大跨空间结构学习心得
大跨空间析架弦支穹顶结构体系及建造关键技术研究与应用

大跨空间析架弦支穹顶结构体系及建造关键技术研究与应用说起大跨空间析架弦支穹顶结构,嘿,这可是个不得了的东西。
你要是从天上俯瞰,看到的可能是一座座仿佛挂在天上的“大网”一样的建筑。
它们常常出现在大型场馆、体育馆、展览中心这些地方,造型霸气,气派十足,给人一种大气磅礴的感觉。
你看那些建筑,表面简洁得很,但细看时,你会发现它们的结构就像是一座精密的时钟,里面有着无数条支撑力、压力和力量的“线路”。
这玩意儿要搞明白,得先从它的“骨架”说起。
这个架子啊,咱就叫它“弦支穹顶”。
别看名字长得有点儿高深,实际搞清楚了,就跟拆开一块拼图似的,容易明了。
这东西的好处多了,它比传统的钢筋混凝土建筑轻得多。
想象一下,如果你在一个巨大的空间里放上一个笨重的屋顶,那顶棚一旦下沉,就麻烦了。
可是弦支穹顶,嘿,它的力学结构设计得巧妙无比,能够均匀分布压力,避免让整个结构“塌下去”,说白了,就是一个“不怕压力”的好帮手。
更让人惊叹的是,很多时候它不需要那么多的支柱就能站得稳,这简直是给空间腾地方!你不禁想,哇,这设计真是妙啊,空间大了,视觉感受也不一样,整个建筑看起来都开阔了不少。
不过,你可能会问,那建造这种弦支穹顶,难度是不是特别高?嘿,没错,真得难得要命。
要知道,造一个这样的结构,首先得考虑如何把这么复杂的元素搭建起来。
就像做拼图似的,一开始每个零件都很散,每个构件之间的连接要精确到毫米级,谁都不能马虎。
大家都知道,建筑嘛,任何一个环节出差错,可能全局就得“推倒重来”,所以在施工过程中,那些技术工人可得像医生一样,手稳眼准,每一个动作都得小心谨慎。
别说是安装这些弦支、钢架了,就是每一根材料的搬运,都是对技术团队的挑战。
除了这些技术挑战,还有一个不得不提的就是施工时的“精准度”。
这些大跨空间结构,材料的搭配、铺设,都是按照最严苛的标准来的。
工程师们计算得死死的,一点儿误差都不允许。
所以,一开始设计时,要做到“心中有数”,连每一根钢筋都要算得清清楚楚,计算得明明白白。
大跨空间钢结构整体提升施工技术分析

大跨空间钢结构整体提升施工技术分析摘要:大跨度空间结构钢结构的应用,能够极大提升建筑物的观赏性和建设水平,还能够节省大量的建筑材料,确保建筑物的质量安全。
本文就大跨度空间钢结构的施工技术进行了探析,希望能够对今后的相关研究提供参考。
关键词:大跨空间钢结构;整体提升;施工技术1、大跨度空间钢结构施工技术的特点(1)空间钢结构跨度大,材质高档,钢板厚度大。
随着社会科学技术与经济的不断发展,我国建筑理念产生了巨大的变化,为了充分满足广大客户的实际生活需求,建筑功能技术有了进一步的革新。
其中现代空间钢结构的跨度开始朝着更大范围发展。
为了确保建筑物的质量与施工安全性,国家超限专家审查委员会规定,这种建筑物要利用高强度级别的钢材,通过严格检测,确保钢板材料的厚度与质量。
(2)空间钢结构形式多种多样。
现如今大跨度空间钢结构在原本的形式上进行了创新与发展,已经具备了全新的组合模式。
比如,将大跨度弦支穹顶作为钢结构的奥运会的羽毛球馆,利用泡沫理论式多面体作为空间钢结构的水立方,或者是利用仿生态的设计理念的现代空间钢结构,能够让建筑形式变得更加丰富。
(3)空间钢结构的构件数量多,设计难度大。
在大型工程当中,所需要的构建种类多样,数量大,这就增加了施工难度,直接对施工进程带来了影响。
所以,要通过多次试验以及研究才能确保施工质量同时按时竣工。
(4)构建精确度要求非常严格,焊接施工难度高。
现如今的大部分大跨度空间钢结构的建筑工程都是由国家指派的重点工程项目,它们在施工质量标准方面具有非常高的要求。
所以,有关部门在施工当中要保证空间钢结构的构建精确度与焊缝技术,这就增加了施工困难程度。
另外,施工当中还需要对材质预拼装以及焊接。
为了确保工程施工质量与安全程度,在传统技术手段的基础上来创新钢结构,工作人员要数量掌握好多种技术手段,解决施工当中的困难问题。
(5)空间钢结构的施工与预应力施工技术相结合。
空间钢结构当中的预应力技术具体是指运用预加应力的方式,针对空间钢结构的内力分布情况进行调整,通过向空间钢结构施加压力,加强材料强度,扩大结构刚度。
大跨空间结构—索膜结构详解

大跨空间结构—索膜结构详解索膜结构作为新的建筑形式于本世纪五十年代在国际上开始出现,至今已有六十多年的历史,特别是到了七十年代以后,膜结构的应用得到了迅速发展。
膜结构的出现为建筑师们提供了超出传统建筑模式以外的新选择。
膜结构一改传统建筑材料而使用膜材,其重量只是传统建筑的三十分之一。
而且膜结构可以从根本上克服传统结构在大跨度,无支撑,建筑上实现时所遇到的困难,可创造巨大的无遮挡的可视空间。
索膜结构是目前发展很快的一种新型空间结构,是一种效率极高的张力集成体系,可以充分发挥钢索的强度与张拉整体结构的空间作用。
张拉膜结构是索膜结构中最常见的一种形式,是索膜建筑的代表和精华,它通过钢索与膜材共同受力形式稳定曲面来覆盖建筑空间,具有高度的形体可塑性和结构灵活性,即通过对膜材内部施加一定的预张力,使其具备了抵抗外荷载能力,从而充当结构材料的一种结构体系。
这种形式能够充分利用膜材的受力性能,形成轻巧、美观、具有现代感的空间大跨曲面结构,并且施工简单、快捷、成本低,在国内外已经被广泛应用于商业建筑、体育建筑、工业建筑、户外设施、文化娱乐建筑等各种领域。
一、索膜结构的组成及材料特性1. 索膜结构的组成一个完整的索膜结构一般由三部分组成1)形成曲面结构的张拉膜材;2)用于加强膜面的脊索和谷索,以及将膜内力传向支承结构的边索;3)求索膜体系的支架结构。
张拉膜材即作为结构材料,要能够抵抗一定的荷载而不致引起过大变形。
同时为完成作为覆盖材料所规定的建筑功能,例如美观、遮光、防火、耐久等等,还需满足各种性能要求。
所以,选用合适的膜材对于索膜结构的设计建造非常重要。
加强索除其对于膜面受力方面的加强作用外,更重要的是起到了改变建筑造型的作用。
尤其是谷索和脊索的灵活设置会给整个建筑带来奇妙的视觉效果。
支架结构最常采用的是钢结构,也可采用混凝土结构,甚至在某些情况下可以采用木结构或其他结构。
支架结构除满足将索膜体系的内力传递到基础这一结构要求以外,其形式可以采取变化多样的形式,以实现不同的建筑造型效果。
大跨空间结构

旧金山金门大桥 代代木体育馆内部
充气结构
充气结构,又名“充气膜结构”,是指在以高分子 材料制成的薄膜制品中充入空气后而形成房屋的 结构。充气式结构又可分为气承式膜结构和气胀 式膜结构(或叫气肋式膜结构)。
原理: 气承式膜结构(索膜结构)是通过压力控制系 统向建筑物内充气,使室内外保持一定的压力 差,使覆盖膜体受到上浮力,并产生一定的预 张应力,以保证体系的刚度。室内设置空压自 动调节系统,来及时地调整室内外气压,以适 应外部荷载的变化。由于跨中不需要任何支撑, 因此适用于超大跨度的建筑,一般用于大型体 育馆。
施工方法:一般现浇,坡度大时须采用双面模板或
喷射法施工。
工程实例:
西安北站
天祥车站
壳体屋顶结构
a、用钢筋混凝土建造的大空间壳体屋顶结构。 b、结构形式:壳体形式有圆筒形、球形扁壳,劈锥形
扁壳和各种单曲、双曲抛物面、扭曲面等形式。 c、特点:减轻自重,节约钢材、水泥,而且造型新颖
流畅。 d、受力:壳体结构属于高效能空间薄壁结构范畴,可
汉城奥运会体操馆和击剑馆穹顶
1967年蒙特利尔世界博览会上的美国大穹顶
杯场馆
国家游泳馆 水立方
韩国世界 仁川综合体育场
篷帐张力结构
近20多年来,在悬索结构基础上新发展起来的一种大 跨度屋顶结构,主要是利用撑杆或撑架、拉索、篷布 或薄膜和拉固点,组成各种形状的篷帐结构。
梅沙
东升收费站
大 体育公园
索穹顶结构
索穹顶结构实质是用一个周边受压环梁来平衡张拉体系的 结构。索穹顶较之于其它结构形式,具有特殊优越性。首 先,它大量采用预应力钢索而较少使用压杆,能够充分利 用钢材的抗拉刚度,若能避免柔性结构有可能的结构松弛, 索穹顶结构便不存在弹性失稳问题。其次,使用薄膜等轻 质材料作为屋面材料,使得结构自重相当轻。
大跨空间结构的发展回顾与展望一

大跨空间结构的发展回顾与展望随着现代建筑技术的快速发展,大跨空间结构在建筑领域中越来越受到重视。
本文将对大跨空间结构的发展历程进行回顾,并展望大跨空间结构技术的未来发展趋势。
大跨空间结构发展历程大跨空间结构是指跨度大于100米的建筑结构,为了实现结构的稳定性和安全性,需要使用大量的材料和精确的设计计算。
以下是大跨空间结构发展历程的主要里程碑:1958年:斯托兹夫特球场斯托兹夫特球场是世界上首个大跨空间结构建筑,由英国建筑师费雷德里克·斯托兹夫特设计,跨度为130米。
该建筑采用了钢筋混凝土预制桁架结构,是具有里程碑意义的建筑。
1967年:蒙特利尔展览馆蒙特利尔展览馆是由加拿大建筑师摩西·萨弗迪设计,跨度为150米,是世界上第二个大跨空间结构建筑。
展览馆采用了以钢结构为主体的覆盖结构,建筑风格独特。
1988年:阿拉伯联合酋长国塔伯垃岛酒店阿拉伯联合酋长国塔伯垃岛酒店是由英国建筑师汤姆·怀特设计,采用了跨度为210米的钢桁架结构,是当时世界上最大的空间结构之一。
这个建筑的设计和施工经验为大跨空间结构的应用提供了重要借鉴。
1995年:东京巨蛋东京巨蛋是由日本建筑师伊东丰雄设计,跨度为308米,高度为50米,以球形为基础结构,并采用了36个钢桁架结合的构造。
成为当时最大的室内运动场,是当时世界上最有代表性的空间结构之一。
大跨空间结构技术发展趋势大跨空间结构在建筑领域中发挥着越来越重要的作用,随着现代技术的发展,大跨空间结构技术也在不断发展和创新。
以下是大跨空间结构技术未来的发展趋势:玻璃纤维增强聚合物(FRP)的应用与金属材料相比,玻璃纤维增强聚合物(FRP)材料具有轻量、耐腐蚀、柔韧性好、易于加工成型等优点。
在大跨空间结构设计建造中,FRP作为一种高强度轻质材料,可以降低建筑物的自重,改善结构性能,提高建筑物的耐久性和可持续性。
多功能性设计大跨空间建筑的设计不仅是要满足建筑功能需求,还需要在建筑结构设计中兼顾环境保护、可持续性设计、经济实用性等方面。
大跨空间建筑施工技术

谢谢
THANKS
降噪技术
采取有效的降噪措施,如安装消 音器、调整施工时间等,降低施
工噪音对周围环境的影响。
废弃物处理
合理处理施工废弃物,分类回收 利用,减少对环境的污染。
05 大跨空间建筑施工技术应用案例
CHAPTER
国家体育场(鸟巢)
结构形式
采用钢结构体系,以曲线形态呈 现,主体结构由24根巨大钢柱和 46根巨型钢梁组成,总用钢量达
施工安全技术
安全防护措施
采取有效的安全防护措施, 如安装安全网、设置安全 通道等,保障施工人员的 安全。
安全培训与教育
对施工人员进行定期的安 全培训和教育,提高他们 的安全意识和技能。
安全管理制度
建立完善的安全管理制度, 明确各级人员的安全职责, 确保施工安全。
施工环保技术
节能技术
采用节能技术,如太阳能、地热 能等,减少能源消耗和碳排放。
11万吨。
施工方法
采用预制拼装施工方法,将钢构件 在工厂加工后运至现场进行拼装, 大大缩短了施工周期。
关键技术
采用大跨度预应力张拉技术,对钢 梁施加预应力,提高了结构的稳定 性和承载能力。
国家大剧院
结构形式
Байду номын сангаас01
采用壳体结构,主体为一个半圆形建筑,由混凝土和钛金属材
料构成。
施工方法
02
采用预制拼装施工方法,将壳体构件在工厂加工后运至现场进
跨度大
通常跨度在30米以上,甚至 达到几百米。
结构复杂
多采用钢结构、预应力混凝土 等高强度材料,结构形式多样
。
施工难度高
由于跨度大、结构复杂,施工 难度较高,需要采用先进的施
最新大跨建筑 结构——空间结构体系

大跨建筑结构——空间结构体系大跨建筑屋架结构体系——高跨比:1:6屋架形式及适用跨度平行弦屋架拱形屋架折线形屋架梯形屋架杆件受力不均匀,用料较多力情况虽然合理,但由于上弦各节点都落在抛物线上,尺寸很零件,施工不方便三角形屋架适用于较小跨度的屋盖(跨度宜在15m以内)弦支点座落在抛曲线附近,所以,受力比较合理,折线形屋架采用较多上弦扦出两个坡度较小的斜直线组成,半边屋架的外轮廓线为梯形,斜杆呈人字形。
这种屋架的刚度、构造比较简单,自重较大,一般用于跨度为24m一36m的工业建筑物二、空间结构体系(一)网架结构体系网架的优点•结构组成灵活多样但又有高度的规律性,适应各种支承条件和各种建筑造型,可适应各种建筑方面的要求•网架高度内的空间可以用以设置管道等设施,网架结构外露或部分外露,因其几何图形的规则,可以丰富建筑效果•网架的结构高度较小,不仅可以有效地利用建筑空间,而且能够利用较小规格的杆件建造大跨度的结构•杆件类型划一,适合于工厂化生产、地面拼装和整体吊装网架结构受力特点•具有各向受力的性能,它改变了一般平面桁架的受力状态,是高次超静定空间结构•网架结构的各杆件之间互相起支撑作用,整体性强、稳定性好,空间刚度大,是一种良好的抗震结构型式,尤其对大跨度建筑其优越性更为显著•在结点荷裁作用下,网架的杆件主要承受轴力,充分发挥材料强度,节省钢材网架的分类1、几何形态上分:平板网架、柱面网架、球面网架2、平面桁架系、四角锥体系、三角锥体系3、螺栓球节点、焊接球节点4、双层网架、多层网架网架材料——钢材:钢管、型钢、钢球双向正交正放、斜放三向交叉正放四角锥体系四角锥体网架的上弦和下弦平面均为方形网格,上下弦错开半格,用斜腹杆连接上下弦的网格交点,形成一个个相连的四角锥体。
四角锥体网架上弦不易再分杆,因此网格尺寸受限制,不宜太大。
它用于中小跨度斜放四角锥•所谓斜放,是指四角锥单元的底边与建筑平面周边夹角为45。
建筑结构实习报告(精选6篇)

建筑结构实习报告(精选6篇)建筑结构实习报告(精选6篇) ⼀段难忘的实习⽣活结束了,我们肯定学习到了不少学问,不妨坐下来好好写写实习报告吧。
但很多⼈说起写实习报告都是毫⽆头绪吧!以下是⼩编帮⼤家整理的建筑结构实习报告(精选6篇),欢迎⼤家分享。
建筑结构实习报告1 ⼀、实习⽬的 通过接触和参加实际⼯作,充实和扩⼤⾃⼰的知识⾯,培养综合应⽤的能⼒,为以后⾛上⼯作岗位打下基础。
⼆、实习内容 参加测量⼯程、钢筋⼯程、模板⼯程、混凝⼟⼯程、砌筑⼯程施⼯全过程的操作实习,学习每个⼯种的施⼯技术和施⼯组织管理⽅法,学习和应⽤有关⼯程施⼯规范及质量检验评定标准,学习施⼯过程中对技术的处理⽅法。
三、实习概况 在实习期间遵守实习单位和学校的安全规章制度,出勤率⾼,积极向⼯⼈师傅请教善于发现问题,并运⽤所学的理论知识,在⼯地技术员的帮助下解决问题。
对钢筋⼯程、模板⼯程、混凝⼟⼯程等有了很具体的了解,同时对部分⼯程进⾏实践操作。
1.钢筋⼯程钢筋使⽤必须坚持先检查后使⽤的原则;钢筋必须有出⼚合格证和检验报告,按国家规范进⾏复检合格后⽅可⽤于⼯程中,钢筋在现场加⼯,制作加⼯⼯序为:钢筋机械安装→钢筋对焊→锥螺纹加⼯→弯曲成型→钢筋绑扎。
2.模板⼯程模板及其⽀架应根据⼯程结构形式、荷载⼤⼩、地基⼟类别、施⼯设备和材料供应等条件进⾏设计。
模板及其⽀架应具有⾜够的承载能⼒、刚度和稳定性,能可靠地承受浇筑混凝⼟的重量、侧压⼒以及施⼯荷载。
浇筑混凝⼟时模板及⽀架在混凝⼟重⼒、侧压⼒及施⼯荷载等作⽤下胀模(变形)、跑模(位移)甚⾄坍塌的情况时有发⽣。
为避免事故,保证⼯程质量和施⼯安全,提出了对模板及其⽀架进⾏观察、维护和发⽣异常情况时进⾏处理的要求。
3.混凝⼟⼯程结构混凝⼟的强度等级必须符合设计要求。
⽤于检查结构构件混凝⼟强度的试件,应在混凝⼟的浇筑地点随机抽取。
取样与试件留置应符合下列规定: 1、每拌制100盘且不超过100m3的同配合⽐的混凝⼟,取样不得少于⼀次; 2、每⼯作班拌制的同⼀配合⽐的混凝⼟不⾜100盘时,取样不得少于⼀次; 3、当⼀次连续浇筑超过100m3时,同⼀配合⽐的混凝⼟每200m3取样不得少于⼀次; 4、每⼀楼层、同⼀配合⽐的混凝⼟,取样不得少于⼀次; 5、每次取样应⾄少留置⼀组标准养护试件,同条件养护试件的留置组数应根据实际需要确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大跨空间结构的学习心得上大学以来,我总是喜欢看一些建筑类的书籍,每每看到那些对我来说不可思意的建筑,我都会被她们的雄伟气势、美妙绝伦的造型所深深吸引和被她们的设计者所完全折服。
当然对于一个即将成为建筑人的我来说,这更是一种自豪。
在这其中大跨空间结构,印象尤为深刻。
这一学期的《大跨空间结构》课程让我更进一步的认识了空间结构。
记得小时候和朋友交换着把绳子在手指间支成各种各样的空间形状,那时侯的小游戏---“玩翻绳”,仔细想来它其实附含着一个很深的哲理---结构是变化的、是简单和复杂的综合体。
两点一线、三点一面,面和面组合成空间。
任何结构物本质上都是空间性质的,只不过出于简化设计和建造的目的,人们在许多场合把它们分解成一片片平面结构来进行构造和计算。
与此同时,无法进行简单分解的真正意义上的空间体系也始终没有停止其自身的发展,而且日益显示出一般平面结构无法比拟的丰富多彩和创造潜力,体现出大自然的美丽和神奇。
空间结构的卓越工作性能不仅仅表现在三维受力,而且还由于它们通过合理的曲面形体来有效抵抗外荷载的作用。
当跨度增大时,空间结构就愈能显示出它们优异的技术经济性能。
事实上,当跨度达到一定程度后,一般平面结构往往已难于成为合理的选择。
从国内外工程实践来看,大跨度建筑多数采用各种形式的空间结构体系。
大跨空间结构的类型和形式十分丰富多彩,可分为如下这些类型:钢筋混凝土薄壳结构、平板网架结构、网壳结构、悬索结构、膜结构和索-膜结构。
钢筋混凝土薄壁结构在50年代后期及60年代前期在我国有所发展,当时建造过一些中等跨度的球面壳、柱面壳、双曲扁壳和扭壳,在理论研究方面还投入过许多力量,制定了相应的设计规程。
但这种结构类型日前应用较少,主要原因可能是施工比较费时费事。
平板网架和网壳结构,还包括一些未能单独归类的特殊形式,如折板式网架结构、多平面型网架结构、多层多跨框架式网架结构等,总起来可称为空间网格结构。
这类结构在我国发展很快,且持续不衰。
悬索结构、膜结构和索-膜结构等柔性体系均以张力来抵抗外荷载的作用,可总称为张力结构。
这类结构富有发展前景。
薄壳结构也叫实体结构。
从某些方面可以说他是拱的演变,这与他的受力和造型特点有关。
早在古罗马时代,人们就建造了万神殿,其中央大殿为直径43.5米的半圆球型穹顶。
与传统的平面结构相比,薄壳结构造型优美、传力路线直接、受力性能良好。
薄壳结构除了承重结构作用外又是维护结构,使两者功能融合为一体,使材料更为节省。
薄壳结构的主要形式有圆柱面壳、圆球壳、双曲扁壳、双曲抛物面扭壳。
由于曲面壳体的模板制作复杂,耗费木材,大跨度空间结构在高空进行浇注和吊装也耗工耗时。
所以用薄平面板代替曲面板就应运而生,如折板结构。
平板网架即采用型钢或钢管材料,按一定规律相连接形成的空间网格状结构。
外观呈平板状,由杆件与节点体系组成,杆件在空间汇交于节点,形成一个高次超静定结构。
因此他具有相当大的空间刚度,整体性强,能适应不同方向、不同性质的荷载。
网架结构中的杆件主要受轴力,所以容易做到材尽其用,节省材料,减轻自重。
自第一个平板网架(上海师范学院球类房,31.5mx40.5m)于1964年建成以来,网架结构一直保持较好发展势头。
1967年建成的首都体育馆采用斜放正交网架,其矩形平面尺寸为99mx112m,厚6m,采用型钢构件,高强螺栓连接,用钢指标65kg每平米(1kg每平米≈9.8pa)。
1973年建成的上海万人体育馆采用圆形平面的三向网架净架110m,厚6m,采用圆钢管构件和焊接空心球结点,用钢指标47kg每平米。
当时平板网架在国内还是全新的结构形式,这两个网架规模都比较大,即使从今天来看仍然具有代表性,因而对工程界产生了很大影响。
在当时体育馆建设需求的激励下,国内各高校、研究机构和设计部门对这种新结构投入了许多力量,专业的制作和安装企业也逐渐成长,为这种结构的进一步发展打下了较坚实的基础。
改革开放以来的十多年里是我国空间结构快速发展的黄金时期而平板网架结构就自然地处于捷足先登的优先地位。
甚至80年代后期北京为迎接1990年亚运会兴建的一批体育建筑中,多数仍采用平板网架结构。
在这一时期,网架结构的设计已普遍采用计算机,生产技术也获得很大进步,开始广泛采用装配式的螺栓球结点,大大加快了网架的安装。
网壳结构是将杆件沿着某个曲面有规律地布置而组成的空间结构体系,其受力特点与薄壳结构类似,是以“薄膜”作用为主要受力特征的,即大部分荷载由网壳杆件的轴力承受。
它具有自重轻、结构刚度好、造型美观、受力合理、节省钢材、加工精美、形状偏差对内力的影响大、空间利用率低等一系列特点,可以覆盖较大的空间。
网壳结构其实和平板网架结构同属网格结构,只不过它是网格结构的曲面形式。
由于网壳结构与网架结构的生产条件相同,国内已具备现成的基础,因而从80年代后半期起,当相应的理论储备和设计软件等条件初步完备,网壳结构就开始了在新的条件下的快速发展。
建造数量逐年增加,各种形式的网壳,包括球面网壳、柱面网壳、鞍形网壳(或扭网壳)、双曲扁网壳和各种异形网壳,以及上述各种网壳的组合形式均得到了应用;还开发了预应力网受、斜拉网壳(用斜拉索加强网壳)等新的结构体系。
近几年来建造了一些规模相当宏大的网壳结构。
例如1994年建成的天津体育馆采用肋环斜杆型(Schwedler型)双层球面网壳,其圆形平面净跨108m,周边伸出13.5m,网壳厚度3m,采用圆钢管构件和焊接空心球结点,用钢指标55kg每平米。
1995年建成的黑龙江省速滑馆用以覆盖400m速滑跑道,其巨大的双层网壳结构由中央柱面壳部分和两端半球壳部分组成,轮廓尺寸86.2mx191.2m,覆盖面积达15000平米,网壳厚度 2.1m,采用圆钢管构件和螺栓球结点,用钢指标50kg每平米。
1997年刚建成的长春万人体育馆平面呈桃核形,由肋环型球面网壳切去中央条形部分再拼合而成,体型巨大,如果将外伸支腿计算在内,轮廓尺寸达146mx191.7m,网壳厚度2.8m,其桁架式“网片”的上、下弦和腹杆一律采用方(矩形)钢管,焊接连接,是我国第一个方钢管网壳。
记得今年同济大学的专家来我们学校做的有关空间结构的讲座,他就特别讲了悬索结构。
悬索结构是以一系列受拉的索作为主要受力构件,并将其按一定规律排列组成各种形式的体系后,悬挂到相应的支承结构上。
悬索结构通过索的轴向拉伸来抵抗外荷载作用,它可以最充分地利用材料的强度,大大减轻结构自重,使得其在保证经济性的情况下能够跨越较大的跨度。
柔性的悬索在自然状态下不仅没有刚度,其形状也是不确定的。
必须采用敷设重屋面或施加预应力等措施,才能赋予一定的形状,成为在外荷作用下具有必要刚度和形状稳定性的结构。
早期的悬索结构是由压杆和拉索组成,杆件受压、钢索受拉这样形成一个自平衡体系。
世界上最早的现代悬索屋盖是美国于1953年建成的Raleigh体育馆,采用以两个斜放的抛物线拱为边缘构件的鞍形正交索网。
我国建造的上述两个悬索结构无论从规模大小或技术水平来看在当时都可以说是达到国际上较先进水平的。
但此后我国悬索结构的发展停顿了较长一段时间,一直到80年代,由于大跨度建筑的发展而提出的对空间结构形式多样化的要求,这种形式丰富的轻型结构重新引起了人们的热情,工程实践的数量有较大增长,应用形式趋于多样化理论研究也相应地开展起来形势相当喜人。
值得称道的是,我国的科技人员在学习和吸收国外先进经验的同时,在结合工程具体条件创造更加符合中国国情的结构应用形式方面做了不少尝试和创新。
例如,山东省淄博等地把悬索结构应用于中小型屋盖结构中,颇具特色。
他们主要采用单层平行索系或伞形辐射索系加钢筋混凝土屋面板的构造方式。
施工时先将屋面板挂在索上(使索正好位于板缝中),在板上临时加载使索伸长,然后在板缝中浇灌细石混凝土,待达到一定强度后卸去临时荷载,即形成具有一定预应力的“悬挂薄壳”。
这种构造和施工方法不需要复杂的技术和设备,造价也比较低。
为了提高单层悬索的形状稳定性,在单层平行索系上设置横向加劲梁(或桁架)的办法也是十分有效的。
横向加劲构件的作用有二:一是传递可能的集中荷载和局部荷载使之更均匀地分配到各根平行的索上;二是通过下压横向加劲构件的两端到预定位置或通过对索进行张拉使整个体系建立预应力,从而提高屋盖的刚度。
从安徽体育馆等几个工程的实践来看这种混合结构体系施工方便,用料经济,是一种成功的创造。
由一系列承重索和曲率相反的稳定索组成的预应力双层索系,是解决悬索结构形状稳定性的另一种有效形式。
其工作机理与预应力索网有类似之处。
1966年瑞典工程师Jawerth 首先在斯德哥尔摩滑冰馆采用由一对承重索和稳定索组成被称为“索桁架”的专利体系,其后这种平面双层索系在各国获得相当广泛刚用。
我国无锡体育馆也采用了这种体系。
作为对这种体系的改进,吉林滑冰馆采用了一种新型的空间双层索系,它的承重索与稳定索在不同一阵平面内,而是错开半个柱距,从而创造了新颖的建筑造型,而且很好地解决了矩形平面悬索屋盖通常遇到的屋面排水问题。
这一新颖结构参加了1987年在美国举行的国际先进结构展览。
上述各种结构的发展当然离不开科技的进步。
社会对大跨空间的需求,促使专家学者们不断深入研究什么样的结构体系及能满足建筑平面、空间和造型的要求,跨越足够大的跨度,又具有更好的技术经济指标。
二十世纪中叶,材料科学和电算技术的突飞猛进给大跨度空间结构带来了无比广阔的发展空间。
如高强钢材、新式薄膜、结构分析和计算软件,让结构更加轻盈、形式变化多样,让原来复杂甚至根本无法分析计算的结构变的不再那么难以迄及。
当然并不是所有的问题都可以依靠材料和计算机本身来解决。
正如薄壳结构专家托罗哈所说“最佳结构有赖于其自身受力之形体,而非材料之潜在强度”。
学生:刘贞林建工0352006年11月2日。