大跨空间建筑工程结构的发展
大跨度建筑

3.1.2桁架结构的特点
桁架结构比梁结构具有更多更大的优点: (1)扩大了梁式结构的适用跨度; (2)桁架可用各种材料制造,如钢筋混凝土、钢、木均
可; (3)桁架是由杆件组成的,桁架体型可以多样化,如平 行弦桁架、三角形桁架、梯形桁架、弧形桁架等型式; (4)施工方便,桁架可以整体制造后吊装,也可以在施 工现场高空进行杆件拼装。
薄壳结构的概念 概念 • 壳体结构 • 等厚度壳
比较
• 薄壳
双轴力 顺剪力
薄膜内力
平板
双弯矩 扭矩
壳体
空间受力 薄膜内力
很大的强度、刚度 材料强度充分利用
优点
薄壳结构的曲面形式
旋转曲面
由一条平面曲线绕着该平面内某一指定的直线旋转一周所 形成的曲面
北京天文馆
圆顶的结构组成及结构型式
壳身 支座环
门式刚架的类型与构造
门式刚架从结构上分类有: (1)无铰刚架;(2)两铰刚架;(3)三铰刚架
无铰刚架
两铰刚架
三铰刚架
桁架结构
桁架结构是指由若干直杆在其两端用铰连接而成的结
构。桁架结构受力合理、计算简单、施工方便、适应 性强,对支座没有横向推力,因而在结构工程中得到 了广泛的应用。
检票口通廊: 五个双曲扁壳,中间的为21.5m*21.5m,其余16.5m*16.5m
矢高3.3m,厚度60mm,每个顶盖均可采光
鸟瞰图
美国圣路易航空港候机室
由三组壳体组成
每组有两个圆柱形曲面正交形成 两个柱形曲面的交线为十字形交叉拱,加强壳体, 并将荷载传至支座 三组壳体的相交处为采光带
室外透视 双曲抛物面
下部支承
1.壳身结构
平滑圆顶
大跨度空间结构

土耳其圣索非亚教堂, 建于公元537年, 跨度32m
意大利佛罗伦萨圣玛丽亚 教堂,建于公元1420年, 跨度42m
英国伦敦圣保罗大教堂, 建于公元1710年, 跨度33m
意大利罗马大教堂, 建于公元1593年, 跨度42m
2. 钢筋混凝土薄壳结构的出现和发展
1824年:英国人阿士普丁发明混凝土制作法 1856年:英国人贝斯麦首次用转炉炼钢成功,钢材开始用 于建筑结构 1886年:德国人冠农通过圆拱与平板荷载实验确定了钢筋 受拉、混凝土受压的钢筋混凝土理论 1892年:法国人亨奈比克用圆钢筋埋入混凝土作整体梁板 结构,随即钢筋混凝土开始广泛应用于房屋建筑 1892年:A.E.H.Love考虑径向剪力与弯矩的理论为壳体结 构理论的发展打下了基础
永久性膜结构的产生:
在大阪世博会,盖格公司成功地向世人推出气承式膜结构的新设计技 术,而受到建筑工程界一致认可后,又面临所使用的膜材料问题。这 种膜材只有7年— 8年的寿命,在太阳紫外线及风、雨的交互作用下, 膜布会变得硬脆、破裂,而失去结构性能。 正在此时,美国福特基金会下属的教育设施实验室给盖格公司一笔资 金,用来开发此种永久性的建筑膜。 在盖格公司领导下,同美国的杜邦公司、康宁玻纤公司等五家共同开 发永久性的结构膜。 产品很顺利地就制成了,化纤公司将康宁公司提供的玻璃纤维,先集 成线再织成布纱,经过矽胶浸泡,先制成水密坯布,再多次快速放入特 氟隆溶液中,使坯布两面皆有均匀的特氟隆涂层,永久性的PTFE膜正式 诞生。 经过加速气候实验,其物理稳定性确定后,盖格公司又设计各种结构 配件及确定设计程序,以建造不同性质的膜结构。
Tokyo Dome
日本东京后乐园棒球馆 Span Structure Completion 201m Air-inflated membrane structure 1988
大跨度空间结构

摘要:随着技术的发展,大跨度空间结构越来越多的在各领域运用,本文先对大跨度空间结构的起源与历史进行介绍,再对空间结构委员会成立三十年来在空间结构领域作了介绍,重点系统论述了三十年来各时期大跨度空间结构发展与应用情况。
全面阐述了我国大跨度空间结构近期发展的特点,包括在各类公共建筑中的应用情况、空间结构体系的发展与技术进步。
关键词:发展历程,我国进展1.简介:横向跨越60米以上空间的各类结构可称为大跨度空间结构。
常用的大跨度空间结构形式包括折板结构、壳体结构、网架结构、悬索结构、充气结构、篷帐张力结构等。
大跨度空间结构是国家建筑科学技术发展水平的重要标志之一。
世界各国对空间结构的研究和发展都极为重视,例如国际性的博览会、奥运会、亚运会等,各国都以新型的空间结构来展示本国的建筑科学技术水平,空间结构已经成为衡量一个国家建筑技术水平高低的标志之一。
2.大跨度发展历程:实际上,人类很早以前就认识到穹隆具有用最小的表面封闭最大的空间的优点。
效仿洞穴穹顶,人们建造了许多砖石穹顶,如我国东汉时期河南洛阳的地下砖砌墓穴,公元前1185年古希腊迈西尼国王墓等。
古罗马最著名的穹顶是万神殿,也是建筑史上最早、最大跨度的拱建筑。
被誉为展现穹力的杰作。
然而,在尚无力学与结构理论以前,凭借已有的经验与大胆探索来建造房屋,难免发生事故。
公元537年东罗马帝国建造的圣索亚教堂,还有公元1612年建造的罗马圣彼得教堂都出现多较严重问题。
1742年罗马教皇下令检查圣彼得教堂问题原因,三位科学家经过认真调研和计算分析后,作出了解决方案。
这工程实例表明工程结构经验时代的结束和科学时期的到来。
工程结构的发展推动了理论研究的进步,理论成果的指导完善了工程实践,这是建筑结构科学得以不断进步的历史规律。
19世纪的工业革命促使科学技术飞快进步。
生铁材料出现以后引起了建筑结构革命性的变化。
1787年英国出现机扎熟铁条,1831年英国有出现机扎出角铁,1845年法国人碾压出熟铁工字梁。
大跨度结构的发展概况

大跨度结构的发展概况一、概 述在这实际的三维世界里,任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。
与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。
空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。
当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。
事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。
从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。
近二十余年来,各种类型的大跨空间结构在美、日、欧等发达国家发展很快。
建筑物的跨度和规模越来越大,目前,尺度达150m以上的超大规模建筑已非个别;结构形式丰富多彩,采用了许多新材料和新技术,发展了许多新的空间结构形式。
例如 1975年建成的美国新奥尔良“超级穹顶”(Superdome),直径207m,长期被认为是世界上最大的球面网壳;现在这一地位已被1993年建成夏径为222m的日本福冈体育馆所取代,但后者更著名的特点是它的可开合性:它的球形屋盖由三块可旋转的扇形网壳组成,扇形沿圆周导轨移动,体育馆即可呈全封闭、开启1/3或开启2/3等不同状态。
1983年建成的加拿大卡尔加里体育馆采用双曲抛物面索网屋盖,其圆形平面直径135m,它是为1988年冬季奥运会修建的,外形极为美观,迄今仍是世界上最大的索网结构。
70年代以来,由于结构使用织物材料的改进,膜结构或索-膜结构(用索加强的膜结构)获得了发展,美国建造了许多规模很大的气承式索-膜结构;1988年东京建成的“后乐园”棒球馆,也采用这种结构技术尤为先进,其近似圆形平面的直径为204m;美国亚特兰大为1996年奥运会修建的“佐治亚穹顶”(Geogia Dome,1992年建成)采用新颖的整体张拉式索一膜结构,其准椭圆形平面的轮廓尺寸达192mX241m。
建国以来大跨度建筑的空间结构发展

建国以来大跨度建筑的空间结构发展空间大跨度结构是建筑工程发展的一个重要标志,我国自五十年代以来就开展了对薄壳结构、悬索结构的研究开发与应用,建成了一批有影响的代表性工程,并取得了一大批研究成果。
八十年代由于计算机技术的发展,空间网格结构在理论研究、标准规范和工程实践等方面均取得了举世瞩目的成绩。
随着国力的增强,新材料的不断出现,空间结构由单一结构形式发展为组合结构、混合结构等多种结构形式,应用范围也从公共建筑、体育建筑发展到工业建筑乃至建筑的各个领域。
50年来,空间大跨度结构取得的辉煌成就使我们能充满信心地去营造21世纪更广阔的空间。
一、五十年空间大跨度结构的发展历程建国50年来,空间大跨度结构经历了四个发展时期:第一时期为五十年代末至六十年代中期,第二时期为七十年代末至八十年代中,第三时期为八十年代末到九十年代初,第四个时期为九十年代。
这四个发展时期都是依据当时的国力和建筑技术水平,反映出各自的结构特点与技术水平。
1、五十年代末至六十年代中期五十年代末,随着建国十年来国力的复苏,国家已有能力关注大型体育馆与大跨度公共建设的需要。
广大结构设计研究人员也以空前的热情投入于薄壳结构、悬索结构的理论研究。
这些理论研究紧密结合工程需要,在当时产生了很好的效果。
在薄壳结构方面,我国技术人员对球壳、圆柱面柱、双曲扁壳、组合扭壳等作了系统的理论研究,发表了一大批高质量的论文。
在理论研究的基础上,进行了大量的工程实践,其中代表性的工程如新疆某工厂的金工车间,采用跨度60m的椭园旋转壳体结构,目前该工程仍为国内最大跨度的薄壳结构。
还建成了跨度42m双曲扁壳的北京网球馆。
建成于1959年的北京火车站,其跨度为35m×35m,也采用双曲扁壳结构。
薄壳结构取材容易、材料省、结构与建筑围护合二为一,造价低,除模板制作稍麻烦外,施工相对简便,计算分析可用连续化方法求解,这些都是符合当时的技术水平与施工条件的。
配合大量的理论研究与工程实践,于1965年完成了国内第一本空间结构方面的规程《钢筋混凝土薄壳顶盖及楼盖设计计算规程》(BJG16-65),这一规程对以后薄壳结构的设计与施工起到了积极的指导作用。
大跨度空间钢结构的应用与发展

大跨度空间钢结构的应用与发展大跨度空间钢结构是指具有较大的跨度,并采用钢材作为主要结构材料的空间结构。
它具有结构轻、刚度高、耐久性好等特点,广泛应用于体育场馆、会展中心、机场航站楼、大型工业厂房、桥梁等领域。
本文将讨论大跨度空间钢结构的应用与发展方向。
首先,大跨度空间钢结构在体育场馆领域得到广泛应用。
体育场馆一般需要较大的空间来容纳观众和运动场地。
大跨度空间钢结构可以灵活地满足这个需求,通过钢结构的轻量化设计,使得体育场馆的屋盖结构可以实现较大的跨度,减少了柱子和横梁对观众视线的遮挡。
同时,钢结构的刚度高,可以有效地抵抗风荷载和地震荷载,提高了体育场馆的安全性。
其次,大跨度空间钢结构在会展中心的应用也十分广泛。
会展中心一般需要大空间来容纳展览和会议等活动。
大跨度空间钢结构可以满足会展中心的大空间需求,同时可以通过灵活的钢结构设计,将大空间划分为多个小空间,方便会展中心的使用和管理。
此外,钢结构还可以通过不同类型的吊顶和装饰材料,使得会展中心的内部空间具有较好的视觉效果和舒适性。
再次,大跨度空间钢结构在机场航站楼的建设中也得到了广泛应用。
机场航站楼一般需要较大的跨度来容纳飞机起降和旅客流动。
大跨度空间钢结构可以满足机场航站楼的需求,同时由于钢结构的轻量化设计,可以减少大型混凝土结构对地基的要求,缩短工期,降低成本。
此外,钢结构还可以灵活地设计出大型的航站楼玻璃幕墙,提高机场航站楼的视觉效果,增加乘客的舒适感。
最后,大跨度空间钢结构在大型工业厂房和桥梁领域的应用也逐渐增多。
大型工业厂房往往需要较大的空间,并需要有一定的开放度和通透性。
大跨度空间钢结构可以满足这个需求,同时还可以通过灵活的结构设计,满足不同工业生产的要求,提高生产效率。
与此同时,大跨度空间钢结构在桥梁领域的应用也得到了越来越多的关注。
大跨度空间钢结构可以以较小的材料消耗建造出较大跨度的桥梁,提高了桥梁的通行能力和安全性。
综上所述,大跨度空间钢结构具有轻、高、好的特点,在体育场馆、会展中心、机场航站楼、大型工业厂房、桥梁等领域得到广泛应用。
大跨度空间结构概述

1975年建成的美国新奥尔良“超级 穹顶”(Superdome),直径 207m,长期被认为是世界上最大的 球面网壳。
美国新奥尔良“超级穹顶”
东京代代木国立体育中心莫斯 Nhomakorabea中央红军之家综合体育馆
巴塞罗那圣乔地体育馆
3.大跨空间结构问题及解决方法
多种作用耦合情况对结构影响(温度应力,风载,焊接残余应力等)
70年代以来,由于结构用织物材料的改进,膜结构或索 -膜结构(用索加强的膜结构)获得了发展: 1988年东京建成的“后乐园”棒球馆,就采用这种结构, 技术尤为先进,其近似圆形平面的直径为202m; 1996年,美国亚特兰大为奥运会修建的“佐治亚穹顶” (Geogia Dome,1992年建成)采用新颖的索穹顶结构,其 准椭圆形平面的轮廓尺寸达192mX241m。
第29届奥运会主场馆:北京奥林匹克体育场
悉尼超级穹顶体育馆是被作为 2000年奥林匹克运动会的多功能 体育馆进行设计的。 菲利普· 考克斯与其合作者们 把大穹顶体育馆想象成一座庞大、 水平且半透明的建筑。建筑外形 呈鼓状,由24根钢柱支撑着的放 射状网架结构形成了遮盖赛场的 轻型屋盖体系。为使其尺度不至 于过大,他们在两侧设置了环抱 体育场的轻质廊道,这就给这个 大尺度的表皮添上了一些人性化 的细部。但是要欣赏大穹顶还是 需要一定的角度和高度,所以他 们在设计时运用了一种类似桅杆 的结构,就像是一个花冠围绕在 体育馆的周围。他们以其纤细但 不失强度的悬索和自由排列的柱 廊强调大穹顶的整体外观。支撑 柱廊的是树状的柱子,屋顶采用 了有拉索支撑的桁架结构,大尺 度出挑的屋檐为场馆提供了阴凉 的空间。
扩展内容:
空间网格结构 网壳结构的出现早于平板网架结构。在国外,传统的肋环型穹顶已有一百多 年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。中国第 一批具有现代意义的网壳是在50和60年代建造的,但数量不多。当时柱面网壳大 多采用菱形“联方”网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和 l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。球面网壳 则主要采用肋环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m) 和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)可能是仅有的两个规模较大 的球面网壳。自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。 相对而言,平板网架结构自60年代后期起获得较多应用,1967年建成的首都体育 馆和1973年建成的上海体育馆是早期成功采用平板网架结构的杰出代表,对这种 结构形式在其后一段时期的持续发展有很大影响。80年代后期北京为迎接1990亚 运会兴建的一批体育建筑中,多数仍采用平板网架结构。随着经济和文化建设需 求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑 时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑 功能和建筑造型多样化的要求。这种现实需求对网壳结构、悬索结构等多种空间 结构形式的发展起了良好的刺激作用。
大跨度空间结构的发展与创新

大跨度空间结构的发展与创新作者:胡明娜来源:《科学与技术》 2018年第5期摘要:本文阐述了大跨度空间结构的发展历史,根据各个时期空间结构发展特点、形式类型和科技水平可区分为古代空间结构、近代空间结构和现代空间结构,并说明了促进空间结构发展创新的因素;着重指出仿生学对大跨度空间结构形态创新的推动作用是无法估量的,并对结构仿生在大跨度空间结构的应用做了侧重阐述。
关键词:大跨度空间结构;发展;结构创新;仿生学正文:大跨度空间结构具有受力合理、自重轻、造价低、结构形体和品种多样,是建筑科学技术水平的集中表现,因此各国科技工作者都十分关注和重视大跨度空间结构的发展历程、科技进步、结构创新、形式分类与实践应用.1 大跨空间结构的发展历程与特点空间结构发展历史分为:二十世纪初叶(1925 年前后)以前为古代空间结构,其主要标志性结构为拱券式穹顶;二十世纪初叶以后为近代空间结构,其主要标志性结构为薄壳结构、网格结构和一般悬索结构;二十世纪末叶(1975 年前后)以后为现代空间结构,其主要标志性结构为索膜结构、索杆张力结构、索穹顶结构等.这里需要说明的是:(1)1975 年不是近代空间结构终止的年份,近代空间结构的那些主要标志结构在1975 年后还在应用、发展和创新,特别是在引入新技术、新概念后,还可以与现代空间结构比美;或者说,可转入现代空间结构的行列.(2)从1925年到1975 年的五十年间,是近代空间结构独占鳌头的黄金年代.2 大跨度空间结构的创新2.1 促进大跨度空间结构发展创新的因素人类社会的生产,物质和精神生活水平的提高与发展,就需要开阔的空间和场所,如体育场馆、影剧院、会展中心、航站楼、工业厂房车间、仓库等等,三维受力、材料节省、造价低廉的大跨度空间结构正是人们所期望的最佳选择.但真正意义上空间结构的发展尚不足百年的历史,促使空间结构发展的因素可认为有下列几方面:建筑材料的革命和创新促进了空间结构的向前发展.施工新技术特别是预应力技术的引入推动了空间结构的创新.空间结构的高空悬挑逐步安装法,地面组装、整体提升或顶升法,折叠展开施工法等都可以省去满堂红脚手架,仅利用小型机具设备拼装施工大跨度空间结构,降低工程成本和造价.日臻完善的分析理论和计算机的应用解决了大跨、复杂空间结构设计计算题.2.2 建筑结构仿生——建筑结构创新的手法在建筑发展的历史长河中,随着社会的进步,人们对建筑品质的要求越来越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨空间建筑工程结构的发展(二)二、空间网格结构网壳结构的出现早于平板网架结构。
在国外,传统的肋环型穹顶已有一百多年历史,而第一个平板网架是1940年在德国建造的(采用Mero体系)。
中国第一批具有现代意义的网壳是在50和60年代建造的,但数量不多。
当时柱面网壳大多采用菱形"联方"网格体系,1956年建成的天津体育馆钢网壳(跨度52m)和l961年同济大学建成的钢筋混凝土网壳(跨度40m)可作为典型代表。
球面网壳则主要采用助环型体系,1954年建成的重庆人民礼堂半球形穹顶(跨度46.32m)和1967年建成的郑州体育馆圆形钢屋盖(跨度64m)习能是仅有的两个规模较大的球面网壳。
自此以后直到80年代初期,网壳结构在我国没有得到进一步的发展。
相对而言自第一个平板网架(上海师范学院球类房,31.5mx40.5m)于1964年建成以来,网架结构一直保持较好发展势头。
1967年建成的首都体育馆采用斜放正交网架,其矩形平面尺寸为99mx112m,厚6m,采用型钢构件,高强螺栓连接,用钢指标65kg每平米(1kg每平米≈9.8pa)。
1973年建成的上海万人体育馆采用圆形平面的三向网架净架110m,厚6m,采用圆钢管构件和焊接空心球结点,用钢指标47kg每平米。
当时平板网架在国内还是全新的结构形式,这两个网架规模都比较大,即使从今天来看仍然具有代表性,因而对工程界产生了很大影响。
在当时体育馆建设需求的激励下,国内各高校、研究机构和设计部门对这种新结构投入了许多力量,专业的制作和安装企业也逐渐成长,为这种结构的进一步发展打下了较坚实的基础。
改革开放以来的十多年里是我国空间结构快速发展的黄金时期而平板网架结构就自然地处于捷足先登的优先地位。
甚至80年代后期北京为迎接1990年亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。
在这一时期,网架结构的设计已普遍采用计算机,生产技术也获得很大进步,开始广泛采用装配式的螺栓球结点,大大加快了网架的安装。
但事物总是存在两个方面。
在平板网架结构一枝独秀地加快发展的同时,随着经济和文化建设需求的扩大和人们对建筑欣赏品位的提高,在设计日益增多的各式各样大跨度建筑时,设计者越来越感觉到结构形式的选择余地有限,无法满足日益发展的对建筑功能和建筑造型多样化的要求。
这种现实需求对网壳结构、悬索结构等多种空间结构形式的发展起了良好的刺激作用。
由于网壳结构与网架结构的生产条件相同,国内已具备现成的基础,因而从80年代后半期起,当相应的理论储备和设计软件等条件初步完备,网壳结构就开始了在新的条件下的快速发展。
建造数量逐年增加,各种形式的网壳,包括球面网壳、柱面网壳、鞍形网壳(或扭网壳)、双曲扁网壳和各种异形网壳,以及上述各种网壳的组合形式均得到了应用;还开发了预应力网受、斜拉网壳(用斜拉索加强网壳)等新的结构体系。
近几年来建造了一些规模相当宏大的网壳结构。
例如1994年建成的天津体育馆采用肋环斜杆型(Schwedler型)双层球面网壳,其圆形平面净跨108m,周边伸出13.5m,网壳厚度3m,采用圆钢管构件和焊接空心球结点,用钢指标55kg每平米。
1995年建成的黑龙江省速滑馆用以覆盖400m速滑跑道,其巨大的双层网壳结构由中央柱面壳部分和两端半球壳部分组成,轮廓尺寸86.2mx191.2m,覆盖面积达15000平米,网壳厚度2.1m,采用圆钢管构件和螺栓球结点,用钢指标50kg每平米。
1997年刚建成的长春万人体育馆平面呈桃核形,由肋环型球面网壳切去中央条形部分再拼合而成,体型巨大,如果将外伸支腿计算在内,轮廓尺寸达146mx191.7m,网壳厚度2.8m,其桁架式"网片"的上、下弦和腹杆一律采用方(矩形)钢管,焊接连接,是我国第一个方钢管网壳。
这一网壳结构的设计方案是由国外提出的,施工图设计和制作安装由国内完成。
在网壳结构的应用日益扩大的同时,平板网架结构并未停止其自身的发展。
这种目前来看已比较简单的结构有它自己广泛的使用范围,跨度不拘大小;而已近几年在一些重要领域扩大了应用范围。
例如在机场维修机库方面,广州白云机场80m机库(199年)、成都机场 140m 机库(1995年)、首都机场2Zmx150m机库(1996年)等大型机库都采用平板网架结构。
这些三边支承的平板网架规模巨大,且需承受较重的悬挂荷载,常采用较重型的焊接型钢(或钢管)结构,有时需采用三层网架;其单位面积用钢指标可达到一般公用建筑所用网架的一倍或更多。
单层工业厂房也是近几年来平板网架获得迅速发展的一个重要领域。
为便于灵活安排生产工艺,厂房的柱网尺寸有日益扩大的趋向,这时平板网架结构就成为十分经济适用的理想结构方案。
1991年建成的第一汽车制造厂高尔夫轿车安装车间面积近8万平米(189.2mx421.6m),柱网21mx12m,采用焊接球结点网架,用钢指标31kg每平米。
该厂房是目前世界上面积的平板网架结构。
1992年建成的天津无缝钢管厂加工车间面积为6万平米(108m x 564m),柱网36m x 18m,采用螺栓球结点网架,用钢指标32kg每平米,与传统的平面钢桁架方案比较,节省了47%。
鉴于这类厂房的巨大圆积,它们确实为平板网架结构的发展提供了广阔的新领域。
十分明显,包括网架和网壳在内的空间网格结构是我国近十余年来发展最快,应用最广的空间结构类型。
这类结构体系整体刚度好,技术经济指标优越,可提供丰富的建筑造型,因而受到建设者和设计者的喜爱。
我国网架企业的蓬勃发展也为这类结构提供了方便的生产条件。
据估计,近几年我国每年建造的网架和网壳结构达800万平方米建筑面积,相应钢材用量约20万t。
这么大的数字是任何其它国家无法比拟的,无愧于"网架王国"这一称号,难怪国外有关企业对这一巨大市场垂涎欲滴。
如此大的发展势头自然也会带采一些问题。
与国际水平相比,我国目前网架生产的工艺水平和质量管理水平尚有一定距离。
尤其是在市场需求带动下,大量小型网架企业雨后春笋般成立起来,难免良莠不齐,设计也非总由有经验人士担任。
因而大力加强行业管理,切实把握住设计制作和安装质量,是促进我国空间结构进一步健康发展的重要课题。
三、张力结构中国现代悬索结构的发展始于50年代后期和60年代,北京的工人体育馆和杭州的浙江人民体育馆是当时的两个代表作。
北京工人体育馆建成于1961年,其圆形屋盖采用车辐式双层悬索体系,直径达94m。
浙江人民体育馆建成于1967年,其屋盖为椭圆平面,长径80m,短径60m.采用双曲抛物面正交索网结构。
世界上最早的现代悬索屋盖是美国于1953年建成的Raleigh体育馆,采用以两个斜放的抛物线拱为边缘构件的鞍形正交索网。
我国建造的上述两个悬索结构无论从规模大小或技术水平来看在当时都可以说是达到国际上较先进水平的。
但此后我国悬索结构的发展停顿了较长一段时间,一直到80年代,由于大跨度建筑的发展而提出的对空间结构形式多样化的要求,这种形式丰富的轻型结构重新引起了人们的热情,工程实践的数量有较大增长,应用形式趋于多样化理论研究也相应地开展起来形势相当喜人。
柔性的悬索在自然状态下不仅没有刚度,其形状也是不确定的。
必须采用敷设重屋面或施加预应力等措施,才能赋予一定的形状,成为在外荷作用下具有必要刚度和形状稳定性的结构。
值得称道的是,我国的科技人员在学习和吸收国外先进经验的同时,在结合工程具体条件创造更加符合中国国情的结构应用形式方面做了不少尝试和创新。
例如,山东省淄博等地把悬索结构应用于中小型屋盖结构中,颇具特色。
他们主要采用单层平行索系或伞形辐射索系加钢筋混凝土屋面板的构造方式。
施工时先将屋面板挂在索上(使索正好位于板缝中),在板上临时加载使索伸长,然后在板缝中浇灌细石混凝土,待达到一定强度后卸去临时荷载,即形成具有一定预应力的"悬挂薄壳"。
这种构造和施工方法不需要复杂的技术和设备,造价也比较低。
为了提高单层悬索的形状稳定性,在单层平行索系上设置横向加劲梁(或桁架)的办法也是十分有效的。
横向加劲构件的作用有二:一是传递可能的集中荷载和局部荷载使之更均匀地分配到各根平行的索上;二是通过下压横向加劲构件的两端到预定位置或通过对索进行张拉使整个体系建立预应力,从而提高屋盖的刚度。
从安徽体育馆等几个工程的实践来看这种混合结构体系施工方便,用料经济,是一种成功的创造。
由一系列承重索和曲率相反的稳定索组成的预应力双层索系,是解决悬索结构形状稳定性的另一种有效形式。
其工作机理与预应力索网有类似之处。
1966年瑞典工程师Jawerth首先在斯德哥尔摩滑冰馆采用由一对承重索和稳定索组成被称为"索桁架"的专利体系,其后这种平面双层索系在各国获得相当广泛刚用。
我国无锡体育馆也采用了这种体系。
作为对这种体系的改进,吉林滑冰馆采用了一种新型的空间双层索系,它的承重索与稳定索在不同一阵平面内,而是错开半个柱距,从而创造了新颖的建筑造型,而且很好地解决了矩形平面悬索屋盖通常遇到的屋面排水问题。
这一新颖结构参加了1987年在美国举行的国际先进结构展览。
我国悬索结构发展的另一个特点是在许多工程中运用了各种组合手段。
主要的方式是将两个以上预应力索网或其它悬索体系组合起来,并设置强大的拱或刚架等结构作为中间支承,形成各种形式的组合屋盖结构。
例如四川省体育馆和青岛市体育馆的屋盖是由两片索网和作为中间支承的一对钢筋混凝土拱组合起来的。
北京朝阳体育馆由两片索网和被称为"索拱体系"的中央支承结构组成。
中央索拱体系由两条悬索和两个钢拱组成,本身是一种混合结构,其概念也具有创新意义。
采用各种组合式屋盖不仅进一步丰富了建筑造型,而且往往能更好地满足某些建筑功能上的要求,例如为体育馆建筑提供了""的内部空间。
单纯从技术经济角度,单片索网或其它悬索体系可以经济地跨越很大的跨度,本非必须采用中间支承结构。
所以,采用组合式屋盖在很多场合毋宁说主要是出于建筑造型和使用功能方面的考虑。
从我国这几年的实践效果来看,它在这方面是起到了预期作用的。
将斜拉体系引用到屋盖结构中来,可形成一系列混合结构形式。
这种体系利用由塔柱顶端伸出的斜拉索为屋盖的横跨结构(主梁、桁架、平板网架等)提供了一系列中间弹性支承,使这些横跨结构不需靠增大结构高度和构件截面即能跨越很大的跨度。
前面提到的斜拉网壳也属于这类混合结构。
尽管十余年来悬索结构取得了可喜的发展,但与网架和网壳结构比较其发展相对较慢,分析起来可能有两方面的原因:(1)悬索结构的设计计算理论相对复杂一些,又缺少具有较高商品化程度的实用计算程序,因而难于为一般设计单位普遇采用;(2)尽管悬索结构的施工并不复杂,但一般施工单位对它不够熟悉,更没有形成专业的悬索结构施工队伍,这也影响建设单位和设计单位大胆采用这种结构形式。