数据结构复习要点(整理版)

合集下载

数据结构复习要点(整理版)

数据结构复习要点(整理版)

数据结构复习要点(整理版)数据结构复习要点(整理版)数据结构是计算机科学中非常重要的一门课程,它涉及到各种数据的存储和组织方式,对于编程和算法的理解都至关重要。

本文将整理常见的数据结构复习要点,帮助读者回顾和加深对数据结构的理解。

一、线性结构线性结构是最简单的数据结构之一,它包括线性表、栈、队列等。

线性表是具有相同数据类型的一组元素的有限序列,它可以分为顺序表和链表。

顺序表是一种用连续的存储单元依次存储线性表的元素的数据结构,而链表则是通过每个元素中存储下一个元素的地址来实现线性关系。

栈和队列是线性结构的特殊形式。

栈是一种先进后出(LIFO)的数据结构,它可以通过顺序栈或链栈来实现。

队列是一种先进先出(FIFO)的数据结构,它可以通过顺序队列或链队列来实现。

二、树形结构树形结构是一种非线性结构,它具有层次关系,由节点和边组成。

常见的树形结构包括二叉树、二叉搜索树、平衡二叉树和哈夫曼树。

二叉树是每个节点最多只有两个子节点的树,它可以是空树、只有一个根节点的树或者一个根节点连接两棵不相交的二叉树。

二叉搜索树是一种特殊的二叉树,它的左子树上所有节点的值小于根节点的值,右子树上所有节点的值大于根节点的值。

平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1,这样可以保证在最坏情况下的查找效率。

哈夫曼树是一种特殊的二叉树,它的叶子节点代表字符,而各节点的权值表示字符出现的频率,通过构造哈夫曼树可以实现数据的压缩编码。

三、图形结构图形结构是一种包含节点和边的非线性数据结构,它由顶点集合和边集合组成。

图形结构可以分为无向图和有向图,每个节点可以有一个或多个相邻节点。

图形结构的常见算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索是一种通过递归或栈实现的搜索算法,它先访问起始节点的一个邻接节点,再依次访问该节点的未被访问过的邻接节点,直到所有节点都被访问过。

广度优先搜索则是一种通过队列实现的搜索算法,它先访问起始节点的所有邻接节点,再依次访问这些邻接节点的邻接节点,以此类推,直到所有节点都被访问过。

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结

数据结构期末复习重点知识点总结一、数据结构概述数据结构是计算机科学中一门关于数据组织、存储和管理的学科。

它涉及到各种数据类型和它们之间的关系,以及对这些数据类型进行有效操作和处理的算法。

二、基本数据结构1. 数组- 数组是一种线性数据结构,用于存储相同类型的数据元素。

- 数组的特点是随机访问和连续存储。

- 数组的插入和删除操作需要移动其他元素,时间复杂度为O(n)。

2. 链表- 链表是一种线性数据结构,通过节点之间的指针链接来组织数据。

- 链表的特点是插入和删除操作简单,时间复杂度为O(1)。

- 链表分为单链表、双向链表和循环链表等不同类型。

3. 栈- 栈是一种具有后进先出(LIFO)特性的数据结构。

- 栈的操作主要包括压栈(Push)和弹栈(Pop)两个操作。

- 栈常用于表达式求值、递归算法的实现等场景。

4. 队列- 队列是一种具有先进先出(FIFO)特性的数据结构。

- 队列的操作主要包括入队(Enqueue)和出队(Dequeue)两个操作。

- 队列常用于实现缓冲区、消息队列等场景。

5. 树- 树是一种非线性的数据结构,由节点和边组成。

- 树的节点具有层级关系,由根节点、子节点和叶节点等组成。

- 常见的树结构有二叉树、红黑树、B树等。

6. 图- 图是一种非线性的数据结构,由节点和边组成。

- 图的节点之间可以有多对多的关系。

- 图的遍历方式有深度优先搜索(DFS)和广度优先搜索(BFS)。

三、常见的数据结构算法1. 排序算法- 冒泡排序、插入排序、选择排序等简单但效率较低的排序算法。

- 快速排序、归并排序、堆排序等高效的排序算法。

- 基数排序、桶排序等适用于特定场景的排序算法。

2. 查找算法- 顺序查找、二分查找等常用的查找算法。

- 树结构相关的查找算法,如二叉搜索树、红黑树等。

- 哈希查找、索引查找等高效的查找算法。

3. 图算法- Dijkstra算法、Bellman-Ford算法等最短路径算法。

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳

数据结构复习资料复习提纲知识要点归纳数据结构复习资料:复习提纲知识要点归纳一、数据结构概述1. 数据结构的定义和作用2. 常见的数据结构类型3. 数据结构与算法的关系二、线性结构1. 数组的概念及其特点2. 链表的概念及其分类3. 栈的定义和基本操作4. 队列的定义和基本操作三、树结构1. 树的基本概念及定义2. 二叉树的性质和遍历方式3. 平衡二叉树的概念及应用4. 堆的定义和基本操作四、图结构1. 图的基本概念及表示方法2. 图的遍历算法:深度优先搜索和广度优先搜索3. 最短路径算法及其应用4. 最小生成树算法及其应用五、查找与排序1. 查找算法的分类及其特点2. 顺序查找和二分查找算法3. 哈希查找算法及其应用4. 常见的排序算法:冒泡排序、插入排序、选择排序、归并排序、快速排序六、高级数据结构1. 图的高级算法:拓扑排序和关键路径2. 并查集的定义和操作3. 线段树的概念及其应用4. Trie树的概念及其应用七、应用案例1. 使用数据结构解决实际问题的案例介绍2. 如何选择适合的数据结构和算法八、复杂度分析1. 时间复杂度和空间复杂度的定义2. 如何进行复杂度分析3. 常见算法的复杂度比较九、常见问题及解决方法1. 数据结构相关的常见问题解答2. 如何优化算法的性能十、总结与展望1. 数据结构学习的重要性和难点2. 对未来数据结构的发展趋势的展望以上是数据结构复习资料的复习提纲知识要点归纳。

希望能够帮助你进行复习和回顾,加深对数据结构的理解和掌握。

在学习过程中,要注重理论与实践相结合,多进行编程练习和实际应用,提高数据结构的实际运用能力。

祝你复习顺利,取得好成绩!。

(完整版)数据结构知识点总结

(完整版)数据结构知识点总结

数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。

数据元素是数据的基本单位,可以由若干个数据项组成。

数据项是具有独立含义的最小标识单位。

数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。

·线性结构:一对一关系。

·线性结构:多对多关系。

·存储结构:是逻辑结构用计算机语言的实现。

·顺序存储结构:如数组。

·链式存储结构:如链表。

·索引存储结构:·稠密索引:每个结点都有索引项。

·稀疏索引:每组结点都有索引项。

·散列存储结构:如散列表。

·数据运算。

·对数据的操作。

定义在逻辑结构上,每种逻辑结构都有一个运算集合。

·常用的有:检索、插入、删除、更新、排序。

数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。

·结构类型:由用户借助于描述机制定义,是导出类型。

抽象数据类型ADT:·是抽象数据的组织和与之的操作。

相当于在概念层上描述问题。

·优点是将数据和操作封装在一起实现了信息隐藏。

程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。

算法取决于数据结构。

算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。

评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。

时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。

渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。

算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。

时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。

数据结构知识点整理

数据结构知识点整理

数据结构知识点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中的一个重要分支,它研究的是如何有效地存储、组织和管理数据,以便于计算机可以高效地进行数据的读取、插入、删除等操作。

数据结构的基本概念主要包括两个方面:数据的逻辑结构与数据的物理结构。

1.1 数据的逻辑结构数据的逻辑结构主要描述数据的逻辑关系,不涉及数据的存储方式。

常见的逻辑结构有:•线性结构:如线性表、栈、队列、串等。

线性结构的特点是数据元素之间存在一对一的关系,每个数据元素只有一个直接前驱和一个直接后继。

•非线性结构:如树、图等。

非线性结构的特点是数据元素之间存在一对多或者多对多的关系。

其中,树结构是一种重要的非线性结构,它具有层次性,每个数据元素(树节点)有零个或多个子节点。

1.2 数据的物理结构数据的物理结构主要描述数据在计算机内存中的存储方式,它直接影响了计算机对数据的访问效率。

常见的物理结构有:•顺序存储结构:如数组、链表等。

顺序存储结构将数据元素按照一定的顺序存放在计算机内存中,相邻的数据元素在内存中也是相邻的。

•链式存储结构:如单链表、双向链表、循环链表等。

链式存储结构通过指针将不连续的数据元素连接起来,每个数据元素只存储数据本身以及指向下一个数据元素的指针。

1.3 数据结构的应用场景不同的数据结构适用于不同的应用场景。

例如:•线性表:适用于顺序访问数据元素的场景,如学生成绩管理系统。

•栈和队列:适用于后进先出(LIFO)或先进先出(FIFO)的场景,如表达式求值、任务调度等。

•树结构:适用于具有层次关系的数据组织,如文件系统的目录结构、HTML文档的DOM树等。

•图结构:适用于表示复杂的关系,如社交网络、交通网络等。

第二点:常见数据结构算法与应用在计算机科学中,算法是解决问题的一系列清晰指令。

结合数据结构,算法可以有效地解决实际问题。

以下是一些常见的数据结构及其相关算法与应用。

2.1 线性表的算法与应用线性表是最基本的逻辑结构。

(完整版)数据结构知识点全面总结—精华版

(完整版)数据结构知识点全面总结—精华版

第1章绪论内容提要:◆数据结构研究的内容。

针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。

数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。

数据——所有能被计算机识别、存储和处理的符号的集合。

数据元素——是数据的基本单位,具有完整确定的实际意义。

数据对象——具有相同性质的数据元素的集合,是数据的一个子集。

数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。

抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。

◆算法的定义及五个特征。

算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。

算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。

①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。

时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。

◆用计算语句频度来估算算法的时间复杂度。

第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。

线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。

顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。

链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。

通过指针来实现!◆线性表的操作在两种存储结构中的实现。

数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。

核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。

数据结构复习要点(汇总版)

数据结构复习要点(汇总版)

第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。

2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:一个数据元素可由若干个数据项组成。

数据项是数据的不可分割的最小单位。

)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

(有时候也叫做属性。

)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。

2.线性结构:结构中的数据元素之间存在“一对一“的关系。

若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

3.树形结构:结构中的数据元素之间存在“一对多“的关系。

若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

4.图状结构:结构中的数据元素存在“多对多”的关系。

若结构为非空集,折每个数据可有多个(或零个)直接后继。

(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。

逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。

2.链式存储结构:借助指针表达数据元素之间的逻辑关系。

不要求逻辑上相邻的数据元素物理位置上也相邻。

数据结构必考知识点总结

数据结构必考知识点总结

数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。

以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。

了解这些概念有助于更好地理解数据结构的本质和作用。

2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。

顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。

了解线性表的概念和基本操作是非常重要的。

3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。

栈和队列的实现方式有多种,包括数组和链表。

掌握栈和队列的基本操作和应用是数据结构的基本内容之一。

4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。

了解树的基本定义和遍历算法是必考的知识点。

5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。

了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。

6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。

7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。

了解各种查找算法的原理和实现方式是必考的知识点之一。

8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。

9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。

了解ADT的概念和实现方式是非常重要的。

10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。

了解动态存储管理的基本原理和实现方式是必考的知识点之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。

2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。

(补充:一个数据元素可由若干个数据项组成。

数据项是数据的不可分割的最小单位。

)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。

(有时候也叫做属性。

)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。

(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。

数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。

依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。

2.线性结构:结构中的数据元素之间存在“一对一“的关系。

若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。

3.树形结构:结构中的数据元素之间存在“一对多“的关系。

若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。

4.图状结构:结构中的数据元素存在“多对多”的关系。

若结构为非空集,折每个数据可有多个(或零个)直接后继。

(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。

想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。

逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。

2.链式存储结构:借助指针表达数据元素之间的逻辑关系。

不要求逻辑上相邻的数据元素物理位置上也相邻。

5.时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n无关系T(n)=O(1)2.线性阶:算法的时间复杂度与问题规模n成线性关系T(n)=O(n)3.平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++时间复杂度的大小比较:O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )<O(n!)<O(n n)6.算法与程序:(1)算法的5个特性1、输入:有零个或多个输入2、输出:有一个或多个输出3、有穷性:要求序列中的指令是有限的;每条指令的执行包含有限的工作量;整个指令序列的执行在有限的时间内结束。

(程序与算法的区别在于,程序不需要有有穷性)4、确定性:算法中的每一个步骤都必须是确定的,而不应当含糊、模棱两可。

没有歧义。

5、可行性:算法中的每一个步骤都应当能被有效的执行,并得到确定的结果。

(2).算法设计的要求:1、正确性(达到预期效果,满足问题需求)2、健壮性(能处理合法数据,也能对不合法的数据作出反应,不会产生不可预期的后果)3、可读性(要求算法易于理解,便于分析)4、可修改可扩展性5、高效率(较好的时空性能)补充内容:1、名词解释:数据结构、二元组数据结构就是相互之间存在一种或多种特定关系的数据元素的集合。

二元组就是一种用来表示某个数据对象以及各个元素之间关系的有限集合。

2、根据数据元素之间关系的不同,数据的逻辑结构可以分为集合、线性结构、树形结构和图状结构四种类型。

3、常见的数据存储结构一般有两种类型,它们分别是顺序存储结构、链式存储结构6.在一般情况下,一个算法的时间复杂度是问题规模的函数7.常见时间复杂度有:常数阶O(1)、线性阶O(n)、对数阶O(log 2 n)、平方阶O(n^2)、指数阶O(2^n)。

通常认为,具有常数阶量级的算法是好算法,而具有指数阶量级的算法是差算法。

第二章线性表定义:线性表是n个数据元素的有限序列。

一个数据元素可由若干个数据项组成。

1. 顺序表结构线性表的顺序存储是指在内存中用地址连续的一块存储空间顺序存放线性表的各元素,用这种存储形式存储的线性表称为顺序表。

2. 单链表(1)链表结点结构线性表中的数据元素可以用任意的一组存储单元来存储,用指针表示逻辑关系逻辑相邻的两元素的存储空间可以是不连续的。

(2)链表操作算法:初始化、插入、输出、删除、遍历初始化:p=(struct student *)malloc(sizeof(struct student));插入:p->next=head->next; head->next=p;输出:printf(“%d”,p->data);删除:q=p->next; p->next = q->next ; free(q);结点遍历:for(p=head;p;p=p->next);补充内容:1、线性表中,第一个元素没有直接前驱,最后一个元素没有直接后驱。

2、在一个单链表中,若p所指结点是q所指结点的前驱结点,则删除结点q的操作语句为P->next = q->next ; free(q);3、在长度为N的顺序表中,插入一个新元素平均需要移动表中N/2个元素,删除一个元素平均需要移动(N-1)/2个元素。

4、若线性表的主要操作是在最后一个元素之后插入一个元素或删除最后一个元素,则采用顺序表存储结构最节省运算时间。

5、已知顺序表中每个元素占用3个存储单元,第13个元素的存储地址为336,则顺序表的首地址为300。

(第n个元素的地址即首地址+(n-1)*每个元素的存储空间,如a[12](第13个元素)的地址=a[0]+12*3)6、设有一带头结点单链表L,请编写该单链表的初始化,插入、输出和删除函数。

(函数名自定义)结点定义:typedef int datatype; //结点数据类型,假设为inttypedef struct node { //结点结构datatype data;struct node *next; //双向链表还应加上*previous} Lnode, * pointer ; //结点类型,结点指针类型typedef pointer lklist; //单链表类型,即头指针类型1.初始化:lklist initlist() {pointer head;head=new node;//这是C++做法//head=( pointer)malloc(sizeof(Lnode)); 这是C语言做法head->next=NULL; //循环链表则是head->next=head;//双向链表应加上head->previos=NULL;return head;}2.插入:(C语言中需要把head转化为全局变量才能实现此程序)int insert(lklist head,datatype x,int i){pointer q,s;q=get(head,i-1); //找第i-1个点if(q==NULL) //无第i-1点,即i<1或i>n+1时{cout<<”非法插入位置!\n”; //这是C++做法,即C语言中的printf(“非法插入位置!\n”);return 0;}s=new node;//生成新结点即C语言中的s=( pointer)malloc(sizeof(Lnode));s->data=x;s->next=q->next; //新点的后继是原第i个点q->next=s; //原第i-1个点的后继是新点return 1; //插入成功}3.删除:(C语言中需要把head转化为全局变量才能实现此程序)int delete(lklist head,int i) {pointer p,q;q=get(head,i-1); //找待删点的直接前趋if(q==NULL || q->next==NULL) //即i<1或i>n时{cout<<”非法删除位置!\n”;return 0;}p=q->next; //保存待删点地址q->next=p->next; //修改前趋的后继指针delete p; //释放结点即C语言中的free(p);return 1; //删除成1. 不带头结点的单链表head为空的判定条件是(A )A. head=NULLB. head->next=NULLC. head->next=headD. head!=NULL2. 带头结点的单链表head为空的判定条件是(B )A. head=NULLB. head->next=NULLC. head->next=headD. head!=NULL3. 在一个单链表中,若p所指结点不是最后结点,在p之后插入s所指结点,则执行(B )A. s->next=p; p->next=s;B. s->next=p->next; p->next=s;C. s->next=p->next; p=s;D. p->next=s; s->next=p;4. 在一个单链表中,若删除p所指结点的后续结点,则执行(A )A. p->next=p->next->next;B. p=p->next; p->next=p->next->next;C. p->next=p->nextD. p=p->next->next5. 从一个具有n个结点的有序单链表中查找其值等于x结点时,在查找成功的情况下,需平均比较(B )个结点。

A. nB. n/2C. (n-1)/2D. O(n㏒2n)6. 给定有n个元素的向量,建立一个有序单链表的时间复杂度(B)A.O(1)B.O(n)C.O(n2)D.O(n㏒2n)7.在一个具有n个结点的有序单链表中插入一个新结点并仍然有序的时间复杂度是(B)A.O(1)B.O(n)C.O(n2)D.O(n㏒2n)8. 在一个单链表中删除q所指结点时,应执行如下操作:q=p->next;p->next=( p->next->next );free(q);//这种题目靠一根指针是没有办法完成的,必须要借助第二根指针。

9. 在一个单链表中p所指结点之后插入一个s所指结点时,应执行:s->next=( p->next )p->next=(s)操作。

10. 对于一个具有n个节点的单链表,在已知所指结点后插入一个新结点的时间复杂度是(O (1));在给定值为x的结点后插入一个新结点的时间复杂度是(O(n))。

相关文档
最新文档