负责控制无线收发器的激活和关闭,选择信道的频率,发送和接受数据等等[3]。

2.2. ZigBee拓扑结构ZigBee无线网络结构可以分为星形、树形和网状[4]。

其中全能设备(FFD)在三种网络中承担协调器的作用,管理网络中的其它网络节点。

简化设备(RFD)则只是作为普通网络节点,在网络中与RFD或FFD 间进行通信。

(1) 星形拓扑,星形拓扑网络结构的中心节点必须由协调器构成,其它节点则可以说终端设备或路由器,协调器作为整个网络的核心。

(2) 树形拓扑,典型的ZigBee的树形拓扑网络由协调器、路由器和终端设备组成,不需要每个每一个网络节点都和协调器相连,可通过点节点与协调器之间的路由器的路由功能进行通信。

以路由器的方式扩大这个网路的覆盖范围。

(3) 网状拓扑,网状拓扑较为复杂,但同时设计起来,灵活性高,在整个网络中,路由器作为一个很重要的节点,可以根据需要自动创建并维护网络路径,可以和任何节点之间镜像通信,帮助附近的节点传递数据。

2.3. Z-Stack协议栈Z-Stack协议栈的实现方式是采用分层的思想,分为物理层、介质访问控制层、网络层和应用层。

本设计采用TI公司推出的Z-Stack协议栈,如图2是用IAR软件打开的Z-Stack协议栈的目录。

高刃Figure 1. ZigBee reference model for communications图1. ZigBee的通信参考模型Figure 2. Z-Stack protocol stack project图2. Z-Stack协议栈工程(1) App:应用层目录;(2) HAL:硬件层目录;(3) MAC:MAC层目录;(4) MT:监视测试目录;(5) NWK:网络层目录;(6) OSAL:协议栈的操作系统抽象层;(7) Profile:AF层的目录;(8) Security:安全层的目录;(9) Services:地址处理函数目录;(10) Tools:工程工具的配置目录;(11) ZDO:ZDO目录;(12) ZMac:ZMac目录;(13) ZMain:整个协议栈的主函数目录;(14) Output:输出文件的目录。

在Z-Stack 协议栈中使用了操作系统的概念,即框架目录中的OSAL层。

OSAL采用的是时间片轮转的方法去实现多任务的切换,以此实时处理各种任务。

Z-Stack是基于操作系统设计的,以事件机制加时间片轮询的进行工作构建的。

Z-Stack协议栈以ZMain 目录中main函数入手,可以看出整个main函数首先进行了相关硬件的初始化已经APP应用的初始化,在初始化完成后,就进行时间片轮询,等待事件发生,然后调用相应的处理函数,完成相应的操作。

整个Z-Stack协议栈工作流程如图3。

首先是进行各项初始化,包括初始化系统时钟、检查芯片的工作电压、初始化并配置相应定时器等等;完成系统初始化后就开始进入操作系统的循环等待事件发生。

Z-Stack是基于OS进行运作的,每个事件都有相应的初始化函数和处理事件函数,如开发者会用到的GenericApp_Init(taskID),其中参数taskID是Z-Stack根据其优先级分配的ID号,对应的数值越小,则优先级越高。

3. 环境监测系统的系统设计整个系统分为四大部分,分别是终端部分、Web服务器部分、无线通信部分和传感器部分。

整个系统首先通过传感器部分对传感器进行设置并对数据进行采集;接着在无线通信部分就可以将数据按照一高刃Figure 3. Z-Stack system flow chart图3. Z-Stack系统工作流程图定网络拓扑路径,从终端节点出发,最终传送到协调器节点,协调器在接到数据后,通过串口将数据上传到PC机;在Web服务器这部分,调用Linux系统下读写串口函数,对协调器上传的数据进行读取,并调用文件读写函数处理数据,存放在本地数据库;在终端这部分,可以对数据进行管理、查询并做出相应的环境预报,同时可以方向发生控制信号对传感器部分进行远程控制[5]。

图4是系统的整体方案。

硬件模块采用TI公司提供的CC2530。

CC2530是用于2.4 GHz的IEEE 802.15.4 ZigBee等技术的SoC 解决方案。

在建立大范围的网络节点时,为其解决成本。

在本设计中,是增强型CC2530单片机为核心,组建具备数据采集、数据通信功能的无线传感网络[6]。

3.1. 采集节点采集节点硬件模块主要由CC2530和各类传感器(如温度传感器、湿度传感器、烟雾传感器和气压传感器等等)以及电源模块组成,如图5所示。

采集节点在网络结构中定位为终端节点,长时间工作在野外环境,具有超低功耗的运行模式,一般采用普通的5号电池就可以在野外工作6~24个月。

3.2. 路由器节点和协调器节点协调器和路由器模块的硬件基本相同,均是采用CC2530作为整个电路的核心。

需要区别的是,协高刃Figure 4. System scheme图4. 系统整体方案Figure 5. Collection nodes图5. 采集节点调器会通过串口将接收到的数据发送给PC机,PC机则通过串口读写软件显示收到的数据。

如图6为路由器节点和协调器节点。

4. 环境监测系统的软件设计4.1. 软件模块整个软件部分由底层协议Z-Stack协议栈、Linux系统下Web服务器和手持终端组成,手持终端上运行Android系统[7]。

相关文档
最新文档