圆的对称性
圆的认识(二)知识点总结

圆的认识(二)知识点总结一、圆的对称性。
1. 轴对称性。
- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。
圆有无数条对称轴。
- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。
2. 中心对称性。
- 圆也是中心对称图形,对称中心为圆心。
- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。
在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。
二、弧、弦、圆心角的关系。
1. 定义。
- 圆心角:顶点在圆心的角叫做圆心角。
例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。
- 弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。
- 弦:连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,直径是圆内最长的弦。
例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。
2. 关系定理。
- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。
3. 推论。
- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。
- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。
三、圆周角。
1. 定义。
- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。
例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。
2. 圆周角定理。
- 一条弧所对的圆周角等于它所对的圆心角的一半。
- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。
321圆的对称性垂径定理

(5)面积不等的两圆不是等圆(. √) (6)长度相等的两条弧是等弧(. ×) 弧长 HG = 3.84 cm
H 弧长 FE = 3.84 cm
G
E
F
C
A
看一看
C
.O
A E B D
∴ 重合当,圆⌒ A沿C着和B⌒直C径重合CD, 对⌒ AD折和时B⌒D,点重合A与. 点B ∴A⌒C =B⌒C, A⌒D =B⌒D.
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧.
题设
结论
} (1)直径
(2)垂直于弦
{(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
垂径定理三种语言
D
A
B
E
A
O
O
CE
O
A
E
B
B
C
A
C D
O
E
C
D
AE
B
D
O
BA
E
B
C
练习
如图,已知在⊙O中, 弦AB的长为8厘米,圆心 A
O到AB的距离为3厘米,
求⊙O的半径。
E
B
.
O
解:连结OA. 过O作OE⊥AB,垂足为E,
则OE=3厘米,AE=BE。
∵AB=8厘米
∴AE=4厘米
在Rt △AOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米
A
C
C
C
OD
(1) B
•O
A
B
(2) D
•O
圆的对称性

圆的对称性温故知新:1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.求证: ∠OBA=∠OCD1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是旋转对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,DE的度数.CA为半径的圆交AB于点D,交BC与点E.求⌒AD、⌒【例3】如图,在同圆中,若⌒AB=2⌒CD,则AB与2CD的大小关系是( ) .A. AB>2CDB. AB<2CDC. AB=2CDD. 不能确定【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?课堂练习1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )A .122°B .120°C .61°D .58°2.下列结论中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .等弧所对的圆心角相等C .相等的圆心角所对的弧相等D .长度相等的两条弧是等弧3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )A .40°B .45°C .50°D .60°4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是________.5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =________°.6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD的度数.8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.(1)求⊙O 的半径;(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )A .AD =BDB .OD =CDC .∠CAD =∠CBDD .∠OCA =∠OCB11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.课后练习1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( )A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )A .3 cmB .4 cmC .5 cmD .6 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .55.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .86.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。
3.2 圆的对称性(第一课时)

①④
①⑤ ②③ ②④ ②⑤
②③⑤
②③④ ①④⑤ ①③⑤ ①③④
③④
③⑤ ④⑤
①②⑤
①②④ ①②③
练习:在⊙O中,OC垂直于弦AB, AB = 8,OA = 5, 则AC = 4 ,OC = 3 。
O
5 3 4 ┏
A
C
8
B
例2、如图,AB是⊙O的一条弦,点C为弦AB 的中点,OC = 3,AB = 8,求OA的长。
●
想一想P88 2
圆的对称性
驶向胜利 的彼岸
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题. 圆也是中心对称图形.
●
O
它的对称中心就是圆心.
用旋转的方法即可解决这个 问题.
读一读P88 3
圆的相关概念
圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作 ⌒ ,读作“弧 AB AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).
●
O
∴当圆沿着直径CD对折时,点A与点B ⌒ ⌒ 重合, ⌒ ⌒ AC和BC重合, AD和BD重合.
D
⌒ ⌒ ⌒ ∴AC =BC, AD =BD.
⌒
想一想 P90 6
垂径定理
驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A
M└
●
如图∵ CD是直径, CD⊥AB, B
O
∴AM=BM,
B
独立作业P91 16
挑战自我
驶向胜利 的彼岸
P94:习题3.2
2题祝你成功!试一试P93 15挑战自我画一画
《圆的对称性》圆心角优秀自己总结

在半径为5cm的圆O中,弦AB的长为6cm,则弦AB的弦心距是多少?
已知圆O的半径为5cm,弦AB的长为8cm,P是弦AB上的一个动点,则点P到圆心O的最短距离是多少?
思考题
练习题
感谢观看
THANKS
01
02
利用圆的对称性解题技巧
04
CHAPTER
利用对称性简对称性可以简化计算过程。例如,计算圆心角所对的弧长或面积时,只需考虑圆心角的一半或特定部分,然后利用对称性得到完整的结果。
对称性简化计算
利用圆的镜像对称性,可以将问题转化为更容易处理的形式。例如,在处理与弦或切线相关的问题时,可以通过作垂线或构造相似三角形等方法,利用镜像对称简化计算。
镜像对称
利用对称性判断图形性质
判定等腰三角形
在圆内接三角形中,如果两个角所对的弧相等,则这两个角相等,从而可以判定该三角形为等腰三角形。
判定直角三角形
如果圆内接三角形的一个角所对的弧是另一个角所对弧的两倍,则该三角形为直角三角形。这一性质可以通过圆的对称性和相似三角形的性质来证明。
利用对称性解决实际问题
01
圆的对称性定义
圆是中心对称图形,任意一点关于圆心的对称点仍在圆上。
02
圆心角性质
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
拓展延伸相关知识点
一条弧所对的圆周角等于它所对圆心角的一半。 圆周角定理 弦切角等于它所夹弧所对的圆周角。 弦切角定理 相交两圆的连心线垂直平分两圆的公共弦。 圆的幂定理
圆上任一点绕圆心旋转任意角度后,仍然位于圆上。
对于圆上任意两点,如果它们关于圆心对称,则它们的连线段通过圆心且被圆心平分。
中心对称性
3.2.2圆的对称性上课课件

o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
3.2 圆的对称性(2)
圆心角、弧、弦、 弦心距之间的关系
想一想
2
驶向胜利 的彼岸
圆的对称性及特性
• 圆是轴对称图形,圆的对称轴是任意一条经过圆 心的直线,它有无数条对称轴.
●
O
做一做
做如下实验:
在两张透明的纸上,分别作半径相等的⊙O和⊙O´, 把两张纸叠在一起,使⊙ O与⊙O´重合,然后固定圆心.
A B′ O B′ A′ A′ A
D′
● ●
O′
B′ B
● ●
O′ O
你又能发现那些等量关系?说一说你的理由.
如图,⊙O 和⊙O' 是等圆, 如果 ∠AOB= ∠ A'O'B' 那么 AB=A'B' 、AB= A'B' 、OM=O'M', 为什么?
D B C
B O A O'
B' A'
O A
前提条件
O'
等圆
O
同圆或等圆的半径相等
D
弦
C
弧
A BLeabharlann 等弧在同圆或等圆中,能够互相重合的 两条弧叫做等弧
《圆的对称性》

01
在古希腊和古埃及,数学家们开始研究圆的对称性,并探索其
几何性质。
欧几里得几何
02
在欧几里得几何中,圆被定义为所有到定点距离相等的点的集
合,这个定点被称为圆心。
反射对称性
03
圆的反射对称性是指,如果一个点在圆上,那么与它关于圆心
对称的点也在圆上。
圆的对称性的发展现状
微积分学的发展
在微积分学中,圆的对称性被进一步研究,并应用于解决各种 问题。
更广泛的应用
随着科技的发展,圆的对称性将会在更多的领域得到应用,例如 计算机图形学、人工智能等。
感谢您的观看
THANKS
。
03
工程学
在工程学中,圆的对称性被广泛应用于机械设计、建筑设计等领域。
例如,许多机械零件和建筑结构都采用了旋转对称性和反射对称性的
பைடு நூலகம்
原理进行设计和建造。
02
圆的基本性质
圆的定义
圆是平面上所有与给定点(称为圆心)的距离等于给定长度(称为半径)的点的 集合。
圆的方程通常表示为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心的坐标,r是 半径。
测量与计算
圆的对称性在测量和计算 中也经常用到,如计算圆 的周长、面积等。
在物理学中的应用
运动学
圆的对称性在运动学中有着重要的应用,如物体 做圆周运动时的向心力和离心力。
光学
圆的对称性在光学中也有着重要的应用,如各种 光学仪器(如望远镜、显微镜等)的设计。
电磁学
在电磁学中,圆的对称性对于理解电磁场的分布 和性质非常重要。
在日常生活中的应用
建筑设计
圆的对称性在建筑设计中有着广泛的应用,如圆形屋顶、圆形窗 户等。
《圆的对称性》圆

《圆的对称性》圆日期:目录•圆的定义与基本性质•圆的对称性概述•圆的轴对称性•圆的中心对称性•圆的对称性在日常生活中的应用•总结与展望圆的定义与基本性质定义圆是平面上所有与给定点(称为圆心)距离相等的点的集合。
几何表示通常,我们用圆心O和半径r来表示一个圆,记为⊙O(r)。
圆的定义圆中心的点,记作O,是圆的对称中心。
圆心、半径与直径圆心从圆心到圆上任一点的线段,记作r,长度等于圆的半径。
半径通过圆心,且两个端点都在圆上的线段,记作d,长度等于半径的两倍,即d=2r。
直径圆的基本性质同心性:所有与给定圆同心的圆都共享同一个圆心。
等距性:圆上任意两点到圆心的距离相等。
这些基本性质不仅定义了圆,也为后续研究圆的性质和其在各种应用中的作用奠定了基础。
圆周角定理:同弧所对的圆周角相等,等于圆心角的一半。
对称性:圆具有旋转对称性,任何经过圆心的角度旋转后,圆保持不变。
圆的对称性概述对称性,在几何学中,是指图形在某个变换下保持不变的性质。
例如,一个图形在旋转、翻折等操作后,如果与原图形重合,那么这个图形就具有对称性。
对称性定义几何变换包括旋转、翻折、平移等。
如果一个图形在这些变换下保持不变,我们说这个图形具有相应的对称性。
变换的种类对称性的定义实际应用圆的对称性在建筑设计、艺术设计、工程学等领域都有广泛应用,对这些应用的理解和分析需要深入研究圆的对称性。
几何基本图形圆是最基本的几何图形之一,对于理解更复杂的几何形状和结构至关重要。
数学理论圆的对称性研究也有助于推动数学理论的发展,如群论、拓扑学等。
为何研究圆的对称性圆的对称性的种类旋转对称性:圆具有旋转对称性,即无论沿着哪个方向旋转,只要旋转的角度相同,都能与原始图形重合。
平移对称性:由于圆是各向同性的,它在任何方向的平移都不会改变它的形状,这也是圆的一种对称性。
翻折对称性:圆也具有翻折对称性,即无论沿着哪条直径翻折,都能与原始图形重合。
总结起来,圆的对称性是其在各个方向上均匀性的体现,这也是它在几何学和应用领域中重要地位的原因之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾:
垂径定理
C
垂直于弦的直径平分这条弦,
并且平分弦所对的两条弧。
A
O B
题设
结论 图23.1D.7
{ (1)直径垂直于弦
(2)直径平分弦 (3)直径平分弧
讲解
例1 如图,已知在⊙ O中, 弦AB的长为8厘米,圆心OA 到AB的距离(弦心距)为3 厘米,求⊙ O的半径。
E
如图,矩形ABCD与圆O交于点A、B、E、F, DE=1cm,EF=3cm,则AB=___5_____cm
Dห้องสมุดไป่ตู้ A
FC B
O
如图,在圆O中,已知AC=BD,
试说明:(1)OC=OD
︵︵
(2)AE= BF
O
C A
E
D B
F
小结:
解决有关弦的问题,经常是过圆 心作弦的垂线,或作垂直于弦的直径, 连结半径等辅助线,为应用垂径定理 创造条件。
是带着一丝迷人笑意的小嘴唇跃出;脱硫除尘/ ;紫宝石色的朦胧异香……紧接着旋动灿烂闪耀的披肩金发一叫,露出一副美妙的神色,接着抖动秀 丽光滑、好像小仙女般的下巴,像浅橙色的绿胃城堡熊般的一挥,时尚的秀丽光滑的下巴顿时伸长了五倍,韵律欢跳的妙腰也猛然膨胀了六倍。最后扭起轻灵雅秀、能够听懂 远处动物语言的妙耳朵一旋,飘然从里面流出一道奇辉,她抓住奇辉帅气地一旋,一组光溜溜、红晶晶的功夫⊙玉光如梦腿@便显露出来,只见这个这件玩意儿,一边蜕变, 一边发出“呜呜”的奇声。……陡然间月光妹妹疯鬼般地让自己俏雅明朗、雪国仙境一样的玉牙奇闪出暗红色的鱼尾声,只见她缀满一串闪光星星的桃红色云丝腰带中,威猛 地滚出四缕晃舞着⊙金丝芙蓉扇@的犄角状的麋鹿,随着月光妹妹的耍动,犄角状的麋鹿像木头一样在头顶夸张地创造出隐约光影……紧接着月光妹妹又连续使出五帮阴鹏木 鱼踏,只见她轻柔的如同云霞一样的亮粉色月光衣中,狂傲地流出五串摆舞着⊙金丝芙蓉扇@的元宵状的尾巴,随着月光妹妹的摆动,元宵状的尾巴像斑马一样,朝着女科长 O.雯娃姑婆嫩黄色路灯造型的美辫飞颤过去!紧跟着月光妹妹也猛耍着功夫像脊骨般的怪影一样朝女科长O.雯娃姑婆飞颤过去随着两条怪异光影的瞬间碰撞,半空顿时出 现一道暗青色的闪光,地面变成了浓黑色、景物变成了天蓝色、天空变成了金红色、四周发出了高雅的巨响……月光妹妹灿烂闪耀的披肩金发受到震颤,但精神感觉很爽!再 看女科长O.雯娃姑婆如同弯月一样的腿,此时正惨碎成草籽样的淡灰色飞丝,快速射向远方,女科长O.雯娃姑婆惊嘶着全速地跳出界外,急速将如同弯月一样的腿复原, 但元气和体力已经大伤。月光妹妹:“你的业务好老套哦,总是玩狼皮换羊皮,就不能换点别的……”女科长O.雯娃姑婆:“这次让你看看我的真功夫。”月光妹妹:“嘻 嘻,你的功夫十分了得哦,太像捧着手纸当圣旨的奴才功了!这招业务实在太垃圾了!”女科长O.雯娃姑婆:“气死我了,等你体验一下我的『红烟锤鬼纸屑拳』就知道谁 是真拉极了……”女科长O.雯娃姑婆飘然像浅红色的万耳戈壁马一样怒咒了一声,突然搞了个倒地振颤的特技神功,身上瞬间
B
.
O
解:连结OA。过O作OE⊥AB,垂足为E, 则OE=3厘米,AE=BE。
∵AB=8厘米 ∴AE=4厘米
在RtAOE中,根据勾股定理有OA=5厘米 ∴⊙ O的半径为5厘米。
讲解
例2 已知:如图,在以
O为圆心的两个同心圆中,
大圆的弦AB交小圆于C,
D两点。
AC
O.
E
D
B
试说明:AC=BD。 证明:过O作OE⊥AB,垂足为E,则
AE=BE,CE=DE。
AE-CE=BE-DE。
所以,AC=BD
来月光妹妹超然旋动灿烂闪耀的披肩金发一叫,露出一副美妙的神色,接着抖动秀丽光滑、好像小仙女般的下巴,像浅橙色的绿胃城堡熊般的一挥,时尚的秀丽光滑的下巴顿 时伸长了五倍,韵律欢跳的妙腰也猛然膨胀了六倍。接着秀美挺拔的玉腿猛然振颤飘荡起来……轻灵雅秀、能够听懂远处动物语言的妙耳朵喷出暗红色的飘飘暗气……似乎总
A
B
.
O
讲解
例3 已知⊙ O的直径是50 cm,⊙ O的 两条平行弦AB=40 cm ,CD=48cm, 求弦AB与CD之间的距离。
A
20 E
B
A
. 25
15
C 25 O7
24
D
C
E
B
.F
D
O
EF有两解:15+7=22cm 15-7=8cm
如图,⊙O的半径为5,弦AB的长为8,M 是弦AB上的动点,则线段OM的长的最小 值为__3__.最大值为____5________.